10th Standard Maths 2 Practice Set 6.1 Chapter 6 Trigonometry Textbook Answers Maharashtra Board
Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 6.1 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 6 Trigonometry.
Class 10 Maths Part 2 Practice Set 6.1 Chapter 6 Trigonometry Questions With Answers Maharashtra Board
Question 1.
 If sin θ = \(\frac { 7 }{ 25 } \), find the values of cos θ and tan θ.
 Solution:
 sin θ = \(\frac { 7 }{ 25 } \) … [Given]
 We know that,
 sin2 θ + cos2 θ = 1
 
 …[Taking square root of both sides] Now, tan θ = \(\frac{\sin \theta}{\cos \theta}\)
 
 Alternate Method:
 sin θ = \(\frac { 7 }{ 25 } \) …(i) [Given]
 Consider ∆ABC, where ∠ABC 90° and ∠ACB = θ.
 sin θ = \(\frac { AB }{ AC } \) … (ii) [By definition]
 ∴ \(\frac { AB }{ AC } \) = \(\frac { 7 }{ 25 } \) … [From (i) and (ii)]
 
 LetAB = 7k and AC = 25k
 In ∆ABC, ∠B = 90°
 ∴ AB2 + BC2 = AC2 … [Pythagoras theorem]
 ∴ (7k)2 + BC2 = (25k)2
 ∴ 49k2 + BC2 = 625k2
 ∴ BC2 = 625k2 – 49k2
 ∴ BC2 = 576k2
 ∴ BC = 24k …[Taking square root of both sides]
 
Question 2.
 If tan θ = \(\frac { 3 }{ 4 } \), find the values of sec θ and cos θ.
 Solution:
 
 Alternate Method:
 tan θ = \(\frac { 3 }{ 4 } \) …(i)[Given]
 Consider ∆ABC, where ∠ABC 90° and ∠ACB = θ.
 tan θ = \(\frac { AB }{ BC } \) … (ii) [By definition]
 ∴ \(\frac { AB }{ BC } \) = \(\frac { 3 }{ 4 } \) … [From (i) and (ii)]
 
 Let AB = 3k and BC 4k
 In ∆ABC,∠B = 90°
 ∴ AB2 + BC2 = AC2 …[Pythagoras theorem]
 ∴ (3k)2 + (4k)2 = AC2
 ∴ 9k2 + 16k2 = AC2
 ∴ AC2 = 25k2
 ∴ AC = 5k …[Taking square root of both sides]
 
Question 3.
 If cot θ = \(\frac { 40 }{ 9 } \), find the values of cosec θ and sin θ
 Solution:
 
 ..[Taking square root of both sides]
 
 Alternate Method:
 cot θ = \(\frac { 40 }{ 9 } \) ….(i) [Given]
 Consider ∆ABC, where ∠ABC = 90° and
 ∠ACB = θ
 cot θ = \(\frac { BC }{ AB } \) …(ii) [By defnition]
 ∴ \(\frac { BC }{ AB } \) = \(\frac { 40 }{ 9 } \) ….. [From (i) and (ii)]
 Let BC = 40k and AB = 9k
 
 In ∆ABC, ∠B = 90°
 ∴ AB2 + BC2 = AC2 … [Pythagoras theorem]
 ∴ (9k)2 + (40k)2 = AC2
 ∴ 81k2 + 1600k2 = AC2
 ∴ AC2 = 1681k2
 ∴ AC = 41k … [Taking square root of both sides]
 
Question 4.
 If 5 sec θ – 12 cosec θ = θ, find the values of sec θ, cos θ and sin θ.
 Solution:
 5 sec θ – 12 cosec θ = 0 …[Given]
 ∴ 5 sec θ = 12 cosec θ
 
 
Question 5.
 If tan θ = 1, then find the value of
 ![]()
 Solution:
 tan θ = 1 … [Given]
 We know that, tan 45° = 1
 ∴ tan θ = tan 45°
 ∴ θ = 45°
 
