Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 1 Differentiation Miscellaneous Exercise 1 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1

(I) Choose the correct option from the given alternatives:

Question 1.
Let f(1) = 3, f'(1) = \(-\frac{1}{3}\), g(1) = -4 and g'(1) = \(-\frac{8}{3}\). The derivative of \(\sqrt{[f(x)]^{2}+[g(x)]^{2}}\) w.r.t. x at x = 1 is
(a) \(-\frac{29}{15}\)
(b) \(\frac{7}{3}\)
(c) \(\frac{31}{15}\)
(d) \(\frac{29}{15}\)
Answer:
(d) \(\frac{29}{15}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q1

Question 2.
If y = sec(tan-1 x), then \(\frac{d y}{d x}\) at x = 1, is equal to
(a) \(\frac{1}{2}\)
(b) 1
(c) \(\frac{1}{\sqrt{2}}\)
(d) 2
Answer:
(c) \(\frac{1}{\sqrt{2}}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q2
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q2.1

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1

Question 3.
If f(x) = \(\sin ^{-1}\left(\frac{4^{x+\frac{1}{2}}}{1+2^{4 x}}\right)\), which of the following is not the derivative of f(x)?
(a) \(\frac{2 \cdot 4^{x} \log 4}{1+4^{2 x}}\)
(b) \(\frac{4^{x+1} \log 2}{1+4^{2 x}}\)
(c) \(\frac{4^{x+1} \log 4}{1+4^{4 x}}\)
(d) \(\frac{2^{2(x+1)} \log 2}{1+2^{4 x}}\)
Answer:
(c) \(\frac{4^{x+1} \log 4}{1+4^{4 x}}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q3

Question 4.
If xy = yx, then\(\frac{d y}{d x}\) = _______
(a) \(\frac{x(x \log y-y)}{y(y \log x-x)}\)
(b) \(\frac{y(y \log x-x)}{x(x \log y-y)}\)
(c) \(\frac{y^{2}(1-\log x)}{x^{2}(1-\log y)}\)
(d) \(\frac{y(1-\log x)}{x(1-\log y)}\)
Answer:
(b) \(\frac{y(y \log x-x)}{x(x \log y-y)}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q4

Question 5.
If y = sin (2 sin-1 x), then \(\frac{d y}{d x}\) = _______
(a) \(\frac{2-4 x^{2}}{\sqrt{1-x^{2}}}\)
(b) \(\frac{2+4 x^{2}}{\sqrt{1-x^{2}}}\)
(c) \(\frac{4 x^{2}-1}{\sqrt{1-x^{2}}}\)
(d) \(\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}\)
Answer:
(a) \(\frac{2-4 x^{2}}{\sqrt{1-x^{2}}}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q5

Question 6.
If y = \(\tan ^{-1}\left(\frac{x}{1+\sqrt{1-x^{2}}}\right)+\sin \left[2 \tan ^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\right]\), then \(\frac{d y}{d x}\) = _______
(a) \(\frac{x}{\sqrt{1-x^{2}}}\)
(b) \(\frac{1-2 x}{\sqrt{1-x^{2}}}\)
(c) \(\frac{1-2 x}{2 \sqrt{1-x^{2}}}\)
(d) \(\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}\)
Answer:
(c) \(\frac{1-2 x}{2 \sqrt{1-x^{2}}}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q6
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q6.1

Question 7.
If y is a function of x and log(x + y) = 2xy, then the value of y'(0) = _______
(a) 2
(b) 0
(c) -1
(d) 1
Answer:
(d) 1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q7
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q7.1

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1

Question 8.
If g is the inverse of function f and f'(x) = \(\frac{1}{1+x^{7}}\), then the value of g'(x) is equal to:
(a) 1 + x7
(b) \(\frac{1}{1+[g(x)]^{7}}\)
(c) 1 + [g(x)]7
(d) 7x6
Answer:
(c) 1 + [g(x)]7
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q8

Question 9.
If \(x \sqrt{y+1}+y \sqrt{x+1}=0\) and x ≠ y, then \(\frac{d y}{d x}\) = _______
(a) \(\frac{1}{(1+x)^{2}}\)
(b) \(-\frac{1}{(1+x)^{2}}\)
(c) (1 + x)2
(d) \(-\frac{x}{x+1}\)
Answer:
(b) \(-\frac{1}{(1+x)^{2}}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q9

Question 10.
If y = \(\tan ^{-1}\left(\sqrt{\frac{a-x}{a+x}}\right)\), where -a < x < a, then \(\frac{d y}{d x}\) = _______
(a) \(\frac{x}{\sqrt{a^{2}-x^{2}}}\)
(b) \(\frac{a}{\sqrt{a^{2}-x^{2}}}\)
(c) \(-\frac{1}{2 \sqrt{a^{2}-x^{2}}}\)
(d) \(\frac{1}{2 \sqrt{a^{2}-x^{2}}}\)
Answer:
(c) \(-\frac{1}{2 \sqrt{a^{2}-x^{2}}}\)
[Hint: Put x = a cos θ]

Question 11.
If x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ), then \(\left[\frac{d^{2} y}{d x^{2}}\right]_{\theta=\frac{\pi}{4}}\) = _______
(a) \(\frac{8 \sqrt{2}}{a \pi}\)
(b) \(-\frac{8 \sqrt{2}}{a \pi}\)
(c) \(\frac{a \pi}{8 \sqrt{2}}\)
(d) \(\frac{4 \sqrt{2}}{a \pi}\)
Answer:
(a) \(\frac{8 \sqrt{2}}{a \pi}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q11
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q11.1

Question 12.
If y = a cos (log x) and \(A \frac{d^{2} y}{d x^{2}}+B \frac{d y}{d x}+C=0\), then the values of A, B, C are _______
(a) x2, -x, -y
(b) x2, x, y
(c) x2, x, -y
(d) x2, -x, y
Answer:
(b) x2, x, y
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 I Q12

(II) Solve the following:

Question 1.
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q1.1
Let u(x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v'(1) and w'(1). if it doesn’t exist then explain why?
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q1.2
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q1.3
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q1.4
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q1.5
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q1.6

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1

Question 2.
The values of f(x), g(x), f'(x) and g'(x) are given in the following table:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q2
Match the following:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q2.1
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q2.2
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q2.3

Question 3.
Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1.
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q3
(i) The derivative of f[g(x)] w.r.t. x at x = 0 is _______
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is _______
(iii) The value of \(\left[\frac{d}{d x}\left[x^{10}+f(x)\right]^{-2}\right]_{x=1}\) is _______
(iv) The derivative of f[(x+g(x))] w.r.t. x at x = 0 is _______
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q3.1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q3.2
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q3.3
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q3.4

Question 4.
Differentiate the following w.r.t. x:
(i) \(\sin \left[2 \tan ^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\right]\)
Solution:
Let y = \(\sin \left[2 \tan ^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\right]\)
Put x = cos θ, Then θ = cos-1 x and
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q4 (i)

(ii) \(\sin ^{2}\left[\cot ^{-1}\left(\sqrt{\frac{1+x}{1-x}}\right)\right]\)
Solution:
Let y = \(\sin ^{2}\left[\cot ^{-1}\left(\sqrt{\frac{1+x}{1-x}}\right)\right]\)
Put x = cos θ. Then θ = cos-1 x and
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q4 (ii)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q4 (ii).1

(iii) \(\tan ^{-1}\left[\frac{\sqrt{x}(3-x)}{1-3 x}\right]\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q4 (iii)

(iv) \(\cos ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{2}\right)\)
Solution:
Let y = \(\cos ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{2}\right)\)
Put x = cos θ. Then θ = cos-1 x and
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q4 (iv)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q4 (iv).1

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1

(v) \(\tan ^{-1}\left(\frac{x}{1+6 x^{2}}\right)+\cot ^{-1}\left(\frac{1-10 x^{2}}{7 x}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q4 (v)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q4 (v).1

(vi) \(\tan ^{-1}\left[\sqrt{\frac{\sqrt{1+x^{2}+x}}{\sqrt{1+x^{2}}-x}}\right]\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q4 (vi)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q4 (vi).1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q4 (vi).2

Question 5.
(i) If \(\sqrt{y+x}+\sqrt{y-x}=c\), show that \(\frac{d y}{d x}=\frac{y}{x}-\sqrt{\frac{y^{2}}{x^{2}}-1}\)
Solution:
\(\sqrt{y+x}+\sqrt{y-x}=c\)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q5 (i)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q5 (i).1

(ii) If \(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}=1\), then show that \(\frac{d y}{d x}=-\sqrt{\frac{1-y^{2}}{1-x^{2}}}\)
Solution:
\(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}=1\)
\(y \sqrt{1-x^{2}}+x \sqrt{1-y^{2}}=1\)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q5 (ii)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q5 (ii).1

(iii) If x sin(a + y) + sin a cos(a + y) = 0, then show \(\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}\)
Solution:
x sin(a + y) + sin a . cos (a + y) = 0 ….. (1)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q5 (iii)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q5 (iii).1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q5 (iii).2

(iv) If sin y = x sin(a + y), then show that \(\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q5 (iv)

(v) If x = \(e^{\frac{x}{y}}\), then show that \(\frac{d y}{d x}=\frac{x-y}{x \log x}\)
Solution:
x = \(e^{\frac{x}{y}}\)
\(\frac{x}{y}\) = log x …..(1)
y = \(\frac{x}{\log x}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q5 (v)

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1

(vi) If y = f(x) is a differentiable function of x, then show that \(\frac{d^{2} x}{d y^{2}}=-\left(\frac{d y}{d x}\right)^{-3} \cdot \frac{d^{2} y}{d x^{2}}\)
Solution:
If y = f(x) is a differentiable function of x such that inverse function x = f-1(y) exists,
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q5 (vi)

Question 6.
(i) Differentiate \(\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\) w.r.t. \(\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q6 (i)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q6 (i).1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q6 (i).2
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q6 (i).3
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q6 (i).4

(ii) Differentiate \(\log \left[\frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}-x}\right]\) w.r.t. cos(log x)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q6 (ii)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q6 (ii).1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q6 (ii).2

(iii) Differentiate \(\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\) w.r.t. \(\cos ^{-1}\left(\sqrt{\frac{1+\sqrt{1+x^{2}}}{2 \sqrt{1+x^{2}}}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q6 (iii)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q6 (iii).1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q6 (iii).2

Question 7.
(i) If y2 = a2 cos2x + b2 sin2x, show that \(y+\frac{d^{2} y}{d x^{2}}=\frac{a^{2} b^{2}}{y^{3}}\)
Solution:
y2 = a2 cos2x + b2 sin2x …… (1)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q7 (i)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q7 (i).1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q7 (i).2

(ii) If log y = log(sin x) – x2, show that \(\frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+\left(4 x^{2}+3\right) y=0\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q7 (ii)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q7 (ii).1

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1

(iii) If x = a cos θ, y = b sin θ, show that \(a^{2}\left[y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right]+b^{2}=0\)
Solution:
x = a cos θ, y = b sin θ
Differentiating x and y w.r.t. θ, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q7 (iii)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q7 (iii).1

(iv) If y = A cos(log x) + B sin(log x), show that x2y2 + xy1 + y = o.
Solution:
y = A cos (log x) + B sin (log x) …… (1)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q7 (iv)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q7 (iv).1

(v) If y = A emx + B enx, show that y2 – (m + n) y1 + (mn) y = 0.
Solution:
y = A emx + B enx
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Miscellaneous Exercise 1 II Q7 (v)

Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 7 Linear Programming Ex 7.4 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4

Question 1.
Maximize : z = 11x + 8y subject to x ≤ 4, y ≤ 6,
x + y ≤ 6, x ≥ 0, y ≥ 0.
Solution:
First we draw the lines AB, CD and ED whose equations are x = 4, y = 6 and x + y = 6 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 1
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 2
The feasible region is shaded portion OAPDO in the graph.
The vertices of the feasible region are O (0, 0), A (4, 0), P and D (0, 6)
P is point of intersection of lines x + y = 6 and x = 4.
Substituting x = 4 in x + y = 6, we get
4 + y = 6 ∴ y = 2 ∴ P is (4, 2).
∴ the corner points of feasible region are O (0, 0), A (4, 0), P(4, 2) and D(0 ,6).
The values of the objective function z = 11x + 8y at these vertices are
z (O) = 11(0) + 8(0) = 0 + 0 = 0
z(a) = 11(4) + 8(0) = 44 + 0 = 44
z (P) = 11(4) + 8(2) = 44 + 16 = 60
z (D) = 11(0) + 8(2) = 0 + 16 = 16
∴ z has maximum value 60, when x = 4 and y = 2.

