Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5

Balbharati Maharashtra State Board 12th Commerce Maths Solution Book Pdf Chapter 2 Matrices Ex 2.5 Questions and Answers.

Maharashtra State Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5

Question 1.
Apply the given elementary transformation on each of the following matrices:
(i) \(\left[\begin{array}{cc}
3 & -4 \\
2 & 2
\end{array}\right]\), R1 ↔ R2
(ii) \(\left[\begin{array}{cc}
2 & 4 \\
1 & -5
\end{array}\right]\), C1 ↔ C2
(iii) \(\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right]\) 3R2 and C2 → C2 – 4C1
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q1

Question 2.
Transform \(\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 1 & 3 \\
3 & 2 & 4
\end{array}\right]\) into an upper triangularmatrix by suitable row transformations.
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q2
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q2.1

Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5

Question 3.
Find the cofactor matrix of the following matrices:
(i) \(\left[\begin{array}{cc}
1 & 2 \\
5 & -8
\end{array}\right]\)
(ii) \(\left[\begin{array}{ccc}
5 & 8 & 7 \\
-1 & -2 & 1 \\
-2 & 1 & 1
\end{array}\right]\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q3
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q3.1
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q3.2
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q3.3

Question 4.
Find the adjoint of the following matrices:
(i) \(\left[\begin{array}{cc}
2 & -3 \\
3 & 5
\end{array}\right]\)
(ii) \(\left[\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 3 & 5 \\
-2 & 0 & -1
\end{array}\right]\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q4
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q4.1
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q4.2
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q4.3

Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5

Question 5.
Find the inverses of the following matrices by the adjoint mathod:
(i) \(\left[\begin{array}{rr}
3 & -1 \\
2 & -1
\end{array}\right]\)
(ii) \(\left[\begin{array}{cc}
2 & -2 \\
4 & 5
\end{array}\right]\)
(iii) \(\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 4 \\
0 & 0 & 5
\end{array}\right]\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q5
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q5.1
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q5.2
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q5.3
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q5.4
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q5.5

Question 6.
Find the inverses of the following matrices by the transformation method:
(i) \(\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]\)
(ii) \(\left[\begin{array}{ccc}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q6
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q6.1
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q6.2
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q6.3
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q6.4
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q6.5

Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5

Question 7.
Find the inverse of A = \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) by elementary column transformations.
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q7
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q7.1
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q7.2

Question 8.
Find the inverse of \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\) by the elementary row transformations.
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q8
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q8.1
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q8.2

Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5

Question 9.
If A = \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) and B = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\), then find matrix X such that XA = B.
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q9
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q9.1
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q9.2

Question 10.
Find matrix X, if AX = B, where A = \(\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4
\end{array}\right]\) and B = \(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q10
Maharashtra Board 12th Commerce Maths Solutions Chapter 2 Matrices Ex 2.5 Q10.1

Maharashtra Board 12th Commerce Maths Solutions Chapter 1 Mathematical Logic Ex 1.9

Balbharati Maharashtra State Board 12th Commerce Maths Solution Book Pdf Chapter 1 Mathematical Logic Ex 1.9 Questions and Answers.

Maharashtra State Board 12th Commerce Maths Solutions Chapter 1 Mathematical Logic Ex 1.9

Question 1.
Without using truth table, show that
(i) p ↔ q ≡ (p ∧ q) ∨ (~p ∧ ~q)
Solution:
LHS = p ↔ q
≡ (p → q) ∧ (q → p)
≡ (~p ∨ q) ∧ (~(q ∨ p) …..(Conditional Law)
≡ [~p ∧ (~(q ∨ p)] ∨ [q ∧ (~q ∨ p] …..(Distributive Law)
≡ [(~p ∧ ~q) ∨ (~p ∧ p)] ∨ [(q ∧ ~q) ∨ (q ∧ p)] ……(Distributive Law)
≡ [(~p ∧ ~q) ∨ c] ∨ [c ∨ (q ∧ p)] …..(Complement Law)
≡ (~p ∧ ~q) ∨ (q ∧ p) ……(Identity Law)
≡ (~p ∧ ~q) ∨ (p ∧ q) ……(Commutative Law)
≡ (p ∧ q) ∨ (~p∧ q) ……(Commutative Law)
≡ RHS.

(ii) p ∧ [~p ∨ q) ∨ (~q)] ≡ p
Solution:
LHS = p ∧ [(~p ∨ q) ∨ (~q)]
≡ p ∧ [~p ∨ (q ∨ ~q)] ……(Associative Law)
≡ p ∧ [~p ∨ t] …….(Complement Law)
≡ p ∧ t ……(Identity Law)
≡ p ……(Identity Law)
= RHS.

Maharashtra Board 12th Commerce Maths Solutions Chapter 1 Mathematical Logic Ex 1.9

(iii) ~[(p ∧ q) → ~(q)] ≡ p ∧ q
Solution:
LHS = ~[(p ∧ q) → ~(~q)]
≡ (p ∧ q) ∧ ~(~q) ……(Negation of implication)
≡ (p ∧ q) ∧ q …..(Negation of negation)
≡ p ∧ (q ∧ q) …..(Associative Law)
≡ P ∧ q ……(Idempotent Law)
= RHS

(iv) ~r → ~(p ∧ q) ≡ [~(q → r)] → (~p)
Solution:
LHS = ~r → ~(p ∧ q)
≡ ~q → (~p ∨ ~q) ……(De Morgan’s Law)
≡ ~(~r) ∨ (~p ∨~q) …..(Conditional Law)
≡ r ∨ (~p ∨ ~q) …..(Involution Law)
≡ r ∨ ~q ∨ ~p …..(Commutative Law)
≡ (~q ∨ r) ∨ (~p) ……(Commutative Law)
≡ ~(q → r) ∨ (~p) ……(Conditional Law)
≡ ~(q → r) → (~p) ……(Conditional Law)
= RHS.

(v) (p ∨ q) → r ≡ (p → r) ∧ (q → r)
Solution:
LHS = (p ∨ q) → r
≡ ~(p → q) ∨ r ……..(Conditional Law)
≡ (~p ∧ ~q) ∨ r ……….(De Morgan’s Law)
≡ (~p ∨ r) ∧ (~q ∨ r) ………..(Distributive Law)
≡ (p → r) ∧ (q → r) …….(Conditional Law)
= RHS.

Maharashtra Board 12th Commerce Maths Solutions Chapter 1 Mathematical Logic Ex 1.9

Question 2.
Using the algebra of statement, prove that:
(i) [p ∧ (q ∨ r)] ∨ [~r ∧ ~q ∧ p] ≡ p
Solution:
LHS = [p ∧ (q ∨ r)] ∨ [ ~r ∧ ~q ∧ p]
≡ [p ∧ (q ∨ r)] ∨ [(~r ∧ ~q) ∧ p] ……(Associative Law)
≡ [p ∧ (q ∨ r)] ∨ [(~q ∧ ~r) ∧ p] ……(Commutative Law)
≡ [p ∧ (q ∨ r)] ∨ [ ~ (q ∨ r) ∧ p] ……(De Morgan’s Law)
≡ [p ∧ (q ∨ r)] ∨ [p ∧ ~(q ∨ r)] ……(Commutative Law)
≡ p ∧ [(q ∨ r) ∨ ~ (q ∨ r) ] …..(Distributive Law)
≡ p ∧ t …….(Complement Law)
≡ p ……(Identity Law)
= RHS.

(ii) (p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q) ≡ p ∨ ~q
Solution:
LHS = (p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~ q)
≡ (p ∧ q) ∨ [(p ∧ ~q) ∨ (~p ∧ ~q)] ……(Associative Law)
≡ (p ∧ q) ∨ [(~q ∧ p) ∨ (~q ∧ ~p)] …..(CommutativeLaw)
≡ (p ∧ q) ∨ [ ~q ∧ (p ∨ ~ p)] …..(Distributive Law)
≡ (p ∧ q) ∨ (~q ∧ t) ……(Complement Law)
≡ (p ∧ q) ∨ (~q) …….(Identity Law)
≡ (p ∨ ~q) ∧ (q ∨ ~q) ……(Distributive Law)
≡ (p ∨ ~q) ∧ t …….(Complement Law)
≡ p ∨ ~q …..(Identity Law)
= RHS.