Question 6.
 Prove that:
 i. \(\frac{\sin ^{2} \theta}{\cos \theta}+\cos \theta=\sec \theta\)
 ii. cos2 θ (1+ tan2 θ) = 1
 iii. \(\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sec \theta-\tan \theta\)
 iv. (sec θ – cos θ) (cot θ + tan θ) tan θ. sec θ
 v. cot θ + tan θ cosec θ. sec θ
 vi. \(\frac{1}{\sec \theta-\tan \theta}=\sec \theta+\tan \theta\)
 vii. sin4 θ – cos4 θ = 1 – 2 cos2 θ
 viii. \(\sec \theta+\tan \theta=\frac{\cos \theta}{1-\sin \theta}\)
 
 Proof:
 i. L.H.S. = \(\frac{\sin ^{2} \theta}{\cos \theta}+\cos \theta\)
 
ii. L.H.S. = cos2 θ(1 + tan2 θ)
 = cos2 θ sec2 θ …[∵ 1 + tan2 θ = sec2 θ]
 
 = 1
 = R.H.S.
 ∴ cos2 θ (1 + tan2 θ) = 1

iv. L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
 
 ∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ. sec θ
v. L.H.S. = cot θ + tan θ
 
 ∴ cot θ + tan θ = cosec θ.sec θ

vii. L.H.S. = sin4 θ – cos4 θ
 = (sin2 θ)2 – (cos2 θ)2
 = (sin2 θ + cos2 θ) (sin2 θ – cos2 θ)
 = (1) (sin2 θ – cos2 θ) ….[∵ sin2 θ + cos2 θ = 1]
 = sin2 θ – cos2 θ
 = (1 – cos2 θ) – cos2 θ …[θ sin2 θ = 1 – cos2 θ]
 = 1 – 2 cos2 θ
 = R.H.S.
 ∴ sin4 θ – cos4 θ = 1 – 2 cos2 θ
viii. L.H.S. = sec θ + tan θ
 

 
xi. L.H.S. = sec4 A (1 – sin4 A) – 2 tan2 A
 = sec4 A [12 – (sin2 A)2] – 2 tan2 A
 = sec4 A (1 – sin2A) (1 + sin2 A) – 2 tan2 A
 = sec4 A cos2A (1 + sin2 A) – 2 tan2A
 [ ∵ sin2 θ + cos2 θ = 1 ,∵ 1 – sin2 θ = cos2 θ]
 
 
Maharashtra Board Class 10 Maths Chapter 6 Trigonometry Intext Questions and Activities
Question 1.
 Fill in the blanks with reference to the figure given below. (Textbook pg. no. 124)
 
 Solution:

Question 2.
 Complete the relations in ratios given below. (Textbook pg, no. 124)
 
 Solution:
 i. \(\frac{\sin \theta}{\cos \theta}\) = [tan θ]
 ii. sin θ = cos (90 – θ)
 iii. cos θ = (90 – θ)
 iv. tan θ × tan (90 – θ) = 1
Question 3.
 Complete the equation. (Textbook pg. no, 124)
 sin2 θ + cos2 θ = [______]
 Solution:
 sin2 θ + cos2 θ = [1]
Question 4.
 Write the values of the following trigonometric ratios. (Textbook pg. no. 124)
 
 Solution:
 
Maharashtra Board Class 10 Maths Solutions
Maharashtra State Board Class 10 Maths Solutions Part 2
- Co-ordinate Geometry Practice Set 5.1 Class 10 Maths Solutions
 - Co-ordinate Geometry Practice Set 5.2 Class 10 Maths Solutions
 - Co-ordinate Geometry Practice Set 5.3 Class 10 Maths Solutions
 - Co-ordinate Geometry Problem Set 5 Class 10 Maths Solutions
 - Trigonometry Practice Set 6.1 Class 10 Maths Solutions
 - Trigonometry Practice Set 6.2 Class 10 Maths Solutions
 - Trigonometry Problem Set 6 Class 10 Maths Solutions
 - Mensuration Practice Set 7.1 Class 10 Maths Solutions
 - Mensuration Practice Set 7.2 Class 10 Maths Solutions
 - Mensuration Practice Set 7.3 Class 10 Maths Solutions
 - Mensuration Practice Set 7.4 Class 10 Maths Solutions
 - Mensuration Problem Set 7 Class 10 Maths Solutions