Question 2.
Maximize : z = 4x + 6y subject to 3x + 2y ≤ 12,
x + y ≥ 4, x, y ≥ 0.
Solution:
First we draw the lines AB and AC whose equations are 3x + 2y = 12 and x + y = 4 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 3
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 4
The feasible region is the ∆ABC which is shaded in the graph.
The vertices of the feasible region (i.e. corner points) are A (4, 0), B (0, 6) and C (0, 4).
The values of the objective function z = 4x + 6y at these vertices are
z(a) = 4(4) + 6(0) = 16 + 0 = 16
z(B) = 4(0)+ 6(6) = 0 + 36 = 36
z(C) = 4(0) + 6(4) = 0 + 24 = 24
∴ has maximum value 36, when x = 0, y = 6.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
Maximize : z = 7x + 11y subject to 3x + 5y ≤ 26
5x + 3y ≤ 30, x ≥ 0, y ≥ 0.
Solution:
First we draw the lines AB and CD whose equations are 3x + 5y = 26 and 5x + 3y = 30 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 5
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 6
The feasible region is OCPBO which is shaded in the graph.
The vertices of the feasible region are O (0, 0), C (6, 0), p and B(0, \(\frac{26}{5}\))
The vertex P is the point of intersection of the lines
3x + 5y = 26 … (1)
and 5x + 3y = 30 … (2)
Multiplying equation (1) by 3 and equation (2) by 5, we get
9x + 15y = 78
and 25x + 15y = 150
On subtracting, we get
16x = 72 ∴ x = \(\frac{72}{16}=\frac{9}{2}\) = 4.5
Substituting x = 4.5 in equation (2), we get
5(4.5) + 3y = 30
22.5 + 3y = 30
∴ 3y = 7.5 ∴ y = 2.5
∴ P is (4.5, 2.5)
The values of the objective function z = 7x + 11y at these corner points are
z (O) = 7(0) + 11(0) = 0 + 0 = 0
z (C) = 7(6) + 11(0) = 42 + 0 = 42
z (P) = 7(4.5) + 11 (2.5) = 31.5 + 27.5 = 59.0 = 59
z(B) = 7(0) + 11\(\left(\frac{26}{5}\right)=\frac{286}{5}\) = 57.2
∴ z has maximum value 59, when x = 4.5 and y = 2.5.

Question 4.
Maximize : z = 10x + 25y subject to 0 ≤ x ≤ 3,
0 ≤ y ≤ 3, x + y ≤ 5 also find maximum value of z.
Solution:
First we draw the lines AB, CD and EF whose equations are x = 3, y = 3 and x + y = 5 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 7
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 8
The feasible region is OAPQDO which is shaded in the i graph.
The vertices of the feasible region are O (0, 0), A (3, 0), P, Q and D(0, 3).
t P is the point of intersection of the lines x + y = 5 and x = 3.
Substituting x = 3 in x + y = 5, we get
3 + y = 5 ∴ y = 2
∴ P is (3, 2)
Q is the point of intersection of the lines x + y = 5 and y = 3
Substituting y = 3 in x + y = 5, we get
x + 3 = 5 ∴ x = 2
∴ Q is (2, 3)
The values of the objective function z = 10x + 25y at these vertices are
z(O) = 10(0) + 25(0) = 0 + 0 = 0
z(a) = 10(3) + 25(0) = 30 + 0 = 30
z(P) = 10(3) + 25(2) = 30 + 50 = 80
z(Q) = 10(2) + 25(3) = 20 + 75 = 95
z(D) = 10(0)+ 25(3) = 0 + 75 = 75
∴ z has maximum value 95, when x = 2 and y = 3.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Maximize : z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21,
x + y ≤ 9, x ≥ 0, y ≥ 0 also find maximum value of z.
Solution:
First we draw the lines AB, CD and EF whose equations are x + 4y = 24, 3x + y = 21 and x + y = 9 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 9
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 10
The feasible region is OCPQBO which is shaded in the graph.
The vertices of the feasible region are O (0, 0), C (7, 0), P, Q and B (0, 6).
P is the point of intersection of the lines
3x + y = 21 … (1)
and x + y = 9 … (2)
On subtracting, we get 2x = 12 ∴ x = 6
Substituting x = 6 in equation (2), we get
6 + y = 9 ∴ y = 3
∴ P = (6, 3)
Q is the point of intersection of the lines
x + 4y = 24 … (3)
and x + y = 9 … (2)
On subtracting, we get
3y = 15 ∴ y = 5
Substituting y = 5 in equation (2), we get
x + 5= 9 ∴ x = 4
∴ Q = (4, 5)
∴ the corner points of the feasible region are 0(0,0), C(7, 0), P (6, 3), Q (4, 5) and B (0, 6).
The values of the objective function 2 = 3x + 5y at these corner points are
z(O) = 3(0)+ 5(0) = 0 + 0 = 0
z(C) = 3(7) + 5(0) = 21 + 0 = 21
z(P) = 3(6) + 5(3) = 18 + 15 = 33
z(Q) = 3(4) + 5(5) = 12 + 25 = 37
z(B) = 3(0)+ 5(6) = 0 + 30 = 30
∴ z has maximum value 37, when x = 4 and y = 5.

Question 6.
Minimize : z = 7x + y subject to 5x + y ≥ 5, x + y ≥ 3,
x ≥ 0, y ≥ 0.
Solution:
First we draw the lines AB and CD whose equations are 5x + y = 5 and x + y = 3 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 11
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 12
The feasible region is XCPBY which is shaded in the graph.
The vertices of the feasible region are C (3, 0), P and B (0, 5).
P is the point of the intersection of the lines
5x + y = 5
and x + y = 3
On subtracting, we get
4x = 2 ∴ x = \(\frac{1}{2}\)
Substituting x = \(\frac{1}{2}\) in x + y = 3, we get
\(\frac{1}{2}\) + y = 3
∴ y = \(\frac{5}{2}\) ∴ P = \(\left(\frac{1}{2}, \frac{5}{2}\right)\)
The values of the objective function z = 7x + y at these vertices are
z(C) = 7(3) + 0 = 21
z(B) = 7(0) + 5 = 5
∴ z has minimum value 5, when x = 0 and y = 5.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 7.
Minimize : z = 8x + 10y subject to 2x + y ≥ 7, 2x + 3y ≥ 15,
y ≥ 2, x ≥ 0, y ≥ 0.
Solution:
First we draw the lines AB, CD and EF whose equations are 2x + y = 7, 2x + 3y = 15 and y = 2 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 13
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 14
The feasible region is EPQBY which is shaded in the graph. The vertices of the feasible region are P, Q and B(0,7). P is the point of intersection of the lines 2x + 3y = 15 and y = 2.
Substituting y – 2 in 2x + 3y = 15, we get 2x + 3(2) = 15
∴ 2x = 9 ∴ x = 4.5 ∴ P = (4.5, 2)
Q is the point of intersection of the lines
2x + 3y = 15 … (1)
and 2x + y = 7 … (2)
On subtracting, we get
2y = 8 ∴ y = 4
∴ from (2), 2x + 4 = 7
∴ 2x = 3 ∴ x = 1.5
∴ Q = (1.5, 4)
The values of the objective function z = 8x + 10y at these vertices are
z(P) = 8(4.5) + 10(2) = 36 + 20 = 56
z(Q) = 8(1.5) + 10(4) = 12 + 40 = 52
z(B) = 8(0) +10(7) = 70
∴ z has minimum value 52, when x = 1.5 and y = 4

Question 8.
Minimize : z = 6x + 21y subject to x + 2y ≥ 3, x + 4y ≥ 4,
3x + y ≥ 3, x ≥ 0, y ≥ 0.
Solution:
First we draw the lines AB, CD and EF whose equations are x + 2y = 3, x + 4y = 4 and 3x + y = 3 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 15
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 16
The feasible region is XCPQFY which is shaded in the graph.
The vertices of the feasible region are C (4, 0), P, Q and F(0, 3).
P is the point of intersection of the lines x + 4y = 4 and x + 2y = 3
On subtracting, we get
2y = 1 ∴ y = \(\frac{1}{2}\)
Substituting y = \(\frac{1}{2}\) in x + 2y = 3, we get
x + 2\(\left(\frac{1}{2}\right)\) = 3
∴ x = 2
∴ P = (2, \(\frac{1}{2}\))
Q is the point of intersection of the lines
x + 2y = 3 … (1)
and 3x + y = 3 ….(2)
Multiplying equation (1) by 3, we get 3x + 6y = 9
Subtracting equation (2) from this equation, we get
5y = 6
∴ y = \(\frac{6}{5}\)
∴ from (1), x + 2\(\left(\frac{6}{5}\right)\) = 3
∴ x = 3 – \(\frac{12}{5}=\frac{3}{5}\)
Q ≡ \(\left(\frac{3}{5}, \frac{6}{5}\right)\)
The values of the objective function z = 6x + 21y at these vertices are
z(C) = 6(4) + 21(0) = 24
z(P) = 6(2) + 21\(\left(\frac{1}{2}\right)\)
= 12 + 10.5 = 22.5
z(Q)= 6\(\left(\frac{3}{5}\right)\) + 21\(\left(\frac{6}{5}\right)\)
= \(\frac{18}{5}+\frac{126}{5}=\frac{144}{5}\) = 28.8
2 (F) = 6(0) + 21(3) = 63
∴ z has minimum value 22.5, when x = 2 and y = \(\frac{1}{2}\).

Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 7 Linear Programming Ex 7.3 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3

Question 1.
A manufacturing firm produces two types of gadgets A and B, which are first processed in the foundry and then sent to the machine shop for finishing. The number of man-hours of labour required in each shop for production of A and B per unit and the number of man-hours available for the firm are as follows :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 1
Profit on the sale of A is ₹ 30 and B is ₹ 20 per units. Formulate the L.P.P. to have maximum profit.
Solution:
Let the number of gadgets A produced by the firm be x and the number of gadgets B produced by the firm be y.
The profit on the sale of A is ₹ 30 per unit and on the sale of B is ₹ 20 per unit.
∴ total profit is z = 30x + 20y.
This is a linear function which is to be maximized. Hence it is the objective function.
The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 2
From the table total man hours of labour required for x units of gadget A and y units of gadget B in foundry is (10x + 6y) hours and total man hours of labour required in machine shop is (5x + 4y) hours.
Since, maximum time avilable in foundry and machine shops are 60 hours and 35 hours respectively.
Therefore, the constraints are 10x + 6y ≤ 60, 5x + 4y ≤ 35. Since, x and y cannot be negative, we have x ≥ 0, y ≥ 0. Hence, the given LPP can be formulated as :
Maximize z = 30x + 20y, subject to 10x + 6y ≤ 60, 5x + 4y ≤ 35, x ≥ 0, y ≥ 0.