Maharashtra Board 12th Commerce Maths Solutions Chapter 1 Mathematical Logic Ex 1.9

(iii) (p ∨ q) ∧ (~p ∨ ~q) ≡ (p ∧ ~q) ∨ (~p ∧ q)
Solution:
LHS = (p ∨ q) ∧ (~p ∨ ~q)
≡ [p ∧ (~p ∨ ~q)] ∨ [q ∧ (~p ∨ ~q)] ……(Distributive Law)
≡ [(p ∧ ~p) ∨ (p ∧ ~q)] ∨ [q ∧ ~p) ∨ (q ∧ ~q)] ……(Distributive Law)
≡ [c ∨ (p ∧ ~q)] ∨ [(q ∧ ~p) ∨ c] ……(Complement Law)
≡ (p ∧ ~q) ∨ (q ∧ ~p) ……..(Identity Law)
≡ (p ∧ ~q) ∨ (~p ∧ q) ………(Commutative Law)
= RHS.

Maharashtra Board 12th Commerce Maths Solutions Chapter 1 Mathematical Logic Ex 1.8

Balbharati Maharashtra State Board 12th Commerce Maths Solution Book Pdf Chapter 1 Mathematical Logic Ex 1.8 Questions and Answers.

Maharashtra State Board 12th Commerce Maths Solutions Chapter 1 Mathematical Logic Ex 1.8

Question 1.
Write the negation of each of the following statements:
(i) All the stars are shining if it is night.
Solution:
The given statement can be written as:
If it is night, then all the stars are shining.
Let p : It is night.
q : All the stars are shining.
Then the symbolic form of the given statement is p → q
Since, ~(p → q) ≡ p ∧ ~q,
the negation of the given statement is ‘It is night and all the stars are not shining.’

(ii) ∀ n ∈ N, n + 1 > 0.
Solution:
The negation of the given statement is
‘∃ n ∈ N, such that n + 1 ≤ 0.’

(iii) ∃ n ∈ N, such that (n2 + 2) is odd number.
Solution:
The negation of the given statement is
‘∀ n ∈ N, n2 + 2 is not an odd number.’

(iv) Some continuous functions are differentiable.
Solution:
The negation of a given statement is ‘All continuous functions are not differentiable.’

Maharashtra Board 12th Commerce Maths Solutions Chapter 1 Mathematical Logic Ex 1.8

Question 2.
Using the rules of negation, write the negations of the following:
(i) (p → r) ∧ q
Solution:
The negation of (p → r) ∧ q is
~[(p → r) ∧ q] ≡ ~(p → r) ∨ (~q) …..[Negation of conjunction]
≡ (p ∧ ~r) ∨ (~q) ……[Negation of implication]

(ii) ~(p ∨ q) → r
Solution:
The negation of ~(p ∨ q) → r is
~[~(p ∨ q) → r] ≡ ~(p ∨ q) ∧ (~r) …..[Negation of implication]
≡ (~p ∧ ~q) ∧ (~r) ……[Negation of disjunction]

(iii) (~p ∧ q) ∧ (~q ∨ ~r)
Solution:
The negation of (~p ∧ q) ∧ (~q ∨ ~r) is
~[(~p ∧ q) ∧ (~q ∨ ~ r)] ≡ ~(~p ∧ q) ∨ ~(~q ∨ ~r) ……[Negation of conjunction]
≡ [~(~p) ∨ ~q] ∨ [~(~q) ∧ ~(~r)] … [Negation of conjunction and disjunction]
≡ (p ∨ ~q) ∨ (q ∧ r) …..[Negation of negation]

Question 3.
Write the converse, inverse, and contrapositive of the following statements:
(i) If it snows, then they do not drive the car.
Solution:
Let p : It snows.
q : They do not drive the car.
Then the symbolic form of the given statement is p → q.
Converse: q → p is the converse of p → q.
i.e. If they do not drive the car, then it snows.
Inverse: ~p → ~q is the inverse of p → q.
i.e. If it does not snow, then they drive the car.
Contrapositive: ~q → ~p is the contrapositive of p → q.
i.e. If they drive the car, then it does not snow.

(ii) If he studies, then he will go to college.
Solution:
Let p : He studies.
q : He will go to college.
Then two symbolic form of the given statement is p → q.
Converse: q → p is the converse of p → q.
i.e. If he will go to college, then he studies.
Inverse: ~p → ~q is the inverse of p → q.
i.e. If he does not study, then he will not go to college.
Contrapositive: ~q → ~p is the contrapositive of p → q.
i.e. If he will not go to college, then he does not study.

Maharashtra Board 12th Commerce Maths Solutions Chapter 1 Mathematical Logic Ex 1.8

Question 4.
With proper justification, state the negation of each of the following:
(i) (p → q) ∨ (p → r)
Solution:
The negation of (p → q) ∨ (p → r) is
~[(p → q) ∨ (p → r)] ≡ ~(p → q) ∧ ~(p → r) …..[Negation of disjunction]
≡ (p ∧ ~q) ∧ (p ∧ ~r) …[Negation of implication]

(ii) (p ↔ q) ∨ (~q → ~r)
Solution:
The negation of (p ↔ q) ∨ (~q → ~r) is
~[(p ↔ q) ∨ (~q → ~r)] ≡ ~(p ↔ q) ∧ ~(~q → ~r) …..[Negation of disjunction]
≡ [(p ∧ ~q) ∨ (q ∧ ~p)] ∧ [~q ∧ ~(~r)] ……[Negation of biconditional and implication]
≡ [(p ∧ ~q) ∨ (q ∧ ~p)] ∧ (~q ∧ r) ……[Negation of negation]

(iii) (p → q) ∧ r
Solution:
The negation of (p → q) ∧ r is
~[(p → q) ∧ r] ≡ ~(p → q) ∨ (~r) …..[Negation of conjunction]
≡ (p ∧ ~q) ∨ (~r) …..[Negation of implication]

Maharashtra Board 12th Commerce Maths Solutions Chapter 1 Mathematical Logic Ex 1.7

Balbharati Maharashtra State Board 12th Commerce Maths Solution Book Pdf Chapter 1 Mathematical Logic Ex 1.7 Questions and Answers.

Maharashtra State Board 12th Commerce Maths Solutions Chapter 1 Mathematical Logic Ex 1.7

Question 1.
Write the dual of each of the following:
(i) (p ∨ q) ∨ r
Solution:
(p ∧ q) ∧ r

(ii) ~(p ∨ q) ∧ [p ∨ ~(q ∧ ~r)]
Solution:
~(p ∧ q) ∨ [p ∧ ~(q ∨ ~r)]

(iii) p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Solution:
p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

(iv) ~(p ∧ q) ≡ ~p ∨ ~q
Solution:
~(p ∨ q) ≡ ~p ∧ ~q

Maharashtra Board 12th Commerce Maths Solutions Chapter 1 Mathematical Logic Ex 1.7

Question 2.
Write the dual statement of each of the following compound statements:
(i) 13 is prime number and India is a democratic country.
Solution:
13 is prime number or India is a democratic country.

(ii) Karina is very good or everybody likes her.
Solution:
Karina is very good and everybody likes her.

(iii) Radha and Sushmita can not read Urdu.
Solution:
Radha or Sushmita can not read Urdu.

(iv) A number is real number and the square of the number is non-negative.
Solution:
A number is real number or the square of the number is non-negative.