Question 2.
In a cattle breading firm, it is prescribed that the food ration for one animal must contain 14, 22 and 1 units of nutrients A, B and C respectively. Two different kinds of fodder are available. Each unit of these two contains the following amounts of these three nutrients :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 3
The cost of fodder 1 is ₹3 per unit and that of fodder ₹ 2, Formulate the L.P.P. to minimize the cost.
Solution:
Let x units of fodder 1 and y units of fodder 2 be prescribed.
The cost of fodder 1 is ₹ 3 per unit and cost of fodder 2 is ₹ 2 per unit.
∴ total cost is z = 3x + 2y
This is the linear function which is to be minimized. Hence it is the objective function. The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 4
From table fodder contains (2x + y) units of nutrients A, (2x + 3y) units of nutrients B and (x + y) units of nutrients C. The minimum requirements of these nutrients are 14 units, 22 units and 1 unit respectively.
Therefore, the constraints are
2x + y ≥ 14, 2x + 3y ≥ 22, x + y ≥ 1
Since, number of units (i.e. x and y) cannot be negative, we have, x ≥ 0, y ≥ 0.
Hence, the given LPP can be formulated as
Minimize z = 3x + 2y, subject to
2x + y ≥ 14, 2x + 3y ≥ 22, x + y ≥ 1, x ≥ 0, y ≥ 0.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
A company manufactures two types of chemicals A and B. Each chemical requires two types of raw material P and Q. The table below shows number of units of P and Q required to manufacture one unit of A and one unit of B and the total availability of P and Q.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 5
The company gets profits of ₹350 and ₹400 by selling one unit of A and one unit of B respectively. (Assume that the entire production of A and B can be sold). How many units of the chemicals A and B should be manufactured so that the company get maximum profit? Formulate the problem as L.P.P. to maximize the profit.
Solution:
Let the company manufactures x units of chemical A and y units of chemical B. Then the total profit f to the company is p = ₹ (350x + 400y).
This is a linear function which is to be maximized.
Hence, it is the objective function.
The constraints are as per the following table:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 6
The raw material P required for x units of chemical A and y units of chemical B is 3x + 2y. Since, the maximum availability of P is 120, we have the first constraint as 3x + 2y ≤ 120.
Similarly, considering the raw material Q, we have : 2x + 5y ≤ 160.
Since, x and y cannot be negative, we have, x ≥ 0, y ≥ 0.
Hence, the given LPP can be formulated as :
Maximize p = 350x + 400y, subject to
3x + 2y ≤ 120, 2x + 5y ≤ 160, x ≥ 0, y ≥ 0.

Question 4.
A printing company prints two types of magazines A and B. The company earns ₹ 10 and ₹ 15 on magazines A and B per copy. These are processed on three machines I, II, III. Magazine A requires 2 hours on Machine I, 5 hours on Machine II and 2 hours on Machine III. Magazine B requires 3 hours on Machine I, 2 hours on Machine II and 6 hours on Machine III. Machines I, II, III are available for 36, 50, 60 hours per week respectively. Formulate the L.P.P. to determine weekly production of A and B, so that the total profit is maximum.
Solution:
Let the company prints x magazine of type A and y magazine of type B.
Profit on sale of magazine A is ₹ 10 per copy and magazine B is ₹ 15 per copy.
Therefore, the total earning z of the company is
z = ₹ (10x + 15y).
This is a linear function which is to be maximized.
Hence, it is the objective function.
The constraints are as per the following table:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 7
From the table, the total time required for Machine I is (2x + 3y) hours, for Machine II is (5x + 2y) hours and for Machine III is (2x + 6y) hours. The machines I, II, III are available for 36,50 and 60 hours per week. Therefore, the constraints are 2x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60.
Since x and y cannot be negative. We have, x ≥ 0, y ≥ 0. Hence, the given LPP can be formulated as :
Maximize z = 10x + 15y, subject to
2x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60, x ≥ 0, y ≥ 0.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
A manufacture produces bulbs and tubes. Each of these must be processed through two machines M1 and M2. A package of bulbs require 1 hour of work on Machine M1 and 3 hours of work on M2. A package of tubes require 2 hours on Machine M1 and 4 hours on Machine M2. He earns a profit of ₹ 13.5 per package of bulbs and ₹ 55 per package of tubes. Formulate the LLP to maximize the profit, if he operates the machine M1, for atmost 10 hours a day and machine M2 for atmost 12 hours a day.
Solution:
Let the number of packages of bulbs produced by manufacturer be x and packages of tubes be y. The manufacturer earns a profit of ₹ 13.5 per package of bulbs and ₹ 55 per package of tubes.
Therefore, his total profit is p = ₹ (13.5x + 55y)
This is a linear function which is to be maximized.
Hence, it is the objective function.
The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 8
From the table, the total time required for Machine M1 is (x + 2y) hours and for Machine M2 is (3x + 4y) hours.
Given Machine M1 and M2 are available for atmost 10 hours and 12 hours a day respectively.
Therefore, the constraints are x + 2y ≤ 10, 3x + 4y ≤ 12. Since, x and y cannot be negative, we have, x ≥ 0, y ≥ 0. Hence, the given LPP can be formulated as :
Maximize p = 13.5x + 55y, subject to x + 2y ≤ 10, 3x + 4y ≤ 12, x ≥ 0, y ≥ 0.

Question 6.
A company manufactures two types of fertilizers F1 and F2. Each type of fertilizer requires
two raw materials A and B. The number of units of A and B required to manufacture one unit of fertilizer F1 and F2 and availability of the raw materials A and B per day are given in the
table below :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 9
By selling one unit of F1 and one unit of F2, company gets a profit of ₹ 500 and ₹ 750
respectively. Formulate the problem as L.P.P. to maximize the profit.
Solution:
Let the company manufactures x units of fertilizers F1 and y units of fertilizers F1. Then the total profit to the company is
z = ₹(500x + 750y).
This is a linear function that is to be maximized. Hence, it is an objective function.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 10
The raw material A required for x units of Fertilizers F1 and y units of Fertilizers F2 is 2x + Since the maximum availability of A is 40, we have the first constraint as 2x + 3y ≤ 40.
Similarly, considering the raw material B, we have x + 4y ≤ 70.
Since, x and y cannot be negative, we have, x ≥ 0, y ≥ 0.
Hence, the given LPP can be formulated as:
Maximize z = 500x + 750y, subject to
2x + 3y ≤ 40, x + 4y ≤ 70, x ≥ 0, y ≥ 0.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 7.
A doctor has prescribed two different units of foods A and B to form a weekly diet for a sick person. The minimum requirements of fats, carbohydrates and proteins are 18, 28, 14 units respectively. One unit of food A has 4 units of fats. 14 units of carbohydrates and 8 units of protein. One unit of food B has 6 units of fat, 12 units of carbohydrates and 8 units of protein. The price of food A is ₹ 4.5 per unit and that of food B is ₹ 3.5 per unit. Form the L.P.P. so that the sick person’s diet meets the requirements at a minimum cost.
Solution:
Let the diet of sick person include x units of food A and y units of food B.
Then x ≥ 0, y ≥ 0.
The prices of food A and B are ₹ 4.5 and ₹ 3.5 per unit respectively.
Therefore, the total cost is z = ₹ (4.5x + 3.5y)
This is the linear function which is to be minimized.
Hence, it is objective function.
The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 11
From the table, the sick person’s diet will include (4x + 6y) units of fats, (14x + 12y) units of carbohydrates and (8x + 8y) units of proteins. The minimum requirements of these ingredients are 18 units, 28 units and 14 units respectively.
Therefore, the constraints are
4x + 6y ≥ 18, 14x + 12y ≥ 28, 8x + 8y ≥ 14.
Hence, the given LPP can be formulated as
Minimize z = 4.5x + 3.5y, subject to
4x + 6y ≥ 18, 14x + 12y ≥ 28, 8x + 8y ≥ 14, x ≥ 0, y ≥ 0.

Question 8.
If John drives a car at a speed of 60 kms/hour he has to spend ₹ 5 per km on petrol. If he drives at a faster speed of 90 kms/hour, the cost of petrol increases to ₹ 8 per km. He has ₹ 600 to spend on petrol and wishes to travel the maximum distance within an hour. Formulate the above problem as L.P.P.
Solution:
Let John travel xl km at a speed of 60 km/ hour and x1 km at a speed of 90 km/hour.
Therefore, time required to travel a distance of x1 km is \(\frac{x_{1}}{60}\) hours and the time required to travel a distance of
x2 km is \(\frac{x_{2}}{90}\) hours.
∴ total time required to travel is \(\left(\frac{x_{1}}{60}+\frac{x_{2}}{90}\right)\) hours.
Since he wishes to travel the maximum distance within an hour,
\(\frac{x_{1}}{60}+\frac{x_{2}}{90}\) ≤ 1
He has to spend ₹ 5 per km on petrol at a speed of 60 km/hour and ₹ 8 per km at a speed of 90 km/hour.
∴ the total cost of travelling is ₹ (5x1 + 8x2)
Since he has ₹ 600 to spend on petrol,
5x1 + 8x2 ≤ 600
Since distance is never negative, x1 ≥ 0, x2 ≥ 0.
Total distance travelled by John is z. = (x1 + x2) km.
This is the linear function which is to be maximized.
Hence, it is objective function.
Hence, the given LPP can be formulated as :
Maximize z = x1 + x2, subject to
\(\frac{x_{1}}{60}+\frac{x_{2}}{90}\) ≤ 1, 5x1 + 8x2 ≤ 600, x1 ≥ 0, x2 ≥ 0.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 9.
The company makes concrete bricks made up of cement and sand. The weight of a concrete brick has to be least 5 kg. Cement costs ₹ 20 per kg. and sand costs of ₹ 6 per kg. strength consideration dictate that a concrete brick should contain minimum 4 kg. of cement and not more than 2 kg. of sand. Form the L.P.P. for the cost to be minimum.
Solution:
Let the company use x1 kg of cement and x2 kg of sand to make concrete bricks.
Cement costs ₹ 20 per kg and sand costs ₹ 6 per kg.
∴ the total cost c = ₹ (20x1 + 6x2)
This is a linear function which is to be minimized.
Hence, it is the objective function.
Total weight of brick = (x1 + x2) kg
Since the weight of concrete brick has to be at least 5 kg,
∴ x1 + x2 ≥ 5.
Since concrete brick should contain minimum 4 kg of cement and not more than 2 kg of sand,
x1 ≥ 4 and 0 ≤ x2 ≤ 2
Hence, the given LPP can be formulated as :
Minimize c = 20x1 + 6x2, subject to
x1 + x2 ≥ 5, x1 ≥ 4, 0 ≤ x2 ≤ 2.

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 3 Indefinite Integration Miscellaneous Exercise 3 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3

I. Choose the correct options from the given alternatives:

Question 1.
\(\int \frac{1+x+\sqrt{x+x^{2}}}{\sqrt{x}+\sqrt{1+x}} \cdot d x=\)
(a) \(\frac{1}{2} \sqrt{x+1}+c\)
(b) \(\frac{2}{3}(x+1)^{\frac{3}{2}}+c\)
(c) \(\sqrt{x+1}+c\)
(d) \(2(x+1)^{\frac{3}{2}}+c\)
Answer:
(b) \(\frac{2}{3}(x+1)^{\frac{3}{2}}+c\)

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3

Question 2.
\(\int \frac{1}{x+x^{5}} \cdot d x\) = f(x) + c, then \(\int \frac{x^{4}}{x+x^{5}} \cdot d x=\)
(a) log x – f(x) + c
(b) f(x) + log x + c
(c) f(x) – log x + c
(d) \(\frac{1}{5}\) x5 f(x) + c
Answer:
(a) log x – f(x) + c
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 I Q2

Question 3.
\(\int \frac{\log (3 x)}{x \log (9 x)} \cdot d x=\)
(a) log(3x) – log(9x) + c
(b) log(x) – (log 3) . log(log 9x) + c
(c) log 9 – (log x) . log(log 3x) + c
(d) log(x) + log(3) . log(log 9x) + c
Answer:
(b) log(x) – (log 3) . log(log 9x) + c
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 I Q3

Question 4.
\(\int \frac{\sin ^{m} X}{\cos ^{m+2} X} \cdot d x=\)
(a) \(\frac{\tan ^{m+1} \boldsymbol{X}}{m+1}+c\)
(b) (m + 2) tanm+1 x + c
(c) \(\frac{\tan ^{m} \boldsymbol{X}}{m}+c\)
(d) (m + 1) tanm+1 x + c
Answer:
(a) \(\frac{\tan ^{m+1} \boldsymbol{X}}{m+1}+c\)

Question 5.
∫tan(sin-1 x) . dx =
(a) \(\left(1-x^{2}\right)^{-\frac{1}{2}}+c\)
(b) \(\left(1-x^{2}\right)^{\frac{1}{2}}+c\)
(c) \(\frac{\tan ^{m} \boldsymbol{X}}{\sqrt{1-x^{2}}}+c\)
(d) \(-\sqrt{1-x^{2}}+c\)
Answer:
(d) \(-\sqrt{1-x^{2}}+c\)

Hint: sin-1 x = \(\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)\)

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3

Question 6.
\(\int \frac{x-\sin x}{1-\cos x} \cdot d x=\)
(a) x cot(\(\frac{x}{2}\)) + c
(b) -x cot(\(\frac{x}{2}\)) + c
(c) cot(\(\frac{x}{2}\)) + c
(d) x tan(\(\frac{x}{2}\)) + c
Answer:
(b) -x cot(\(\frac{x}{2}\)) + c
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 I Q6
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 I Q6.1

Question 7.
If f(x) = \(\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}\), g(x) = \(e^{\sin ^{-1} x}\), then ∫f(x) . g(x) . dx =
(a) \(e^{\sin ^{-1} x} \cdot\left(\sin ^{-1} x-1\right)+c\)
(b) \(e^{\sin ^{-1} x} \cdot\left(1-\sin ^{-1} x\right)+c\)
(c) \(e^{\sin ^{-1} x} \cdot\left(\sin ^{-1} x+1\right)+c\)
(d) \(e^{\sin ^{-1} x} \cdot\left(\sin ^{-1} X-1\right)+c\)
Answer:
(a) \(e^{\sin ^{-1} x} \cdot\left(\sin ^{-1} x-1\right)+c\)

Question 8.
If ∫tan3 x . sec3 x . dx = (\(\frac{1}{m}\)) secm x – (\(\frac{1}{n}\)) secn x + c, then (m, n) =
(a) (5, 3)
(b) (3, 5)
(c) \(\left(\frac{1}{5}, \frac{1}{3}\right)\)
(d) (4, 4)
Answer:
(a) (5, 3)

Hint: ∫tan3 x . sec3 x dx
= ∫sec2 x . tan2 x . sec x tan x dx
= ∫sec2 x (sec2 x – 1) sec x tan x dx
Put sec x = t.

Question 9.
\(\int \frac{1}{\cos x-\cos ^{2} x} \cdot d x=\)
(a) log(cosec x – cot x) + tan(\(\frac{x}{2}\)) + c
(b) sin 2x – cos x + c
(c) log(sec x + tan x) – cot(\(\frac{x}{2}\)) + c
(d) cos 2x – sin x + c
Answer:
(c) log(sec x + tan x) – cot(\(\frac{x}{2}\)) + c
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 I Q9

Question 10.
\(\int \frac{\sqrt{\cot x}}{\sin x \cdot \cos x} \cdot d x=\)
(a) \(2 \sqrt{\cot x}+c\)
(b) \(-2 \sqrt{\cot x}+c\)
(c) \(\frac{1}{2} \sqrt{\cot x}+c\)
(d) \(\sqrt{\cot X}+c\)
Answer:
(b) \(-2 \sqrt{\cot x}+c\)

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3

Question 11.
\(\int \frac{e^{x}(x-1)}{x^{2}} \cdot d x=\)
(a) \(\frac{e^{x}}{x}+c\)
(b) \(\frac{e^{x}}{x^{2}}+c\)
(c) \(\left(x-\frac{1}{x}\right) e^{x}+c\)
(d) x e-x + c
Answer:
(a) \(\frac{e^{x}}{x}+c\)

Question 12.
∫sin(log x) . dx =
(a) \(\frac{x}{2}\) [sin(log x) – cos(log x)] + c
(b) \(\frac{x}{2}\) [sin(log x) + cos(log x)] + c
(c) \(\frac{x}{2}\) [cos(log x) – sin(log x)] + c
(d) \(\frac{x}{4}\) [cos(log x) – sin(log x)] + c
Answer:
(a) \(\frac{x}{2}\) [sin(log x) – cos(log x)] + c

Question 13.
∫xx (1 + log x) . dx =
(a) \(\frac{1}{2}\) (1 + log x)2 + c
(b) x2x + c
(c) xx log x + c
(d) xx + c
Answer:
(d) xx + c

Hint: \(\frac{d}{d x}\)(xx) = xx (1 + log x)

Question 14.
\(\int \cos ^{-\frac{3}{7}} x \cdot \sin ^{-\frac{11}{7}} x \cdot d x=\)
(a) \(\log \left(\sin ^{-\frac{4}{7}} x\right)+c\)
(b) \(\frac{4}{7} \tan ^{\frac{4}{7}} x+c\)
(c) \(-\frac{7}{4} \tan ^{-\frac{4}{7}} x+c\)
(d) \(\log \left(\cos ^{\frac{3}{7}} x\right)+c\)
Answer:
(c) \(-\frac{7}{4} \tan ^{-\frac{4}{7}} x+c\)

Hint: \(\int \cos ^{-\frac{3}{7}} x \sin ^{-\frac{11}{7}} x d x\)
= \(\int \frac{\sin ^{-\frac{11}{7}} x}{\cos ^{-\frac{11}{7}} x \cdot \cos ^{2} x} d x\)
= \(\int \tan ^{-\frac{11}{7}} x \sec ^{2} x d x\)
Put tan x = t.

Question 15.
\(2 \int \frac{\cos ^{2} x-\sin ^{2} x}{\cos ^{2} x+\sin ^{2} x} \cdot d x=\)
(a) sin 2x + c
(b) cos 2x + c
(c) tan 2x + c
(d) 2 sin 2x + c
Answer:
(a) sin 2x + c

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3

Question 16.
\(\int \frac{d x}{\cos x \sqrt{\sin ^{2} x-\cos ^{2} x}} \cdot d x=\)
(a) log(tan x – \(\sqrt{\tan ^{2} x-1}\)) + c
(b) sin-1 (tan x) + c
(c) 1 + sin-1 (cot x) + c
(d) log(tan x + \(\sqrt{\tan ^{2} x-1}\)) + c
Answer:
(d) log(tan x + \(\sqrt{\tan ^{2} x-1}\)) + c
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 I Q16

Question 17.
\(\int \frac{\log x}{(\log e x)^{2}} \cdot d x=\)
(a) \(\frac{x}{1+\log x}+c\)
(b) x(1 + log x) + c
(c) \(\frac{1}{1+\log x}+c\)
(d) \(\frac{1}{1-\log x}+c\)
Answer:
(a) \(\frac{x}{1+\log x}+c\)

Question 18.
∫[sin(log x) + cos(log x)] . dx =
(a) x cos(log x) + c
(b) sin(log x) + c
(c) cos(log x) + c
(d) x sin(log x) + c
Answer:
(d) x sin(log x) + c

Question 19.
\(\int \frac{\cos 2 x-1}{\cos 2 x+1} \cdot d x=\)
(a) tan x – x + c
(b) x + tan x + c
(c) x – tan x + c
(d) -x – cot x + c
Answer:
(c) x – tan x + c
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 I Q19

Question 20.
\(\int \frac{e^{2 x}+e^{-2 x}}{e^{x}} \cdot d x=\)
(a) \(e^{x}-\frac{1}{3 e^{3 x}}+c\)
(b) \(e^{x}+\frac{1}{3 e^{3 x}}+c\)
(c) \(e^{-x}+\frac{1}{3 e^{3 x}}+c\)
(d) \(e^{-x}-\frac{1}{3 e^{3 x}}+c\)
Answer:
(a) \(e^{x}-\frac{1}{3 e^{3 x}}+c\)
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 I Q20

II. Integrate the following with respect to the respective variable:

Question 1.
(x – 2)2 √x
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 II Q1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 II Q1.1

Question 2.
\(\frac{x^{7}}{x+1}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 II Q2

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3

Question 3.
\((6 x+5)^{\frac{3}{2}}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 II Q3

Question 4.
\(\frac{t^{3}}{(t+1)^{2}}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 II Q4
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 II Q4.1

Question 5.
\(\frac{3-2 \sin x}{\cos ^{2} x}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 II Q5

Question 6.
\(\frac{\sin ^{6} \theta+\cos ^{6} \theta}{\sin ^{2} \theta \cdot \cos ^{2} \theta}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 II Q6

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3

Question 7.
cos 3x cos 2x cos x
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 II Q7
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 II Q7.1

Question 8.
\(\frac{\cos 7 x-\cos 8 x}{1+2 \cos 5 x}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 II Q8
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 II Q8.1

Question 9.
\(\cot ^{-1}\left(\frac{1+\sin x}{\cos x}\right)\)
Solution:
Let I = \(\int \cot ^{-1}\left(\frac{1+\sin x}{\cos x}\right) d x\)
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 II Q9

III. Integrate the following w.r.t. x:

Question 1.
\(\frac{(1+\log x)^{3}}{x}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q1

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3

Question 2.
cot-1 (1 – x + x2)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q2
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q2.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q2.2
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q2.3
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q2.4

Question 3.
\(\frac{1}{x \sin ^{2}(\log x)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q3

Question 4.
\(\sqrt{x} \sec \left(x^{\frac{3}{2}}\right) \tan \left(x^{\frac{3}{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q4

Question 5.
log(1 + cos x) – x tan(\(\frac{x}{2}\))
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q5
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q5.1

Question 6.
\(\frac{x^{2}}{\sqrt{1-x^{6}}}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q6

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3

Question 7.
\(\frac{1}{(1-\cos 4 x)(3-\cot 2 x)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q7

Question 8.
log(log x) + (log x)-2
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q8
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q8.1

Question 9.
\(\frac{1}{2 \cos x+3 \sin x}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q9
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q9.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q9.2
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q9.3

Question 10.
\(\frac{1}{x^{3} \sqrt{x^{2}-1}}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q10
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q10.1

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3

Question 11.
\(\frac{3 x+1}{\sqrt{-2 x^{2}+x+3}}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q11
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q11.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q11.2

Question 12.
log(x2 + 1)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q12

Question 13.
e2x sin x cos x
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q13
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q13.1

Question 14.
\(\frac{x^{2}}{(x-1)(3 x-1)(3 x-2)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q14
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q14.1

Question 15.
\(\frac{1}{\sin x+\sin 2 x}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q15
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q15.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q15.2

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3

Question 16.
\(\sec ^{2} x \sqrt{7+2 \tan x-\tan ^{2} x}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q16
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q16.1

Question 17.
\(\frac{x+5}{x^{3}+3 x^{2}-x-3}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q17
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q17.1

Question 18.
\(\frac{1}{x\left(x^{5}+1\right)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q18
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q18.1

Question 19.
\(\frac{\sqrt{\tan x}}{\sin x \cdot \cos x}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q19

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3

Question 20.
sec4 x cosec2 x
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Miscellaneous Exercise 3 III Q20

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 3 Indefinite Integration Ex 3.4 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4

I. Integrate the following w. r. t. x:

Question 1.
\(\frac{x^{2}+2}{(x-1)(x+2)(x+3)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q1.1

Question 2.
\(\frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}-2\right)\left(x^{2}+3\right)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q2
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q2.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q2.2

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4

Question 3.
\(\frac{12 x+3}{6 x^{2}+13 x-63}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q3
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q3.1

Question 4.
\(\frac{2 x}{4-3 x-x^{2}}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q4