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

I. Choose the correct option from the given alternatives:

Question 1.
The area bounded by the region 1 ≤ x ≤ 5 and 2 ≤ y ≤ 5 is given by
(a) 12 sq units
(b) 8 sq units
(c) 25 sq units
(d) 32 sq units
Answer:
(a) 12 sq units

Question 2.
The area of the region enclosed by the curve y = \(\frac{1}{x}\), and the lines x = e, x = e2 is given by
(a) 1 sq unit
(b) \(\frac{1}{2}\) sq units
(c) \(\frac{3}{2}\) sq units
(d) \(\frac{5}{2}\) sq units
Answer:
(a) 1 sq unit

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 3.
The area bounded by the curve y = x3, the X-axis and the lines x = -2 and x = 1 is
(a) -9 sq units
(b) \(-\frac{15}{4}\) sq units
(c) \(\frac{15}{4}\) sq units
(d) \(\frac{17}{4}\) sq units
Answer:
(c) \(\frac{15}{4}\) sq units

Question 4.
The area enclosed between the parabola y2 = 4x and line y = 2x is
(a) \(\frac{2}{3}\) sq units
(b) \(\frac{1}{3}\) sq units
(c) \(\frac{1}{4}\) sq units
(d) \(\frac{3}{4}\) sq units
Answer:
(b) \(\frac{1}{3}\) sq units

Question 5.
The area of the region bounded between the line x = 4 and the parabola y2 = 16x is
(a) \(\frac{128}{3}\) sq units
(b) \(\frac{108}{3}\) sq units
(c) \(\frac{118}{3}\) sq units
(d) \(\frac{218}{3}\) sq units
Answer:
(a) \(\frac{128}{3}\) sq units

Question 6.
The area of the region bounded by y = cos x, Y-axis and the lines x = 0, x = 2π is
(a) 1 sq unit
(b) 2 sq units
(c) 3 sq units
(d) 4 sq units
Answer:
(d) 4 sq units

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 7.
The area bounded by the parabola y2 = 8x, the X-axis and the latus rectum is
(a) \(\frac{31}{3}\) sq units
(b) \(\frac{32}{3}\) sq units
(c) \(\frac{32 \sqrt{2}}{3}\) sq units
(d) \(\frac{16}{3}\) sq units
Answer:
(b) \(\frac{32}{3}\) sq units

Question 8.
The area under the curve y = 2√x, enclosed between the lines x = 0 and x = 1 is
(a) 4 sq units
(b) \(\frac{3}{4}\) sq units
(c) \(\frac{2}{3}\) sq units
(d) \(\frac{4}{3}\) sq units
Answer:
(d) \(\frac{4}{3}\) sq units

Question 9.
The area of the circle x2 + y2 = 25 in first quadrant is
(a) \(\frac{25 \pi}{3}\) sq units
(b) 5π sq units
(c) 5 sq units
(d) 3 sq units
Answer:
(a) \(\frac{25 \pi}{3}\) sq units

Question 10.
The area of the region bounded by the ellipse \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\) is
(a) ab sq units
(b) πab sq units
(c) \(\frac{\pi}{a b}\) sq units ab
(d) πa2 sq units
Answer:
(b) πab sq units

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 11.
The area bounded by the parabola y2 = x and the line 2y = x is
(a) \(\frac{4}{3}\) sq units
(b) 1 sq unit
(c) \(\frac{2}{3}\) sq unit
(d) \(\frac{1}{3}\) sq unit
Answer:
(a) \(\frac{4}{3}\) sq units

Question 12.
The area enclosed between the curve y = cos 3x, 0 ≤ x ≤ \(\frac{\pi}{6}\) and the X-axis is
(a) \(\frac{1}{2}\) sq unit
(b) 1 sq unit
(c) \(\frac{2}{3}\) sq unit
(d) \(\frac{1}{3}\) sq unit
Answer:
(d) \(\frac{1}{3}\) sq unit

Question 13.
The area bounded by y = √x and line x = 2y + 3, X-axis in first quadrant is
(a) 2√3 sq units
(b) 9 sq units
(c) \(\frac{34}{3}\) sq units
(d) 18 sq units
Answer:
(b) 9 sq units

Question 14.
The area bounded by the ellipse \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\) and the line \(\frac{x}{a}+\frac{y}{b}=1\) is
(a) (πab – 2ab) sq units
(b) \(\frac{\pi a b}{4}-\frac{a b}{2}\) sq units
(c) (πab – ab) sq units
(d) πab sq units
Answer:
(b) \(\frac{\pi a b}{4}-\frac{a b}{2}\) sq units

Question 15.
The area bounded by the parabola y = x2 and the line y = x is
(a) \(\frac{1}{2}\) sq unit
(b) \(\frac{1}{3}\) sq unit
(c) \(\frac{1}{6}\) sq unit
(d) \(\frac{1}{12}\) sq unit
Answer:
(c) \(\frac{1}{6}\) sq unit

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 16.
The area enclosed between the two parabolas y2 = 4x and y = x is
(a) \(\frac{8}{3}\) sq units
(b) \(\frac{32}{3}\) sq units
(c) \(\frac{16}{3}\) sq units
(d) \(\frac{4}{3}\) sq units
Answer:
(c) \(\frac{16}{3}\) sq units

Question 17.
The area bounded by the curve y = tan x, X-axis and the line x = \(\frac{\pi}{4}\) is
(a) \(\frac{1}{3}\) log 2 sq units
(b) log 2 sq units
(c) 2 log 2 sq units
(d) 3 log 2 sq units
Answer:
(a) \(\frac{1}{3}\) log 2 sq units

Question 18.
The area of the region bounded by x2 = 16y, y = 1, y = 4 and x = 0 in the first quadrant, is
(a) \(\frac{7}{3}\) sq units
(b) \(\frac{8}{3}\) sq units
(c) \(\frac{64}{3}\) sq units
(d) \(\frac{56}{3}\) sq units
Answer:
(d) \(\frac{56}{3}\) sq units

Question 19.
The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by
(a) \(\frac{16 a^{2}}{3}\) sq units
(b) \(\frac{8 a^{2}}{3}\) sq units
(c) \(\frac{4 a^{2}}{3}\) sq units
(d) \(\frac{32 a^{2}}{3}\) sq units
Answer:
(a) \(\frac{16 a^{2}}{3}\) sq units

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 20.
The area of the region included between the line x + y = 1 and the circle x2 + y2 = 1 is
(a) \(\frac{\pi}{2}-1\) sq units
(b) π – 2 sq units
(c) \(\frac{\pi}{4}-\frac{1}{2}\) sq units
(d) π – \(\frac{1}{2}\) sq units
Answer:
(c) \(\frac{\pi}{4}-\frac{1}{2}\) sq units

(II) Solve the following:

Question 1.
Find the area of the region bounded by the following curve, the X-axis and the given lines:
(i) 0 ≤ x ≤ 5, 0 ≤ y ≤ 2
(ii) y = sin x, x = 0, x = π
(iii) y = sin x, x = 0, x = \(\frac{\pi}{3}\)
Solution:
(i) Required area = \(\int_{0}^{5} y d x\), where y = 2
= \(\int_{0}^{5} 2 d x\)
= \([2 x]_{0}^{5}\)
= 2 × 5 – 0
= 10 sq units.

(ii) The curve y = sin x intersects the X-axis at x = 0 and x = π between x = 0 and x = π.
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q1(ii)
Two bounded regions A1 and A2 are obtained. Both the regions have equal areas.
∴ required area = A1 + A2 = 2A1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q1(ii).1

(iii) Required area = \(\int_{0}^{\pi / 3} y d x\), where y = sin x
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q1(iii)

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 2.
Find the area of the circle x2 + y2 = 9, using integration.
Solution:
By the symmetry of the circle, its area is equal to 4 times the area of the region OABO.
Clearly, for this region, the limits of integration are 0 and 3.
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q2
From the equation of the circle, y2 = 9 – x2.
In the first quadrant, y > 0
∴ y = \(\sqrt{9-x^{2}}\)
∴ area of the circle = 4 (area of the region OABO)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q2.1

Question 3.
Find the area of the ellipse \(\frac{x^{2}}{25}+\frac{y^{2}}{16}=1\) using integration.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q3
By the symmetry of the ellipse, its area is equal to 4 times the area of the region OABO.
Clearly, for this region, the limits of integration are 0 and 5.
From the equation of the ellipse
\(\frac{y^{2}}{16}=1-\frac{x^{2}}{25}=\frac{25-x^{2}}{25}\)
∴ y2 = \(\frac{16}{25}\) (25 – x2)
In the first quadrant y > 0
∴ y = \(\frac{4}{5} \sqrt{25-x^{2}}\)
∴ area of the ellipse = 4(area of the region OABO)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q3.1

Question 4.
Find the area of the region lying between the parabolas:
(i) y2 = 4x and x2 = 4y
(ii) 4y2 = 9x and 3x2 = 16y
(iii) y2 = x and x2 = y.
Solution:
(i)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(i)
For finding the points of intersection of the two parabolas, we equate the values of y2 from their equations.
From the equation x2 = 4y, y = \(\frac{x^{2}}{4}\)
y = \(\frac{x^{4}}{16}\)
\(\frac{x^{4}}{16}\) = 4x
∴ x4 – 64x = 0
∴ x(x3 – 64) = 0
∴ x = 0 or x3 = 64 i.e. x = 0 or x = 4
When x = 0, y = 0
When x = 4, y = \(\frac{4^{2}}{4}\) = 4
∴ the points of intersection are 0(0, 0) and A(4, 4).
Required area = area of the region OBACO = [area of the region ODACO] – [area of the region ODABO]
Now, area of the region ODACO = area under the parabola y2 = 4x, i.e. y = 2√x between x = 0 and x = 4
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(i).1

(ii)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(ii)
For finding the points of intersection of the two parabolas, we equate the values of 4y2 from their equations.
From the equation 3x2 = 16y, y = \(\frac{3 x^{2}}{16}\)
∴ y = \(\frac{3 x^{4}}{256}\)
∴ \(\frac{3 x^{4}}{256}\) = 9x
∴ 3x4 – 2304x = 0
∴ x(x3 – 2304) = 0
∴ x = 0 or x3 = 2304 i.e. x = 0 or x = 4
When x = 0, y = 0
When x = 4, y = \(\frac{4^{2}}{4}\)
∴ the points of intersection are O(0, 0) and A(4, 4).
Required area = area of the region OBACO = [area of the region ODACO] – [area of the region ODABO]
Now, area of the region ODACO = area under the parabola y2 = 4x,
i.e. y = 2√x between x = 0 and x = 4
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(ii).1
Area of the region ODABO = area under the rabola x2 = 4y,
i.e. y = \(\frac{x^{2}}{4}\) between x = 0 and x = 4
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(ii).2

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

(iii)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(iii)
For finding the points of intersection of the two parabolas, we equate the values of y2 from their equations.
From the equation x2 = y, y = \(\frac{x^{2}}{y}\)
∴ y = \(\frac{x^{2}}{y}\)
∴ \(\frac{x^{2}}{y}\) = x
∴ x2 – y = 0
∴ x(x3 – y) = 0
∴ x = 0 or x3 = y
i.e. x = 0 or x = 4
When x = 0, y = 0
When x = 4, y = \(\frac{4^{2}}{4}\) = 4
∴ the points of intersection are O(0, 0) and A(4, 4).
Required area = area of the region OBACO = [area of the region ODACO] – [area of the region ODABO]
Now, area of the region ODACO = area under the parabola y2 = 4x,
i.e. y = 2√x between x = 0 and x = 4
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(iii).1
Area ofthe region ODABO = area under the rabola x2 = 4y,
i.e. y = \(\frac{x^{2}}{3}\) between x = 0 and x = 4
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(iii).2

Question 5.
Find the area of the region in the first quadrant bounded by the circle x2 + y2 = 4 and the X-axis and the line x = y√3.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q5
For finding the points of intersection of the circle and the line, we solve
x2 + y2 = 4 ………(1)
and x = y√3 ……..(2)
From (2), x2 = 3y2
From (1), x2 = 4 – y2
3y2 = 4 – y2
4y2 = 4
y2 = 1
y = 1 in the first quadrant.
When y = 1, r = 1 × √3 = √3
∴ the circle and the line intersect at A(√3, 1) in the first quadrant
Required area = area of the region OCAEDO = area of the region OCADO + area of the region DAED
Now, area of the region OCADO = area under the line x = y√3, i.e. y = \(\frac{x}{\sqrt{3}}\) between x = 0
and x = √3
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q5.1

Question 6.
Find the area of the region bounded by the parabola y2 = x and the line y = x in the first quadrant.
Solution:
To obtain the points of intersection of the line and the parabola, we equate the values of x from both equations.
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q6
∴ y2 = y
∴ y2 – y = 0
∴ y(y – 1) = 0
∴ y = 0 or y = 1
When y = 0, x = 0
When y = 1, x = 1
∴ the points of intersection are O(0, 0) and A(1, 1).
Required area = area of the region OCABO = area of the region OCADO – area of the region OBADO
Now, area of the region OCADO = area under the parabola y2 = x i.e. y = +√x (in the first quadrant) between x = 0 and x = 1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q6.1
Area of the region OBADO = area under the line y = x between x = 0 and x = 1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q6.2

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 7.
Find the area enclosed between the circle x2 + y2 = 1 and the line x + y = 1, lying in the first quadrant.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q7
Required area = area of the region ACBPA = (area of the region OACBO) – (area of the region OADBO)
Now, area of the region OACBO = area under the circle x2 + y2 = 1 between x = 0 and x = 1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q7.1
Area of the region OADBO = area under the line x + y = 1 between x = 0 and x = 1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q7.2
∴ required area = \(\left(\frac{\pi}{4}-\frac{1}{2}\right)\) sq units.

Question 8.
Find the area of the region bounded by the curve (y – 1)2 = 4(x + 1) and the line y = (x – 1).
Solution:
The equation of the curve is (y – 1)2 = 4(x + 1)
This is a parabola with vertex at A (-1, 1).
To find the points of intersection of the line y = x – 1 and the parabola.
Put y = x – 1 in the equation of the parabola, we get
(x – 1 – 1)2 = 4(x + 1)
∴ x2 – 4x + 4 = 4x + 4
∴ x2 – 8x = 0
∴ x(x – 8) = 0
∴ x = 0, x = 8
When x = 0, y = 0 – 1 = -1
When x = 8, y = 8 – 1 = 7
∴ the points of intersection are B (0, -1) and C (8, 7).
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q8
To find the points where the parabola (y – 1)2 = 4(x + 1) cuts the Y-axis.
Put x = 0 in the equation of the parabola, we get
(y – 1)2 = 4(0 + 1) = 4
∴ y – 1 = ±2
∴ y – 1 = 2 or y – 1 = -2
∴ y = 3 or y = -1
∴ the parabola cuts the Y-axis at the points B(0, -1) and F(0, 3).
To find the point where the line y = x – 1 cuts the X-axis.
Put y = 0 in the equation of the line, we get
x – 1 = 0
∴ x = 1
∴ the line cuts the X-axis at the point G (1, 0).
Required area = area of the region BFAB + area of the region OGDCEFO + area of the region OBGO
Now, area of the region BFAB = area under the parabola (y – 1)2 = 4(x + 1), Y-axis from y = -1 to y = 3
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q8.1
Since, the area cannot be negative,
Area of the region BFAB = \(\left|-\frac{8}{3}\right|=\frac{8}{3}\) sq units.
Area of the region OGDCEFO = area of the region OPCEFO – area of the region GPCDG
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q8.2
Since, area cannot be negative,
area of the region = \(\left|-\frac{1}{2}\right|=\frac{1}{2}\) sq units.
∴ required area = \(\frac{8}{3}+\frac{109}{6}+\frac{1}{2}\)
= \(\frac{16+109+3}{6}\)
= \(\frac{128}{6}\)
= \(\frac{64}{3}\) sq units.

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 9.
Find the area of the region bounded by the straight line 2y = 5x + 7, X-axis and x = 2, x = 5.
Solution:
The equation of the line is
2y = 5x + 7, i.e., y = \(\frac{5}{2} x+\frac{7}{2}\)
Required area = area of the region ABCDA = area under the line y = \(\frac{5}{2} x+\frac{7}{2}\) between x = 2 and x = 5
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q9

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 10.
Find the area of the region bounded by the curve y = 4x2, Y-axis and the lines y = 1, y = 4.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q10
By symmetry of the parabola, the required area is 2 times the area of the region ABCD.
From the equation of the parabola, x2 = \(\frac{y}{4}\)
In the first quadrant, x > 0
∴ x = \(\frac{1}{2} \sqrt{y}\)
∴ required area = \(\int_{1}^{4} x d y\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q10.1

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 5 Application of Definite Integration Ex 5.1 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

1. Find the area of the region bounded by the following curves, X-axis, and the given lines:

(i) y = 2x, x = 0, x = 5.
Solution:
Required area = \(\int_{0}^{5} y d x\), where y = 2x
= \(\int_{0}^{5} 2x d x\)
= \(\left[\frac{2 x^{2}}{2}\right]_{0}^{5}\)
= 25 – 0
= 25 sq units.