Question 5.
\(\frac{x^{2}+x-1}{x^{2}+x-6}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q5
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q5.1

Question 6.
\(\frac{6 x^{3}+5 x^{2}-7}{3 x^{2}-2 x-1}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q6
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q6.1

Question 7.
\(\frac{12 x^{2}-2 x-9}{\left(4 x^{2}-1\right)(x+3)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q7
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q7.1

Question 8.
\(\frac{1}{x\left(x^{5}+1\right)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q8

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4

Question 9.
\(\frac{2 x^{2}-1}{x^{4}+9 x^{2}+20}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q9
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q9.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q9.2

Question 10.
\(\frac{x^{2}+3}{\left(x^{2}-1\right)\left(x^{2}-2\right)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q10
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q10.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q10.2

Question 11.
\(\frac{2 x}{\left(2+x^{2}\right)\left(3+x^{2}\right)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q11

Question 12.
\(\frac{2^{x}}{4^{x}-3 \cdot 2^{x}-4}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q12
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q12.1

Question 13.
\(\frac{3 x-2}{(x+1)^{2}(x+3)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q13
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q13.1

Question 14.
\(\frac{5 x^{2}+20 x+6}{x^{3}+2 x^{2}+x}\)
Solution:
Let I = ∫\(\frac{5 x^{2}+20 x+6}{x^{3}+2 x^{2}+x}\) dx
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q14
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q14.1

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4

Question 15.
\(\frac{1}{x\left(1+4 x^{3}+3 x^{6}\right)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q15
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q15.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q15.2

Question 16.
\(\frac{1}{x^{3}-1}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q16
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q16.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q16.2
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q16.3

Question 17.
\(\frac{(3 \sin x-2) \cdot \cos x}{5-4 \sin x-\cos ^{2} x}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q17
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q17.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q17.2

Question 18.
\(\frac{1}{\sin x+\sin 2 x}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q18
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q18.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q18.2

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4

Question 19.
\(\frac{1}{2 \sin x+\sin 2 x}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q19
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q19.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q19.2
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q19.3

Question 20.
\(\frac{1}{\sin 2 x+\cos x}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q20
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q20.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q20.2

Question 21.
\(\frac{1}{\sin x \cdot(3+2 \cos x)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q21
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q21.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q21.2

Question 22.
\(\frac{5 \cdot e^{x}}{\left(e^{x}+1\right)\left(e^{2 x}+9\right)}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q22
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q22.1

Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4

Question 23.
\(\frac{2 \log x+3}{x(3 \log x+2)\left[(\log x)^{2}+1\right]}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q23
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q23.1
Maharashtra Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.4 Q23.2

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 1 Differentiation Ex 1.3 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3

Question 1.
Differentiate the following w.r.t. x:
(i) \(\frac{(x+1)^{2}}{(x+2)^{3}(x+3)^{4}}\)
Solution:
Let y = \(\frac{(x+1)^{2}}{(x+2)^{3}(x+3)^{4}}\)
Then, log y = log [latex]\frac{(x+1)^{2}}{(x+2)^{3}(x+3)^{4}}[/latex]
= log (x + 1)2 – log (x + 2)3 – log (x + 3)4
= 2 log (x +1) – 3 log (x + 2) – 4 log (x + 3)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q1 (i)

(ii) \(\sqrt[3]{\frac{4 x-1}{(2 x+3)(5-2 x)^{2}}}\)
Solution:
Let y = \(\sqrt[3]{\frac{4 x-1}{(2 x+3)(5-2 x)^{2}}}\)
Then log y = log [latex]\sqrt[3]{\frac{4 x-1}{(2 x+3)(5-2 x)^{2}}}[/latex]
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q1 (ii)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q1 (ii).1

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3

(iii) \(\left(x^{2}+3\right)^{\frac{3}{2}} \cdot \sin ^{3} 2 x \cdot 2^{x^{2}}\)
Solution:
Let y = \(\left(x^{2}+3\right)^{\frac{3}{2}} \cdot \sin ^{3} 2 x \cdot 2^{x^{2}}\)
Then log y = log [latex]\left(x^{2}+3\right)^{\frac{3}{2}} \cdot \sin ^{3} 2 x \cdot 2^{x^{2}}[/latex]
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q1 (iii)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q1 (iii).1

(iv) \(\frac{\left(x^{2}+2 x+2\right)^{\frac{3}{2}}}{(\sqrt{x}+3)^{3}(\cos x)^{x}}\)
Solution:
Let y = \(\frac{\left(x^{2}+2 x+2\right)^{\frac{3}{2}}}{(\sqrt{x}+3)^{3}(\cos x)^{x}}\)
Then log y = log [latex]\frac{\left(x^{2}+2 x+2\right)^{\frac{3}{2}}}{(\sqrt{x}+3)^{3}(\cos x)^{x}}[/latex]
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q1 (iv)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q1 (iv).1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q1 (iv).2

(v) \(\frac{x^{5} \cdot \tan ^{3} 4 x}{\sin ^{2} 3 x}\)
Solution:
Let y = \(\frac{x^{5} \cdot \tan ^{3} 4 x}{\sin ^{2} 3 x}\)
Then log y = log [latex]\frac{x^{5} \cdot \tan ^{3} 4 x}{\sin ^{2} 3 x}[/latex]
= log x5 + log tan34x – log sin23x
= 5 log x+ 3 log (tan 4x) – 2 log (sin 3x)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q1 (v)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q1 (v).1

(vi) \(x^{\tan ^{-1} x}\)
Solution:
Let y = \(x^{\tan ^{-1} x}\)
Then log y = log (\(x^{\tan ^{-1} x}\)) = (tan-1 x)(log x)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q1 (vi)

(vii) (sin x)x
Solution:
Let y = (sin x)x
Then log y = log (sin x)x = x . log (sin x)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q1 (vii)

(viii) sin xx
Solution:
Let y = (sin xx)
Then \(\frac{d y}{d x}=\frac{d}{d x}\left[\left(\sin x^{x}\right)\right]\)
\(\frac{d y}{d x}=\cos \left(x^{x}\right) \cdot \frac{d}{d x}\left(x^{x}\right)\) ……. (1)
Let u = xx
Then log u = log xx = x . log x
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q1 (viii)

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3

Question 2.
Differentiate the following w.r.t. x:
(i) xe + xx + ex + ee
Solution:
Let y = xe + xx + ex + ee
Let u = xx
Then log u = log xx = x log x
Differentiating both sides w.r.t. x, we get
\(\frac{1}{u} \cdot \frac{d u}{d x}=\frac{d}{d x}(x \log x)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (i)

(ii) \(x^{x^{x}}+e^{x^{x}}\)
Solution:
Let y = \(x^{x^{x}}+e^{x^{x}}\)
Put u = \(x^{x^{x}}\) and v = \(e^{x^{x}}\)
Then y = u + v
∴ \(\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}\)
Take u = \(x^{x^{x}}\)
log u = log \(x^{x^{x}}\) = xx . log x
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (ii)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (ii).1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (ii).2

(iii) (log x)x – (cos x)cot x
Solution:
Let y = (log x)x – (cos x)cot x
Put u = (log x)x and v = (cos x)cot x
Then y = u – v
∴ \(\frac{d y}{d x}=\frac{d u}{d x}-\frac{d v}{d x}\) ……..(1)
Take u = (log x)x
∴ log u = log (log x)x = x . log (log x)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (iii)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (iii).1

(iv) \(x^{e^{x}}+(\log x)^{\sin x}\)
Solution:
Let y = \(x^{e^{x}}+(\log x)^{\sin x}\)
Put u = \(x^{e^{x}}\) and v = (log x)sin x
Then y = u + v
∴ \(\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}\) ……….(1)
Take u = \(x^{e^{x}}\)
∴ log u = log \(x^{e^{x}}\) = ex . log x
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (iv)
Also, v = (log x)sin x
∴ log v = log (log x)sin x = (sin x) . (log log x)
Differentiating both sides w.r.t. x, we get
\(\frac{1}{v} \cdot \frac{d v}{d x}=\frac{d}{d x}[(\sin x) \cdot(\log \log x)]\)
= \((\sin x) \cdot \frac{d}{d x}\left[(\log \log x)+(\log \log x) \cdot \frac{d}{d x}(\sin x)\right]\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (iv).1

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3

(v) \(e^{\tan x}+(\log x)^{\tan x}\)
Solution:
Let y = \(e^{\tan x}+(\log x)^{\tan x}\)
Put u = (log x)tan x
∴ log u =log(log x)tan x = (tan x).(log log x)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (v)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (v).1

(vi) (sin x)tan x + (cos x)cot x
Solution:
Let y = (sin x)tan x + (cos x)cot x
Put u = (sin x)tan x and v = (cos x)cot x
Then y = u + v
∴ \(\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}\) ………(1)
Take u = (sin x)tan x
∴ log u = log (sin x)tan x = (tan x) . (log sin x)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (vi)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (vi).1

(vii) \(10^{x^{x}}+x^{x^{10}}+x^{10^{x}}\)
Solution:
Let y = \(10^{x^{x}}+x^{x^{10}}+x^{10^{x}}\)
Put u = \(10^{x^{x}}\), v = \(x^{x^{10}}\) and w = \(x^{10^{x}}\)
Then y = u + v + w
∴ \(\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}\) ………(1)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (vii)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (vii).1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (vii).2
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (vii).3

(viii) \(\left[(\tan x)^{\tan x}\right]^{\tan x}\) at x = \(\frac{\pi}{4}\)
Solution:
Let y = \(\left[(\tan x)^{\tan x}\right]^{\tan x}\)
∴ log y = log [latex]\left[(\tan x)^{\tan x}\right]^{\tan x}[/latex]
= tan x . log(tan x)tan x
= tan x . tan x log (tan x)
= (tan x)2 . log (tan x)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q2 (viii)

Question 3.
Find \(\frac{d y}{d x}\) if
(i) √x + √y = √a
Solution:
√x + √y = √a
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q3 (i)

(ii) x√x + y√y = a√a
Solution:
x√x + y√y = a√a
∴ \(x^{\frac{3}{2}}+y^{\frac{3}{2}}=a^{\frac{3}{2}}\)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q3 (ii)

(iii) x + √xy + y = 1
Solution:
x + √xy + y = 1
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q3 (iii)

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3

(iv) x3 + x2y + xy2 + y3 = 81
Solution:
x3 + x2y + xy2 + y3 = 81
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q3 (iv)

(v) x2y2 – tan-1(\(\sqrt{x^{2}+y^{2}}\)) = cot-1(\(\sqrt{x^{2}+y^{2}}\))
Solution:
x2y2 – tan-1(\(\sqrt{x^{2}+y^{2}}\)) = cot-1(\(\sqrt{x^{2}+y^{2}}\))
∴ x2y2 = tan-1(\(\sqrt{x^{2}+y^{2}}\)) + cot-1(\(\sqrt{x^{2}+y^{2}}\))
∴ x2y2 = \(\frac{\pi}{2}\) …….[∵ \(\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\)]
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q3 (v)

(vi) xey + yex = 1
Solution:
xey + yex = 1
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q3 (vi)

(vii) ex+y = cos (x – y)
Solution:
ex+y = cos (x – y)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q3 (vii)

(viii) cos (xy) = x + y
Solution:
cos (xy) = x + y
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q3 (viii)

(ix) \(e^{e^{x-y}}=\frac{x}{y}\)
Solution:
\(e^{e^{x-y}}=\frac{x}{y}\)
∴ ex-y = log(\(\frac{x}{y}\)) …….[ex = y ⇒ x = log y]
∴ ex-y = log x – log y
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q3 (ix)

Question 4.
Show that \(\frac{d y}{d x}=\frac{y}{x}\) in the following, where a and p are constants.
(i) x7y5 = (x + y)12
Solution:
x7y5 = (x + y)12
(log x7y5) = log(x + y)12
log x7 + log y5 = log(x + y)12
7 log x + 5 log y = 12 log (x + y)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (i)

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3

(ii) xpy4 = (x + y)p+4, p∈N
Solution:
xpy4 = (x + y)p+4
Taking log
log (xpy4) = log(x + y)p+4
log xp + log y4 = (p + 4) log(x + y)
p log x + 4 log y = (p + 4) log(x + y)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (ii)

(iii) \(\sec \left(\frac{x^{5}+y^{5}}{x^{5}-y^{5}}\right)=a^{2}\)
Solution:
\(\sec \left(\frac{x^{5}+y^{5}}{x^{5}-y^{5}}\right)=a^{2}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (iii)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (iii).1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (iii).2
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (iii).3

(iv) \(\tan ^{-1}\left(\frac{3 x^{2}-4 y^{2}}{3 x^{2}+4 y^{2}}\right)=a^{2}\)
Solution:
\(\tan ^{-1}\left(\frac{3 x^{2}-4 y^{2}}{3 x^{2}+4 y^{2}}\right)=a^{2}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (iv)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (iv).1

(v) \(\cos ^{-1}\left(\frac{7 x^{4}+5 y^{4}}{7 x^{4}-5 y^{4}}\right)=\tan ^{-1} a\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (v)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (v).1

(vi) \(\log \left(\frac{x^{20}-y^{20}}{x^{20}+y^{20}}\right)=20\)
Solution:
\(\log \left(\frac{x^{20}-y^{20}}{x^{20}+y^{20}}\right)=20\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (vi)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (vi).1

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3

(vii) \(e^{\frac{x^{7}-y^{7}}{x^{7}+y^{7}}}=a\)
Solution:
\(e^{\frac{x^{7}-y^{7}}{x^{7}+y^{7}}}=a\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (vii)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (vii).1

(viii) \(\sin \left(\frac{x^{3}-y^{3}}{x^{3}+y^{3}}\right)=a^{3}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (viii)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q4 (viii).1

Question 5.
(i) If log (x + y) = log (xy) + p, where p is a constant, then prove that \(\frac{d y}{d x}=-\frac{y^{2}}{x^{2}}\).
Solution:
log (x + y) = log (xy) + p
∴ log (x + y) = log x + log y + p
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q5 (i)

(ii) If \(\log _{10}\left(\frac{x^{3}-y^{3}}{x^{3}+y^{3}}\right)=2\), show that \(\frac{d y}{d x}=-\frac{99 x^{2}}{101 y^{2}}\)
Solution:
\(\log _{10}\left(\frac{x^{3}-y^{3}}{x^{3}+y^{3}}\right)=2\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q5 (ii)

(iii) If \(\log _{5}\left(\frac{x^{4}+y^{4}}{x^{4}-y^{4}}\right)=2\), show that \(\frac{d y}{d x}=-\frac{12 x^{3}}{13 y^{3}}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q5 (iii)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q5 (iii).1

(iv) If ex + ey = ex+y, then show that \(\frac{d y}{d x}=-e^{y-x}\)
Solution:
ex + ey = ex+y ……(1)
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q5 (iv)

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3

(v) If \(\sin ^{-1}\left(\frac{x^{5}-y^{5}}{x^{5}+y^{5}}\right)=\frac{\pi}{6}\), show that \(\frac{d y}{d x}=\frac{x^{4}}{3 y^{4}}\)
Solution:
\(\sin ^{-1}\left(\frac{x^{5}-y^{5}}{x^{5}+y^{5}}\right)=\frac{\pi}{6}\)
\(\frac{x^{5}-y^{5}}{x^{5}+y^{5}}=\sin \frac{\pi}{6}=\frac{1}{2}\)
2x5 – 2y5 = x5 + y5
3y5 = x5
Differentiating both sides w.r.t. x, we get
\(3 \times 5 y^{4} \frac{d y}{d x}=5 x^{4}\)
∴ \(\frac{d y}{d x}=\frac{x^{4}}{3 y^{4}}\)

(vi) If xy = ex-y, then show that \(\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}\)
Solution:
xy = ex-y
log xy = log ex-y
y log x = (x – y) log e
y log x = (x – y) ….. [∵ log e = 1]
y + y log x = x – y
y + y log x = x
y(1 + log x) = x
y = \(\frac{x}{1+\log x}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q5 (vi)

(vii) If \(y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+\ldots \infty}}}\), then show that \(\frac{d y}{d x}=\frac{\sin x}{1-2 y}\)
Solution:
\(y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+\ldots \infty}}}\)
y2 = cos x + \(\sqrt{\cos x+\sqrt{\cos x+\ldots \infty}}\)
y2 = cos x + y
Differentiating both sides w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q5 (vii)

(viii) If \(y=\sqrt{\log x+\sqrt{\log x+\sqrt{\log x+\ldots \infty}}}\), then show that \(\frac{d y}{d x}=\frac{1}{x(2 y-1)}\)
Solution:
\(y=\sqrt{\log x+\sqrt{\log x+\sqrt{\log x+\ldots \infty}}}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q5 (viii)

(ix) If \(y=x^{x^{x^{-\infty}}}\), then show that \(\frac{d y}{d x}=\frac{y^{2}}{x(1-\log y)}\)
Solution:
\(y=x^{x^{x^{-\infty}}}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q5 (ix)

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3

(x) If ey = yx, then show that \(\frac{d y}{d x}=\frac{(\log y)^{2}}{\log y-1}\)
Solution:
ey = yx
log ey = log yx
y log e = x log y
y = x log y …… [∵log e = 1] ……….(1)
Differentiating both sides w.r.t. x, we get
\(\frac{d y}{d x}=x \frac{d}{d x}(\log y)+(\log y) \cdot \frac{d}{d x}(x)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q5 (x)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.3 Q5 (x).1

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 1 Differentiation Ex 1.2 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2

Question 1.
Find the derivative of the function y = f (x) using the derivative of the inverse function x = f-1( y) in the following
(i) y = \(\sqrt {x}\)
Solution:
y = \(\sqrt {x}\) … (1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
y2 = x ∴ x = y2
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 1

(ii) y = \(\sqrt{2-\sqrt{x}}\)
Solution:
y = \(\sqrt{2-\sqrt{x}}\) …(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 2

(iii) y = \(\sqrt[3]{x-2}\)
Solution:
y = \(\sqrt[3]{x-2}\) ….(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 3
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 4

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) y = log (2x – 1)
Solution:
y = log (2x – 1) …(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 5

(v) y = 2x + 3
Solution:
y = 2x + 3 ….(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 6

(vi) y = ex – 3
Solution:
y = ex – 3 ….(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
ex = y + 3
∴ x = log(y + 3)
∴ x = f-1(y) = log(y + 3)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 7

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vii) y = e2x – 3
Solution:
y = e2x – 3 ….(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
2x – 3 = log y ∴ 2x = log y + 3
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 8

(viii) y = log2\(\left(\frac{x}{2}\right)\)
Solution:
y = log2\(\left(\frac{x}{2}\right)\) …(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
\(\frac{x}{2}\) = 2y ∴ x = 2∙2y = 2y+1
∴ x = f-1(y) = 2y+1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 9

Question 2.
Find the derivative of the inverse function of
the following
(i) y = x2·ex
Solution:
y = x2·ex
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 10

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) y = x cos x
Solution:
y = x cos x
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 11
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 12

(iii) y = x·7x
Solution:
y = x·7x
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 13

(iv) y = x2 + logx
Solution:
y = x2 + logx
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 14

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(v) y = x logx
Solution:
y = x logx
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 15
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 16

Question 3.
Find the derivative of the inverse of the following functions, and also fid their value at the points indicated against them.
(i) y = x5 + 2x3 + 3x, at x = 1
Solution:
y = x5 + 2x3 + 3x
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)(x5 + 2x3 + 3x)
= 5x4 + 2 × 3x2 + 3 × 1
= 5x4 + 6x2 + 3
The derivative of inverse function of y = f(x) is given by
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 17

(ii) y = ex + 3x + 2, at x = 0
Solution:
y = ex + 3x + 2
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)(ex + 3x + 2)
The derivative of inverse function of y = f(x) is given by
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 18
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 19

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) y = 3x2 + 2 log x3, at x = 1
Solution:
y = 3x2 + 2 log x3
= 3x2 + 6 log x
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 20
The derivative of inverse function of y = f(x) is given by
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 21

(iv) y = sin (x – 2) + x2, at x = 2
Solution:
y = sin (x – 2) + x2
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 22
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 23

Question 4.
If f(x) = x3 + x – 2, find (f-1)’ (0).
Question is modified.
If f(x) = x3 + x – 2, find (f-1)’ (-2).
Solution:
f(x) = x3 + x – 2 ….(1)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 24

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Using derivative prove
(i) tan-1x + cot-1x = \(\frac{\pi}{2}\)
Solution:
let f(x) = tan-1x + cot-1x
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 25
Since, f'(x) = 0, f(x) is a constant function.
Let f(x) = k.
For any value of x, f(x) = k
Let x = 0.
Then f(0) = k ….(2)
From (1), f(0) = tan-1(0) + cot-1(0)
= 0 + \(\frac{\pi}{2}=\frac{\pi}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 26

(ii) sec-1x + cosec-1x = \(\frac{\pi}{2}\) . . . [for |x| ≥ 1]
Solution:
Let f(x) = sec-1x + cosec-1x for |x| ≥ 1 ….(1)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 27
Since, f'(x) = 0, f(x) is a constant function.
Let f(x) = k.
For any value of x, f(x) = k, where |x| > 1
Let x = 2.
Then, f(2) = k ……(2)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 28

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 6.
Diffrentiate the following w. r. t. x.
(i) tan-1(log x)
Solution:
Let y = tan-1(log x)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 29

(ii) cosec-1(e-x)
Solution:
Let y = cosec-1(e-x)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 104

(iii) cot-1(x3)
Solution:
Let y = cot-1(x3)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 105

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) cot-1(4x
Solution:
Let y = cot-1(4x
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 106

(v) tan-1(\(\sqrt {x}\))
Solution:
Let y = tan-1(\(\sqrt {x}\))
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 107

(vi) sin-1\(\left(\sqrt{\frac{1+x^{2}}{2}}\right)\)
Solution:
Let y = sin-1\(\left(\sqrt{\frac{1+x^{2}}{2}}\right)\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 108

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vii) cos-1(1 – x2)
Solution:
Let y = cos-1(1 – x2)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 109
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 30

(viii) sin-1\(\left(x^{\frac{3}{2}}\right)\)
Solution:
Let y = sin-1\(\left(x^{\frac{3}{2}}\right)\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 31

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ix) cos3[cos-1(x3)]
Solution:
Let y = cos3[cos-1(x3)]
= [cos(cos-1x3)]3
= (x3)3 = x9
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)(x9) = 9x8.

(x) sin4[sin-1(\(\sqrt {x}\))]
Solution:
Let y = sin4[sin-1(\(\sqrt {x}\))]
= {sin[sin-1(\(\sqrt {x}\))]}8
= (\(\sqrt {x}\))4 = x2
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)(x2) = 2x.