(ii) x = 2y, y = 0, y = 4.
Solution:
Required area = \(\int_{0}^{4} x d y\), where x = 2y
= \(\int_{0}^{4} 2 y d y\)
= \(\left[\frac{2 y^{2}}{2}\right]_{0}^{4}\)
= 16 – 0
= 16 sq units.

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

(iii) x = 0, x = 5, y = 0, y = 4.
Solution:
Required area = \(\int_{0}^{5} y d x\), where y = 4
= \(\int_{0}^{5} 4 d x\)
= \([4 x]_{0}^{5}\)
= 20 – 0
= 20 sq units.

(iv) y = sin x, x = 0, x = \(\frac{\pi}{2}\)
Solution:
Required area = \(\int_{0}^{\pi / 2} y d x\), where y = sin x
= \(\int_{0}^{\pi / 2} \sin x d x\)
= \([-\cos x]_{0}^{\pi / 2}\)
= -cos \(\frac{\pi}{2}\) + cos 0
= 0 + 1
= 1 sq unit.

(v) xy = 2, x = 1, x = 4.
Solution:
For xy = 2, y = \(\frac{2}{x}\)
Required area = \(\int_{1}^{4} y d x\), where y = \(\frac{2}{x}\)
= \(\int_{1}^{4} \frac{2}{x} d x\)
= \([2 \log |x|]_{1}^{4}\)
= 2 log 4 – 2 log 1
= 2 log 4 – 0
= 2 log 4 sq units.

(vi) y2 = x, x = 0, x = 4.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q1 (vi)
The required area consists of two bounded regions A1 and A2 which are equal in areas.
For y2 = x, y = √x
Required area = A1 + A2 = 2A1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q1 (vi).1

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

(vii) y2 = 16x, x = 0, x = 4.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q1 (vii)
The required area consists of two bounded regions A1 and A2 which are equal in areas.
For y2 = x, y = √x
Required area = A1 + A2 = 2A1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q1 (vii).1

2. Find the area of the region bounded by the parabola:

(i) y2 = 16x and its latus rectum.
Solution:
Comparing y2 = 16x with y2 = 4ax, we get
4a = 16
∴ a = 4
∴ focus is S(a, 0) = (4, 0)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q2 (i)
For y2 = 16x, y = 4√x
Required area = area of the region OBSAO
= 2 [area of the region OSAO]
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q2 (i).1

(ii) y = 4 – x2 and the X-axis.
Solution:
The equation of the parabola is y = 4 – x2
∴ x2 = 4 – y
i.e. (x – 0)2 = -(y – 4)
It has vertex at P(0, 4)
For points of intersection of the parabola with X-axis,
we put y = 0 in its equation.
∴ 0 = 4 – x2
∴ x2 = 4
∴ x = ± 2
∴ the parabola intersect the X-axis at A(-2, 0) and B(2, 0)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q2 (ii)
Required area = area of the region APBOA
= 2[area of the region OPBO]
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q2 (ii).1

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

3. Find the area of the region included between:

(i) y2 = 2x and y = 2x.
Solution:
The vertex of the parabola y2 = 2x is at the origin O = (0, 0).
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (i)
To find the points of intersection of the line and the parabola, equaling the values of 2x from both the equations we get,
y2 = y
∴ y2 – y = 0
∴ y = 0 or y = 1
When y = 0, x = \(\frac{0}{2}\) = 0
When y = 1, x = \(\frac{1}{2}\)
∴ the points of intersection are 0(0, 0) and B(\(\frac{1}{2}\), 1)
Required area = area of the region OABCO = area of the region OABDO – area of the region OCBDO
Now, area of the region OABDO = area under the parabola y2 = 2x between x = 0 and x = \(\frac{1}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (i).1
Area of the region OCBDO = area under the line y = 2x between x = 0 and x = \(\frac{1}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (i).2

(ii) y2 = 4x and y = x.
Solution:
The vertex of the parabola y2 = 4x is at the origin O = (0, 0).
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (ii).jpg
To find the points of intersection of the line and the parabola, equaling the values of 4x from both the equations we get,
∴ y2 = y
∴ y2 – y = 0
∴ y(y – 1) = 0
∴ y = 0 or y = 1
When y = 0, x = \(\frac{0}{2}\) = 0
When y = 1, x = \(\frac{1}{2}\)
∴ the points of intersection are O(0, 0) and B(\(\frac{1}{2}\), 1)
Required area = area of the region OABCO = area of the region OABDO – area of the region OCBDO
Now, area of the region OABDO = area under the parabola y2 = 4x between x = 0 and x = \(\frac{1}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (ii).1
Area of the region OCBDO = area under the line y = 2x between x = 0 and x = \(\frac{1}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (ii).2

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

(iii) y = x2 and the line y = 4x.
Solution:
The vertex of the parabola y = x2 is at the origin 0(0, 0)
To find the points of the intersection of a line and the parabola.
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (iii)
Equating the values of y from the two equations, we get
x2 = 4x
∴ x2 – 4x = 0
∴ x(x – 4) = 0
∴ x = 0, x = 4
When x = 0, y = 4(0) = 0
When x = 4, y = 4(4) = 16
∴ the points of intersection are 0(0, 0) and B(4, 16)
Required area = area of the region OABCO = (area of the region ODBCO) – (area of the region ODBAO)
Now, area of the region ODBCO = area under the line y = 4x between x = 0 and x = 4
= \(\int_{0}^{4} y d x\), where y = 4x
= \(\int_{0}^{4} 4 x d x\)
= 4\(\int_{0}^{4} x d x\)
= 4\([latex]\int_{0}^{4} x d x\)[/latex]
= 2(16 – 0)
= 32
Area of the region ODBAO = area under the parabola y = x2 between x = 0 and x = 4
= \(\int_{0}^{4} y d x\), where y = x2
= \(\int_{0}^{4} x^{2} d x\)
= \(\left[\frac{x^{3}}{3}\right]_{0}^{4}\)
= \(\frac{1}{3}\) (64 – 0)
= \(\frac{64}{3}\)
∴ required area = 32 – \(\frac{64}{3}\) = \(\frac{32}{3}\) sq units.

(iv) y2 = 4ax and y = x.
Solution:
The vertex of the parabola y2 = 4ax is at the origin O = (0, 0).
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (iv).jpg
To find the points of intersection of the line and the parabola, equaling the values of 4ax from both the equations we get,
∴ y2 = y
∴ y2 – y = 0
∴ y(y – 1) = 0
∴ y = 0 or y = 1
When y = 0, x = \(\frac{0}{2}\) = 0
When y = 1, x = \(\frac{1}{2}\)
∴ the points of intersection are O(0, 0) and B(\(\frac{1}{2}\), 1)
Required area = area of the region OABCO = area of the region OABDO – area of the region OCBDO
Now, area of the region OABDO
= area under the parabola y2 = 4ax between x = 0 and x = \(\frac{1}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (iv).1
Area of the region OCBDO
= area under the line y
= 4ax between x = 0 and x = \(\frac{1}{4 a x}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (iv).2

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

(v) y = x2 + 3 and y = x + 3.
Solution:
The given parabola is y = x2 + 3, i.e. (x – 0)2 = y – 3
∴ its vertex is P(0, 3).
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (v)
To find the points of intersection of the line and the parabola.
Equating the values of y from both the equations, we get
x2 + 3 = x + 3
∴ x2 – x = 0
∴ x(x – 1) = 0
∴ x = 0 or x = 1
When x = 0, y = 0 + 3 = 3
When x = 1, y = 1 + 3 = 4
∴ the points of intersection are P(0, 3) and B(1, 4)
Required area = area of the region PABCP = area of the region OPABDO – area of the region OPCBDO
Now, area of the region OPABDO
= area under the line y = x + 3 between x = 0 and x = 1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (v).1
Area of the region OPCBDO = area under the parabola y = x2 + 3 between x = 0 and x = 1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (v).2

Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 4 Definite Integration Miscellaneous Exercise 4 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4

I. Choose the correct option from the given alternatives:

Question 1.
\(\int_{2}^{3} \frac{d x}{x\left(x^{3}-1\right)}=\)
(a) \(\frac{1}{3} \log \left(\frac{208}{189}\right)\)
(b) \(\frac{1}{3} \log \left(\frac{189}{208}\right)\)
(c) \(\log \left(\frac{208}{189}\right)\)
(d) \(\log \left(\frac{189}{208}\right)\)
Answer:
(a) \(\frac{1}{3} \log \left(\frac{208}{189}\right)\)

Question 2.
\(\int_{0}^{\pi / 2} \frac{\sin ^{2} x \cdot d x}{(1+\cos x)^{2}}=\)
(a) \(\frac{4-\pi}{2}\)
(b) \(\frac{\pi-4}{2}\)
(c) 4 – \(\frac{\pi}{2}\)
(d) \(\frac{4+\pi}{2}\)
Answer:
(a) \(\frac{4-\pi}{2}\)

Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4

Question 3.
\(\int_{0}^{\log 5} \frac{e^{x} \sqrt{e^{x}-1}}{e^{x}+3} \cdot d x=\)
(a) 3 + 2π
(b) 4 – π
(c) 2 + π
(d) 4 + π
Answer:
(b) 4 – π

Question 4.
\(\int_{0}^{\pi / 2} \sin ^{6} x \cos ^{2} x \cdot d x=\)
(a) \(\frac{7 \pi}{256}\)
(b) \(\frac{3 \pi}{256}\)
(c) \(\frac{5 \pi}{256}\)
(d) \(\frac{-5 \pi}{256}\)
Answer:
(c) \(\frac{5 \pi}{256}\)

Question 5.
If \(\int_{0}^{1} \frac{d x}{\sqrt{1+x}-\sqrt{X}}=\frac{k}{3}\), then k is equal to
(a) √2(2√2 – 2)
(b) \(\frac{\sqrt{2}}{3}\)(2 – 2√2)
(c) \(\frac{2 \sqrt{2}-2}{3}\)
(d) 4√2
Answer:
(d) 4√2

Question 6.
\(\int_{1}^{2} \frac{1}{x^{2}} e^{\frac{1}{x}} \cdot d x=\)
(a) √e + 1
(b) √e − 1
(c) √e(√e − 1)
(d) \(\frac{\sqrt{e}-1}{e}\)
Answer:
(c) √e(√e − 1)

Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4

Question 7.
If \(\int_{2}^{e}\left[\frac{1}{\log x}-\frac{1}{(\log x)^{2}}\right] \cdot d x=a+\frac{b}{\log 2}\), then
(a) a = e, b = -2
(b) a = e, b = 2
(c) a = -e, b = 2
(d) a = -e, b = -2
Answer:
(a) a = e, b = -2

Question 8.
Let \(\mathrm{I}_{1}=\int_{e}^{e^{2}} \frac{d x}{\log x}\) and \(\mathrm{I}_{2}=\int_{1}^{2} \frac{e^{x}}{\boldsymbol{X}} \cdot d x\), then
(a) I1 = \(\frac{1}{3}\) I2
(b) I1 + I2 = 0
(c) I1 = 2I2
(d) I1 = I2
Answer:
(d) I1 = I2

Question 9.
\(\int_{0}^{9} \frac{\sqrt{X}}{\sqrt{X}+\sqrt{9-X}} \cdot d x=\)
(a) 9
(b) \(\frac{9}{2}\)
(c) 0
(d) 1
Answer:
(b) \(\frac{9}{2}\)

Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4

Question 10.
The value of \(\int_{-\pi / 4}^{\pi / 4} \log \left(\frac{2+\sin \theta}{2-\sin \theta}\right) \cdot d \theta\) is
(a) 0
(b) 1
(c) 2
(d) π
Answer:
(a) 0

II. Evaluate the following:

Question 1.
\(\int_{0}^{\pi / 2} \frac{\cos x}{3 \cos x+\sin x} d x\)
Solution:
Let I = \(\int_{0}^{\pi / 2} \frac{\cos x}{3 \cos x+\sin x} d x\)
Put Numerator = A(Denominator) + B[\(\frac{d}{d x}\)(Denominator)]
∴ cos x = A(3 cos x + sin x) + B[\(\frac{d}{d x}\)(3 cos x + sin x)]
= A(3 cos x + sin x) + B(-3 sin x + cos x)
∴ cos x + 0 . sin x = (3A + B) cos x + (A – 3B) sin x
Comparing the coefficients of sinx and cos x on both the sides, we get
3A + B = 1 ………. (1)
A – 3B = 0 ………. (2)
Multiplying equation (1) by 3, we get
9A + 3B = 3 ………(3)
Adding (2) and (3), we get
10A = 3
∴ A = \(\frac{3}{10}\)
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q1
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q1.1

Question 2.
\(\int_{\pi / 4}^{\pi / 2} \frac{\cos \theta}{\left[\cos \frac{\theta}{2}+\sin \frac{\theta}{2}\right]^{3}} d \theta\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q2
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q2.1

Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4

Question 3.
\(\int_{0}^{1} \frac{1}{1+\sqrt{x}} d x\)
Solution:
Let I = \(\int_{0}^{1} \frac{1}{1+\sqrt{x}} d x\)
Put √x = t
∴ x = t2 and dx = 2t . dt
When x = 0, t = 0
When x = 1, t = 1
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q3

Question 4.
\(\int_{0}^{\pi / 4} \frac{\tan ^{3} x}{1+\cos 2 x} d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q4

Question 5.
\(\int_{0}^{1} t^{5} \sqrt{1-t^{2}} d t\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q5

Question 6.
\(\int_{0}^{1}\left(\cos ^{-1} x\right)^{2} d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q6
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q6.1

Question 7.
\(\int_{-1}^{1} \frac{1+x^{3}}{9-x^{2}} d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q7
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q7.1
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q7.2

Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4

Question 8.
\(\int_{0}^{\pi} x \cdot \sin x \cdot \cos ^{4} x d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q8
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q8.1

Question 9.
\(\int_{0}^{\pi} \frac{x}{1+\sin ^{2} x} d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q9
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q9.1

Question 10.
\(\int_{1}^{\infty} \frac{1}{\sqrt{x}(1+x)} d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q10
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 II Q10.1

III. Evaluate the following:

Question 1.
\(\int_{0}^{1}\left(\frac{1}{1+x^{2}}\right) \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q1

Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4

Question 2.
\(\int_{0}^{\pi / 2} \frac{1}{6-\cos x} d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q2
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q2.1

Question 3.
\(\int_{0}^{a} \frac{1}{a^{2}+a x-x^{2}} d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q3
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q3.1
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q3.2

Question 4.
\(\int_{\pi / 5}^{3 \pi / 10} \frac{\sin x}{\sin x+\cos x} d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q4
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q4.1

Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4

Question 5.
\(\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x\)
Solution:
Let I = \(\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x\)
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q5

Question 6.
\(\int_{0}^{\pi / 4} \frac{\cos 2 x}{1+\cos 2 x+\sin 2 x} d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q6
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q6.1

Question 7.
\(\int_{0}^{\pi / 2}[2 \log (\sin x)-\log (\sin 2 x)] d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q7

Question 8.
\(\int_{0}^{\pi}\left(\sin ^{-1} x+\cos ^{-1} x\right)^{3} \sin ^{3} x d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q8
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q8.1

Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4

Question 9.
\(\int_{0}^{4}\left[\sqrt{x^{2}+2 x+3}\right]^{-1} d x\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q9

Question 10.
\(\int_{-2}^{3}|x-2| d x\)
Solution:
|x – 2|= 2 – x, if x < 2
= x – 2, if x ≥ 2
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 III Q10

IV. Evaluate the following:

Question 1.
If \(\int_{a}^{a} \sqrt{x} d x=2 a \int_{0}^{\pi / 2} \sin ^{3} x d x\), find the value of \(\int_{a}^{a+1} x d x\).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 IV Q1

Question 2.
If \(\int_{0}^{k} \frac{1}{2+8 x^{2}} \cdot d x=\frac{\pi}{16}\), find k.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 IV Q2
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 IV Q2.1

Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4

Question 3.
If f(x) = a + bx + cx2, show that \(\int_{0}^{1} f(x) d x=\frac{1}{6}\left[f(0)+4 f\left(\frac{1}{2}\right)+f(1)\right]\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 IV Q3
Maharashtra Board 12th Maths Solutions Chapter 4 Definite Integration Miscellaneous Exercise 4 IV Q3.1

Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7

Balbharati Maharashtra State Board Std 12 Commerce Statistics Part 1 Digest Pdf Chapter 7 Application of Definite Integration Miscellaneous Exercise 7 Questions and Answers.