Question 7.
Diffrentiate the following w. r. t. x.
(i) cot-1[cot (ex2)]
Solution:
Let y = cot-1[cot (ex2)] = ex2
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 32

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) cosec-1\(\left(\frac{1}{\cos \left(5^{x}\right)}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 33

(iii) cos-1\(\left(\sqrt{\frac{1+\cos x}{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 34

(iv) cos-1\(\left(\sqrt{\frac{1-\cos \left(x^{2}\right)}{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 35
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 36

(v) tan-1\(\left(\frac{1-\tan \left(\frac{x}{2}\right)}{1+\tan \left(\frac{x}{2}\right)}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 37
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 38

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vi) cosec-1\(\left(\frac{1}{4 \cos ^{3} 2 x-3 \cos 2 x}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 39

(vii) tan-1\(\left(\frac{1+\cos \left(\frac{x}{3}\right)}{\sin \left(\frac{x}{3}\right)}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 40
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 41

(viii) cot-1\(\left(\frac{\sin 3 x}{1+\cos 3 x}\right)\)
Solution:
Let y = cot-1\(\left(\frac{\sin 3 x}{1+\cos 3 x}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 42

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ix) tan-1\(\left(\frac{\cos 7 x}{1+\sin 7 x}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 43
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 44

(x) tan-1\(\left(\sqrt{\frac{1+\cos x}{1-\cos x}}\right)\)
Solution:
Let y = tan-1\(\left(\sqrt{\frac{1+\cos x}{1-\cos x}}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 45

(xi) tan-1(cosec x + cot x)
Solution:
Let y = tan-1(cosec x + cot x)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 46
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 47

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(xii) cot-1\(\left(\frac{\sqrt{1+\sin \left(\frac{4 x}{3}\right)}+\sqrt{1-\sin \left(\frac{4 x}{3}\right)}}{\sqrt{1+\sin \left(\frac{4 x}{3}\right)}-\sqrt{1-\sin \left(\frac{4 x}{3}\right)}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 48
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 49
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 50
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 51

Question 8.
(i) Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 60
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 52
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 53

(ii) Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 61
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 54
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 55

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 62
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 56
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 57

(iv) Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 63
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 58
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 59

(v) Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 64
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 65
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 66
= ex.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vi) Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 67
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 68
y = sin-1[sin(2x)∙cosα – cos(2x)∙sinα]
= sin[sin(2x – α)]
= 2x – α, where α is a constant
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)(2x – α)
= \(\frac{d}{d x}\)(2x) – \(\frac{d}{d x}\)(α)
= 2x∙log2 – 0
= 2x∙log2

Question 9.
Diffrentiate the following w. r. t. x.
(i) cos-1\(\left(\frac{1-x^{2}}{1+x^{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 69

(ii) tan-1\(\left(\frac{2 x}{1-x^{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 70

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) sin-1\(\left(\frac{1-x^{2}}{1+x^{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 71
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 72

(iv) sin-1(2x\(\sqrt{1-x^{2}}\))
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 73
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 74

(v) cos-1(3x – 4x3)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 75
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 76

(vi) cos-1\(\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 77
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 78

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vii) cos-1\(\left(\frac{1-9^{x}}{1+9^{x}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 79
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 80

(viii) sin-1\(\left(\frac{4^{x+\frac{1}{2}}}{1+2^{4 x}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 81
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 82

(ix) sin-1\(\left(\frac{1-25 x^{2}}{1+25 x^{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 83
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 84

(x) sin-1\(\left(\frac{1-x^{3}}{1+x^{3}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 85
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 86

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(xi) tan-1\(\left(\frac{2 x^{\frac{5}{2}}}{1-x^{5}}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 87
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 88

(xii) cot-1\(\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)\)
Solution:
Let y = cot-1\(\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 89
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 90

Question 10.
Diffrentiate the following w. r. t. x.
(i) tan-1\(\left(\frac{8 x}{1-15 x^{2}}\right)\)
Solution:
Let y = tan-1\(\left(\frac{8 x}{1-15 x^{2}}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 91

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) cot-1\(\left(\frac{1+35 x^{2}}{2 x}\right)\)
Solution:
Let y = cot-1\(\left(\frac{1+35 x^{2}}{2 x}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 92
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 93

(iii) tan-1\(\left(\frac{2 \sqrt{x}}{1+3 x}\right)\)
Solution:
Let y = tan-1\(\left(\frac{2 \sqrt{x}}{1+3 x}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 94

(iv) tan-1\(\left(\frac{2^{x+2}}{1-3\left(4^{x}\right)}\right)\)
Solution:
Let y = tan-1\(\left(\frac{2^{x+2}}{1-3\left(4^{x}\right)}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 95
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 96

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(v) tan-1\(\left(\frac{2^{x}}{1+2^{2 x+1}}\right)\)
Solution:
Let y = tan-1\(\left(\frac{2^{x}}{1+2^{2 x+1}}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 97

(vi) cot-1\(\left(\frac{a^{2}-6 x^{2}}{5 a x}\right)\)
Solution:
Let y = cot-1\(\left(\frac{a^{2}-6 x^{2}}{5 a x}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 98
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 99

(vii) tan-1\(\left(\frac{a+b \tan x}{b-a \tan x}\right)\)
Solution:
Let y = tan-1\(\left(\frac{a+b \tan x}{b-a \tan x}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 100

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(viii) tan-1\(\left(\frac{5-x}{6 x^{2}-5 x-3}\right)\)
Solution:
Let y = tan-1\(\left(\frac{5-x}{6 x^{2}-5 x-3}\right)\)
= tan-1\(\left[\frac{5-x}{1+\left(6 x^{2}-5 x-4\right)}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 101

(ix) cot-1\(\left(\frac{4-x-2 x^{2}}{3 x+2}\right)\)
Solution:
Let y = cot-1\(\left(\frac{4-x-2 x^{2}}{3 x+2}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 102
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 103

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 1 Differentiation Ex 1.1 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1

Question 1.
Differentiate the following w.r.t. x :
(i) (x3 – 2x – 1)5
Solution:
Method 1:
Let y = (x3 – 2x – 1)5
Put u = x3 – 2x – 1. Then y = u5
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 1
Method 2:
Let y = (x3 – 2x – 1)5
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 2

(ii) \(\left(2 x^{\frac{3}{2}}-3 x^{\frac{4}{3}}-5\right)^{\frac{5}{2}}\)
Solution:
Let y = \(\left(2 x^{\frac{3}{2}}-3 x^{\frac{4}{3}}-5\right)^{\frac{5}{2}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 3

(iii) \(\sqrt{x^{2}+4 x-7}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 4

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) \(\sqrt{x^{2}+\sqrt{x^{2}+1}}\)
Solution:
Let y = \(\sqrt{x^{2}+\sqrt{x^{2}+1}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 5
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 6

(v) \(\frac{3}{5 \sqrt[3]{\left(2 x^{2}-7 x-5\right)^{5}}}\)
Solution:
Let y = \(\frac{3}{5 \sqrt[3]{\left(2 x^{2}-7 x-5\right)^{5}}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 7

(vi) \(\left(\sqrt{3 x-5}-\frac{1}{\sqrt{3 x-5}}\right)^{5}\)
Solution:
Let y = \(\left(\sqrt{3 x-5}-\frac{1}{\sqrt{3 x-5}}\right)^{5}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 8
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 9

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 2.
Diffrentiate the following w.r.t. x
(i) cos(x2 + a2)
Solution:
Let y = cos(x2 + a2)
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)[cos(x2 + a2)]
= -sin(x2 + a2)∙\(\frac{d}{d x}\)x2 + a2)
= -sin(x2 + a2)∙(2x + 0)
= -2xsin(x2 + a2)

(ii) \(\sqrt{e^{(3 x+2)}+5}\)
Solution:
Let y = \(\sqrt{e^{(3 x+2)}+5}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 10

(iii) log[tan(\(\frac{x}{2}\))]
Solution:
Let y = log[tan(\(\frac{x}{2}\))]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 11

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) \(\sqrt{\tan \sqrt{x}}\)
Solution:
Let y = \(\sqrt{\tan \sqrt{x}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 12

(v) cot3[log (x3)]
Solution:
Let y = cot3[log (x3)]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 13

(vi) 5sin3x+ 3
Solution:
Let y = 5sin3x+ 3
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 14

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vii) cosec (\(\sqrt{\cos X}\))
Solution:
Let y = cosec (\(\sqrt{\cos X}\))
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 15

(viii) log[cos (x3 – 5)]
Solution:
Let y = log[cos (x3 – 5)]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 16

(ix) e3 sin2x – 2 cos2x
Solution:
Let y = e3 sin2x – 2 cos2x
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 17

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(x) cos2[log (x2+ 7)]
Solution:
Let y = cos2[log (x2+ 7)]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 18
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 19

(xi) tan[cos (sinx)]
Solution:
Let y = tan[cos (sinx)]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 20

(xii) sec[tan (x4 + 4)]
Solution:
Let y = sec[tan (x4 + 4)]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 21
= sec[tan(x4 + 4)]∙tan[tan(x4 + 4)]∙sec2(x4 + 4)(4x3 + 0)
= 4x3sec2(x4 + 4)∙sec[tan(x4 + 4)]∙tan[tan(x4 + 4)].

(xiii) elog[(logx)2 – logx2]
Solution:
Let y = elog[(logx)2 – logx2]
= (log x)2 – log x2 …[∵ elog x = x]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 22

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(xiv) sin\(\sqrt{\sin \sqrt{x}}\)
Solution:
Let y = sin\(\sqrt{\sin \sqrt{x}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 23

(xv) log[sec(ex2)]
Solution:
Let y = log[sec(ex2)]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 24

(xvi) loge2(logx)
Solution:
Let y = loge2(logx) = \(\frac{\log (\log x)}{\log e^{2}}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 25
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 26

(xvii) [log{log(logx)}]2
Solution:
let y = [log{log(logx)}]2
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 27

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(xviii) sin2x2 – cos2x2
Solution:
Let y = sin2x2 – cos2x2
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 28
= 2sinx2∙cosx2 × 2x + 2sinx2∙cosx2 × 2x
= 4x(2sinx2∙cosx2)
= 4xsin(2x2).

Question 3.
Diffrentiate the following w.r.t. x
(i) (x2 + 4x + 1)3 + (x3 – 5x – 2)4
Solution:
Let y = (x2 + 4x + 1)3 + (x3 – 5x – 2)4
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)[(x2 + 4x + 1)3 + (x3 – 5x – 2)4]
= \(\frac{d}{d x}\) = (x2 + 4x + 1)3 + \(\frac{d}{d x}\)(x3 – 5x – 2)4
= 3(x2 + 4x + 1)2∙\(\frac{d}{d x}\)(x2 + 4x + 1) + 4(x3 – 5x – 2)4∙\(\frac{d}{d x}\)(x3 – 5x – 2)
= 3(x2 + 4x + 1)3∙(2x + 4 × 1 + 0) + 4(x3 – 5x – 2)3∙(3x2 – 5 × 1 – 0)
= 6 (x + 2)(x2 + 4x + 1)2 + 4 (3x2 – 5)(x3 – 5x – 2)3.
(ii) (1 + 4x)5(3 + x − x2)8
Solution:
Let y = (1 + 4x)5(3 + x − x2)8
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 29
= 8 (1 + 4x)5 (3 + x – x2)7∙(0 + 1 – 2x) + 5 (1 + 4x)4 (3 + x – x2)8∙(0 + 4 × 1)
= 8 (1 – 2x)(1 + 4x)5(3 + x – x2)7 + 20(1 + 4x)4(3 + x – x2)8.

(iii) \(\frac{x}{\sqrt{7-3 x}}\)
Solution:
Let y = \(\frac{x}{\sqrt{7-3 x}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 30

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) \(\frac{\left(x^{3}-5\right)^{5}}{\left(x^{3}+3\right)^{3}}\)
Solution:
Let y = \(\frac{\left(x^{3}-5\right)^{5}}{\left(x^{3}+3\right)^{3}}\)
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\left[\frac{\left(x^{3}-5\right)^{5}}{\left(x^{3}+3\right)^{3}}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 31

(v) (1 + sin2x)2(1 + cos2x)3
Solution:
Let y = (1 + sin2x)2(1 + cos2x)3
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 32
= 3(1 + sin2x)2 (1 + cos2x)2∙[2cosx(-sinx)] + 2 (1 + sin2x)(1 + cos2x)3∙[2sinx-cosx]
= 3 (1 + sin2x)2 (1 + cos2x)2 (-sin 2x) + 2(1 + sin2x)(1 + cos2x)3(sin 2x)
= sin2x (1 + sin2x) (1 + cos2x)2 [-3(1 + sin2x) + 2(1 + cos2x)]
= sin2x (1 + sin2x)(1 + cos2x)2(-3 – 3sin2x + 2 + 2cos2x)
= sin2x (1 + sin2x)(1 + cos2x)2 [-1 – 3 sin2x + 2 (1 – sin2x)]
= sin 2x(1 + sin2x)(1 + cos2x)2 (-1 – 3 sin2x + 2 – 2 sin2x)
= sin2x (1 + sin2x)(1 + cos2x)2(1 – 5 sin2x).