Maharashtra State Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7

(I) Choose the correct alternatives:

Question 1.
Area of the region bounded by the curve x2 = y, the X-axis and the lines x = 1 and x = 3 is
(a) \(\frac{26}{3}\) sq units
(b) \(\frac{3}{26}\) sq units
(c) 26 sq units
(d) 3 sq units
Answer:
(a) \(\frac{26}{3}\) sq units

Question 2.
The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is
(a) 28 sq units
(b) 3 sq unit
(c) \(\frac{28}{3}\) sq units
(d) \(\frac{3}{28}\) sq units
Answer:
(c) \(\frac{28}{3}\) sq units

Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7

Question 3.
Area of the region bounded by x2 = 16y, y = 1 and y = 4 and the Y-axis, lying in the first quadrant is
(a) 63 sq units
(b) \(\frac{3}{56}\) sq units
(c) \(\frac{56}{3}\) sq units
(d) \(\frac{63}{7}\) sq units
Answer:
(c) \(\frac{56}{3}\) sq units

Question 4.
Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is
(a) \(\frac{3142}{5}\) sq units
(b) \(\frac{3124}{5}\) sq units
(c) \(\frac{3142}{3}\) sq units
(d) \(\frac{3124}{3}\) sq units
Answer:
(b) \(\frac{3124}{5}\) sq units

Question 5.
Using definite integration area of circle x2 + y2 = 25 is
(a) 5π sq units
(b) 4π sq units
(c) 25π sq units
(d) 25 sq units
Answer:
(c) 25π sq units

(II) Fill in the blanks:

Question 1.
Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _________
Answer:
\(\frac{3124}{5}\) sq units

Question 2.
Using definite integration area of the circle x2 + y2 = 49 is ___________
Answer:
49π sq units

Question 3.
Area of the region bounded by x2 = 16y, y = 1, y = 4 and the Y-axis lying in the first quadrant is _________
Answer:
\(\frac{56}{3}\) sq units

Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7

Question 4.
The area of the region bounded by the curve x2 = y, the X-axis and the lines x = 3 and x = 9 is _________
Answer:
234 sq units

Question 5.
The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is __________
Answer:
\(\frac{28}{3}\) sq units

(III) State whether each of the following is True or False.

Question 1.
The area bounded by the curve x = g(y), Y-axis and bounded between the lines y = c and y = d is given by \(\int_{c}^{d} x d y=\int_{y=c}^{y=d} g(y) d y\)
Answer:
True

Question 2.
The area bounded by two curves y = f(x), y = g(x) and X-axis is \(\left|\int_{a}^{b} f(x) d x-\int_{b}^{a} g(x) d x\right|\)
Answer:
False

Question 3.
The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is \(\left|\int_{a}^{b} f(x) d x\right|\)
Answer:
True

Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7

Question 4.
If the curve, under consideration, is below the X-axis, then the area bounded by curve, X-axis, and lines x = a, x = b is positive.
Answer:
False

Question 5.
The area of the portion lying above the X-axis is positive.
Answer:
True

(IV) Solve the following:

Question 1.
Find the area of the region bounded by the curve xy = c2, the X-axis, and the lines x = c, x = 2c.
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7 IV Q1
= c2 log(\(\frac{2 c}{c}\))
= c2 . log 2 sq units.

Question 2.
Find the area between the parabolas y2 = 7x and x2 = 7y.
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7 IV Q2
For finding the points of intersection of the two parabolas,
we equate the values of y2 from their equations.
From the equation x2 = 7y, y2 = \(\frac{x^{4}}{49}\)
∴ \(\frac{x^{4}}{49}\) = 7x
∴ x4 = 343x
∴ x4 – 343x = 0
∴ x(x3 – 343) = 0
∴ x = 0 or x3 = 343, i.e. x = 7
When x = 0, y = 0
When x = 7, 7y = 49
∴ y = 7
∴ the points of intersection are O(0, 0) and A(7, 7)
Required area = area of the region OBACO
= (area of the region ODACO) – (area of the region ODABO)
Now, area of the region ODACO = area under the parabola y2 = 7x
i.e. y = √7 √x
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7 IV Q2.1
Area of the region ODABO = Area under the parabola
x2 = 7y
i.e. y = \(\frac{x^{2}}{7}\)
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7 IV Q2.2
∴ required area = \(\frac{98}{3}-\frac{49}{3}=\frac{49}{3}\) sq units.

Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7

Question 3.
Find the area of the region bounded by the curve y = x2 and the line y = 10.
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7 IV Q3
By the symmetry of the parabola,
the required area is twice the area of the region OABCO
Now, the area of the region OABCO
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7 IV Q3.1

Question 4.
Find the area of the ellipse \(\frac{x^{2}}{16}+\frac{y^{2}}{9}\) = 1.
Solution:
By the symmetry of the ellipse, the required area of the ellipse is 4 times the area of the region OPQO.
For the region OPQO, the limits of integration are x = 0 and x = 4.
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7 IV Q4
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7 IV Q4.1

Question 5.
Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.
Solution:
Required area = \(\int_{1}^{4} y d x\), where y = x2
= \(\int_{1}^{4} x^{2} d x\)
= \(\left[\frac{x^{3}}{3}\right]_{1}^{4}=\frac{4^{3}}{3}-\frac{1}{3}=\frac{64-1}{3}\)
= 21 sq units.

Question 6.
Find the area of the region bounded by the curve x2 = 25y, y = 1, y = 4, and the Y-axis.
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7 IV Q6

Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7

Question 7.
Find the area of the region bounded by the parabola y2 = 25x and the line x = 5.
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7 IV Q7
Given the equation of the parabola is y2 = 25x
∴ y = 5√x …… [∵ IIn first quadrant, y > 0]
Required area = area of the region OQRPO
= 2(area of the region ORPO)
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Miscellaneous Exercise 7 IV Q7.1

Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1

Balbharati Maharashtra State Board Std 12 Commerce Statistics Part 1 Digest Pdf Chapter 7 Application of Definite Integration Ex 7.1 Questions and Answers.

Maharashtra State Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1

Question 1.
Find the area of the region bounded by the following curves, the X-axis, and the given lines:
(i) y = x4, x = 1, x = 5
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q1(i)

(ii) y = \(\sqrt{6 x+4}\), x = 0, x = 2
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q1(ii)

(iii) \(\sqrt{16-x^{2}}\), x = 0, x = 4
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q1(iii)

Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1

(iv) 2y = 5x + 7, x = 2, x = 8
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q1(iv)

(v) 2y + x = 8, x = 2, x = 4
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q1(v)

(vi) y = x2 + 1, x = 0, x = 3
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q1(vi)

(vii) y = 2 – x2, x = -1, x = 1
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q1(vii)

Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1

Question 2.
Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q2
Required area = area of the region OABO
= 2(area of the region OACO)
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q2.1

Question 3.
Find the area of the circle x2 + y2 = 25.
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q3
By the symmetry of the circle, its area is equal to 4 times the area of the region OABO.
Clearly, for this region, the limits of integration are 0 and 5.
From the equation of the circle, y2 = 25 – x2.
In the first quadrant y > 0
∴ y = \(\sqrt{25-x^{2}}\)
∴ area of the circle = 4(area of region OABO)
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q3.1

Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1

Question 4.
Find the area of the ellipse \(\frac{x^{2}}{4}+\frac{y^{2}}{25}\) = 1
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q4
By the symmetry of the ellipse, its area is equal to 4 times the area of the region OABO.
Clearly, for this region, the limits of integration are 0 and 2.
From the equation of the ellipse,
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q4.1
Maharashtra Board 12th Commerce Maths Solutions Chapter 7 Application of Definite Integration Ex 7.1 Q4.2

Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6

Balbharati Maharashtra State Board Std 12 Commerce Statistics Part 1 Digest Pdf Chapter 6 Definite Integration Miscellaneous Exercise 6 Questions and Answers.

Maharashtra State Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6

(I) Choose the correct alternative:

Question 1.
\(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x\) = ________
(a) 0
(b) 3
(c) 9
(d) -9
Answer:
(a) 0

Question 2.
\(\int_{-2}^{3} \frac{d x}{x+5}\) = _________
(a) -log(\(\frac{8}{3}\))
(b) log(\(\frac{8}{3}\))
(c) log(\(\frac{3}{8}\))
(d) -log(\(\frac{3}{8}\))
Answer:
(b) log(\(\frac{8}{3}\))

Question 3.
\(\int_{2}^{3} \frac{x}{x^{2}-1} d x\) = _________
(a) log(\(\frac{8}{3}\))
(b) -log(\(\frac{8}{3}\))
(c) \(\frac{1}{2}\) log(\(\frac{8}{3}\))
(d) \(\frac{-1}{2}\) log(\(\frac{8}{3}\))
Answer:
(c) \(\frac{1}{2}\) log(\(\frac{8}{3}\))

Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6

Question 4.
\(\int_{4}^{9} \frac{d x}{\sqrt{x}}\) = ___________
(a) 9
(b) 4
(c) 2
(d) 0
Answer:
(c) 2

Question 5.
If \(\int_{0}^{a} 3 x^{2} d x=8\), then a = __________
(a) 2
(b) 0
(c) \(\frac{8}{3}\)
(d) a
Answer:
(a) 2

Question 6.
\(\int_{2}^{3} x^{4}\) dx = ________
(a) \(\frac{1}{2}\)
(b) \(\frac{5}{2}\)
(c) \(\frac{5}{211}\)
(d) \(\frac{211}{5}\)
Answer:
(d) \(\frac{211}{5}\)

Question 7.
\(\int_{0}^{2} e^{x}\) dx = _______
(a) e – 1
(b) 1 – e
(c) 1 – e2
(d) e2 – 1
Answer:
(d) e2 – 1

Question 8.
\(\int_{a}^{b} f(x) d x\) = ________
(a) \(\int_{b}^{a} f(x) d x\)
(b) –\(\int_{a}^{b} f(x) d x\)
(c) –\(\int_{b}^{a} f(x) d x\)
(d) \(\int_{0}^{a} f(x) d x\)
Answer:
(c) –\(\int_{b}^{a} f(x) d x\)

Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6

Question 9.
\(\int_{-7}^{7} \frac{x^{3}}{x^{2}+7} d x\) = _________
(a) 7
(b) 49
(c) 0
(d) \(\frac{7}{2}\)
Answer:
(c) 0

Question 10.
\(\int_{2}^{7} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{9-x}} d x\) = _________
(a) \(\frac{7}{2}\)
(b) \(\frac{5}{2}\)
(c) 7
(d) 2
Answer:
(b) \(\frac{5}{2}\)

(II) Fill in the blanks:

Question 1.
\(\int_{0}^{2} e^{x} d x\) = ________
Answer:
e2 – 1

Question 2.
\(\int_{2}^{3} x^{4} d x\) = __________
Answer:
\(\frac{211}{5}\)

Question 3.
\(\int_{0}^{1} \frac{d x}{2 x+5}\) = ____________
Answer:
\(\frac{1}{2} \log \left(\frac{7}{5}\right)\)

Question 4.
If \(\int_{0}^{a} 3 x^{2} d x\) = 8, then a = _________
Answer:
2

Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6

Question 5.
\(\int_{4}^{9} \frac{1}{\sqrt{x}} d x\) = _________
Answer:
2

Question 6.
\(\int_{2}^{3} \frac{x}{x^{2}-1} d x\) = _________
Answer:
\(\frac{1}{2} \log \left(\frac{8}{3}\right)\)

Question 7.
\(\int_{-2}^{3} \frac{d x}{x+5}\) = _________
Answer:
\(\log \left(\frac{8}{3}\right)\)

Question 8.
\(\int_{-9}^{9} \frac{x^{3}}{4-x^{2}} d x\) = _____________
Answer:
o

(III) State whether each of the following is True or False:

Question 1.
\(\int_{a}^{b} f(x) d x=\int_{-b}^{-a} f(x) d x\)
Answer:
True

Question 2.
\(\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t\)
Answer:
True

Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6

Question 3.
\(\int_{0}^{a} f(x) d x=\int_{a}^{0} f(a-x) d x\)
Answer:
False

Question 4.
\(\int_{a}^{b} f(x) d x=\int_{a}^{b} f(x-a-b) d x\)
Answer:
False

Question 5.
\(\int_{-5}^{5} \frac{x^{3}}{x^{2}+7} d x=0\)
Answer:
True

Question 6.
\(\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}} d x=\frac{1}{2}\)
Answer:
True

Question 7.
\(\int_{2}^{7} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{9-x}} d x=\frac{9}{2}\)
Answer:
False

Question 8.
\(\int_{4}^{7} \frac{(11-x)^{2}}{(11-x)^{2}+x^{2}} d x=\frac{3}{2}\)
Answer:
True

(IV) Solve the following:

Question 1.
\(\int_{2}^{3} \frac{x}{(x+2)(x+3)} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q1
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q1.1

Question 2.
\(\int_{1}^{2} \frac{x+3}{x(x+2)} d x\)
Solution:
Let I = \(\int_{1}^{2} \frac{x+3}{x(x+2)} d x\)
Let \(\frac{x+3}{x(x+2)}=\frac{A}{x}+\frac{B}{x+2}\)
∴ x + 3 = A(x + 2) + Bx
Put x = 0, we get
3 = A(2) + B(0)
∴ A = \(\frac{3}{2}\)
Put x + 2 = 0, i.e. x = -2, we get
-2 + 3 = A(0) + B(-2)
∴ 1 = -2B
∴ B = \(-\frac{1}{2}\)
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q2

Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6

Question 3.
\(\int_{1}^{3} x^{2} \log x d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q3

Question 4.
\(\int_{0}^{1} e^{x^{2}} \cdot x^{3} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q4
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q4.1

Question 5.
\(\int_{1}^{2} e^{2 x}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q5

Question 6.
\(\int_{4}^{9} \frac{1}{\sqrt{x}} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q6

Question 7.
\(\int_{-2}^{3} \frac{1}{x+5} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q7

Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6

Question 8.
\(\int_{2}^{3} \frac{x}{x^{2}-1} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q8

Question 9.
\(\int_{0}^{1} \frac{x^{2}+3 x+2}{\sqrt{x}} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q9

Question 10.
\(\int_{3}^{5} \frac{d x}{\sqrt{x+4}+\sqrt{x-2}}\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q10

Question 11.
\(\int_{2}^{3} \frac{x}{x^{2}+1} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q11
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q11.1

Question 12.
\(\int_{1}^{2} x^{2} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q12

Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6

Question 13.
\(\int_{-4}^{-1} \frac{1}{x} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q13

Question 14.
\(\int_{0}^{1} \frac{1}{\sqrt{1+x}+\sqrt{x}} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q14
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q14.1

Question 15.
\(\int_{0}^{4} \frac{1}{\sqrt{x^{2}+2 x+3}} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q15
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q15.1

Question 16.
\(\int_{2}^{4} \frac{x}{x^{2}+1} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q16

Question 17.
\(\int_{0}^{1} \frac{1}{2 x-3} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q17

Question 18.
\(\int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q18
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q18.1

Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6

Question 19.
\(\int_{1}^{2} \frac{d x}{x(1+\log x)^{2}}\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q19

Question 20.
\(\int_{0}^{9} \frac{1}{1+\sqrt{x}} d x\)
Solution:
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q20
Maharashtra Board 12th Commerce Maths Solutions Chapter 6 Definite Integration Miscellaneous Exercise 6 IV Q20.1