(vi) \(\sqrt{\cos x}+\sqrt{\cos \sqrt{x}}\)
Solution:
Let y = \(\sqrt{\cos x}+\sqrt{\cos \sqrt{x}}\)
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}[\sqrt{\cos x}+\sqrt{\cos \sqrt{x}}]\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 33

(vii) log(sec 3x+ tan 3x)
Solution:
Let y = log(sec 3x+ tan 3x)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 34

(viii) \(\frac{1+\sin x^{\circ}}{1-\sin x^{\circ}}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 35
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 36

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ix) cot\(\left(\frac{\log x}{2}\right)\) – log\(\left(\frac{\cot x}{2}\right)\)
Solution:
Let y = cot\(\left(\frac{\log x}{2}\right)\) – log\(\left(\frac{\cot x}{2}\right)\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 37

(x) \(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 38
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 39

(xi) \(\frac{e^{\sqrt{x}}+1}{e^{\sqrt{x}}-1}\)
Solution:
let y = \(\frac{e^{\sqrt{x}}+1}{e^{\sqrt{x}}-1}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 40

(xii) log[tan3x·sin4x·(x2 + 7)7]
Solution:
Let y = log [tan3x·sin4x·(x2 + 7)7]
= log tan3x + log sin4x + log (x2 + 7)7
= 3 log tan x + 4 log sin x + 7 log (x2 + 7)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 41
= 6cosec2x + 4 cotx + \(\frac{14 x}{x^{2}+7}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(xiii) log\(\left(\sqrt{\frac{1-\cos 3 x}{1+\cos 3 x}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 42
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 43

(xiv) log\(\left(\sqrt{\left.\frac{1+\cos \left(\frac{5 x}{2}\right)}{1-\cos \left(\frac{5 x}{2}\right)}\right)}\right.\)
Solution:
Using log\(\left(\frac{a}{b}\right)\) = log a – log b
log ab = b log a
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 44
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 45
\(-\frac{5}{2}\)cosec\(\left(\frac{5 x}{2}\right)\)

(xv) log\(\left(\sqrt{\frac{1-\sin x}{1+\sin x}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 46
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 47
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 48

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(xvi) log\(\left[4^{2 x}\left(\frac{x^{2}+5}{\sqrt{2 x^{3}-4}}\right)^{\frac{3}{2}}\right]\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 49
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 50

(xvii) log\(\left[\frac{e^{x^{2}}(5-4 x)^{\frac{3}{2}}}{\sqrt[3]{7-6 x}}\right]\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 51
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 52

(xviii) log\(\left[\frac{a^{\cos x}}{\left(x^{2}-3\right)^{3} \log x}\right]\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 53

(xix) y= (25)log5(secx) − (16)log4(tanx)
Solution:
y = (25)log5(secx) − (16)log4(tanx)
= 52log5(secx) – 42log4(tanx)
= 5log5(sec5x) – 4log4(tan2x)
= sec2x – tan2x … [∵ = x]
∴ y = 1
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)(1) = 0

(xx) \(\frac{\left(x^{2}+2\right)^{4}}{\sqrt{x^{2}+5}}\)
Solution:
Let y = \(\frac{\left(x^{2}+2\right)^{4}}{\sqrt{x^{2}+5}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 54
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 55

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
A table of values of f, g, f ‘ and g’ is given
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 56
(i) If r(x) = f [g(x)] find r’ (2).
Solution:
r(x) = f[g(x)]
∴ r'(x) = \(\frac{d}{d x}\)f[g(x)]
= f'[g(x)]∙\(\frac{d}{d x}\)[g(x)]
= f'[g(x)∙[g'(x)]
∴ r'(2) = f'[g(2)]∙g'(2)
= f'(6)∙g'(2) … [∵ g(x) = 6, when x = 2]
= -4 × 4 … [From the table]
= -16.

(ii) If R(x) = g[3 + f(x)] find R’ (4).
Solution:
R(x) = g[3 + f(x)]
∴ R'(x) = \(\frac{d}{d x}\){g[3+f(x)]}
= g'[3 + f(x)]∙\(\frac{d}{d x}\)[3 + f(x)]
= g'[3 +f(x)]∙[0 + f'(x)]
= g'[3 + f(x)]∙f'(x)
∴ R'(4) = g'[3 + f(4)]∙f'(4)
= g'[3 + 3]∙f'(4) … [∵ f(x) = 3, when x = 4]
= g'(6)∙f'(4)
= 7 × 5 … [From the table]
= 35.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) If s(x) = f[9− f(x)] find s’ (4).
Solution:
s(x) = f[9− f(x)]
∴ s'(x) = \(\frac{d}{d x}\){f[9 – f(x)]}
= f'[9 – f(x)]∙\(\frac{d}{d x}\)[0 – f(x)]
= f'[9 – f(x)]∙[0 – f'(x)]
= -f'[9 – f(x)] – f'(x)
∴ s'(4) = -f'[9 – f(4)] – f'(4)
= -f'[9 – 3] – f'(4) … [∵ f(x) = 3, when x = 4]
= -f'(6) – f'(4)
= -(-4)(5) … [From the table]
= 20.

(iv) If S(x) = g[g(x)] find S’ (6)
Solution:
S(x) = g[g(x)]
∴ S'(x) = \(\frac{d}{d x}\)g[g(x)]
= g'[g(x)]∙\(\frac{d}{d x}\)[g(x)]
= g'[g(x)]∙g'(x)
∴ S ‘(6) = g'[g'(6)]∙g'(6)
= g'(2)∙g'(6) … [∵ g (x) = 2, when x = 6]
= 4 × 7 … [From the table]
= 28.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Assume that f ‘(3) = -1, g'(2) = 5, g(2) = 3 and y = f[g(x)] then \(\left[\frac{d y}{d x}\right]_{x=2}\) = ?
Solution:
y = f[g(x)]
∴ \(\frac{d y}{d x}\) = \(\frac{d}{d x}\){[g(x)]}
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 57

Question 6.
If h(x) = \(\sqrt{4 f(x)+3 g(x)}\), f(1) = 4, g(1) = 3, f ‘(1) = 3, g'(1) = 4 find h'(1).
Solution:
Given f(1) = 4, g(1) = 3, f ‘(1) = 3, g'(1) = 4 …..(1)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 58

Question 7.
Find the x co-ordinates of all the points on the curve y = sin 2x – 2 sin x, 0 ≤ x < 2π where \(\frac{d y}{d x}\) = 0.
Solution:
y = sin 2x – 2 sin x, 0 ≤ x < 2π
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 59
= cos2x × 2 – 2cosx
= 2 (2 cos2x – 1) – 2 cosx
= 4 cos2x – 2 – 2 cos x
= 4 cos2x – 2 cos x – 2
If \(\frac{d y}{d x}\) = 0, then 4 cos2x – 2 cos x – 2 = 0
∴ 4cos2x – 4cosx + 2cosx – 2 = 0
∴ 4 cosx (cosx – 1) + 2 (cosx – 1) = 0
∴ (cosx – 1)(4cosx + 2) = 0
∴ cosx – 1 = 0 or 4cosx + 2 = 0
∴ cos x = 1 or cos x = \(-\frac{1}{2}\)
∴ cos x = cos 0
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 60

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
Select the appropriate hint from the hint basket and fill up the blank spaces in the following paragraph. [Activity]
“Let f (x) = x2 + 5 and g(x) = ex + 3 then
f [g(x)] = _ _ _ _ _ _ _ _ and g [f(x)] =_ _ _ _ _ _ _ _.
Now f ‘(x) = _ _ _ _ _ _ _ _ and g'(x) = _ _ _ _ _ _ _ _.
The derivative off [g (x)] w. r. t. x in terms of f and g is _ _ _ _ _ _ _ _.
Therefore \(\frac{d}{d x}\)[f[g(x)]] = _ _ _ _ _ _ _ _ _ and [\(\frac{d}{d x}\)[f[g(x)]]]x = 0 = _ _ _ _ _ _ _ _ _ _ _.
The derivative of g[f(x)] w. r. t. x in terms of f and g is _ _ _ _ _ _ __ _ _ _ _.
Therefore \(\frac{d}{d x}\)[g[f(x)]] = _ _ _ _ _ _ _ _ _ and [\(\frac{d}{d x}\)[g[f(x)]]]x = 1 = _ _ _ _ _ _ _ _ _ _ _.”
Hint basket : { f ‘[g(x)]·g'(x), 2e2x + 6ex, 8, g'[f(x)]·f ‘(x), 2xex2 + 5, -2e6, e2x + 6ex + 14, ex2 + 5 + 3, 2x, ex}
Solution:
f[g(x)] = e2x + 6ex + 14
g[f(x)] = ex2 + 5 + 3
f'(x) = 2x, g’f(x) = ex
The derivative of f[g(x)] w.r.t. x in terms of and g is f'[g(x)]∙g'(x).
∴ \(\frac{d}{d x}\){f[g(x)]} = 2e2x + 6ex and \(\frac{d}{d x}\){f[g(x)]}x = 0 = 8
The derivative of g[f(x)] w.r.t. x in terms of f and g is g’f(x)]∙f'(x).
∴ \(\frac{d}{d x}\){g[(f(x)]} = 2xex2 + 5 and
\(\frac{d}{d x}\){g[(f(x)]}x = -1 = -2e6.

Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 7 Linear Programming Miscellaneous Exercise 7 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7

I) Select the appropriate alternatives for each of the following :
Question 1.
The value of objective function is maximum under linear constraints _______.
(A) at the centre of feasible region
(B) at (0, 0)
(C) at a vertex of feasible region
(D) the vertex which is of maximum distance from (0, 0)
Solution:
(C) at a vertex of feasible region

Question 2.
Which of the following is correct _______.
(A) every L.P.P. has an optimal solution
(B) a L.P.P. has unique optimal solution
(C) if L.P.P. has two optimal solutions then it has infinite number of optimal solutions
(D) the set of all feasible solution of L.P.P. may not be convex set
Solution:
(C) if L.P.P. has two optimal solutions then it has infinite number of optimal solutions

Question 3.
Objective function of L.P.P. is _______.
(A) a constraint
(B) a function to be maximized or minimized
(C) a relation between the decision variables
(D) equation of a straight line
Solution:
(B) a function to be maximized or minimized

Question 4.
The maximum value of z = 5x + 3y subjected to the constraints 3x + 5y ≤ 15, 5x + 2y ≤ 10, x, y≥ 0 is _______.
(A) 235
(B) \(\frac{235}{9}\)
(C) \(\frac{235}{19}\)
(D) \(\frac{235}{3}\)
Solution:
(C) \(\frac{235}{19}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
The maximum value of z = 10x + 6y subjected to the constraints 3x + y ≤ 12, 2x + 5y ≤ 34, x ≥ 0, y≥ 0. _______.
(A) 56
(B) 65
(C) 55
(D) 66
Solution:
(A) 56

Question 6.
The point at which the maximum value of x + y subject to the constraints x + 2y ≤ 70, 2x + y ≤ 95, x ≥ 0, y ≥ 0 is obtained at _______.
(A) (30, 25)
(B) (20, 35)
(C) (35, 20)
(D) (40, 15)
Solution:
(D) (40, 15)

Question 7.
Of all the points of the feasible region, the optimal value ofz obtained at the point lies _______.
(A) inside the feasible region
(B) at the boundary of the feasible region
(C) at vertex of feasible region
(D) outside the feasible region
Solution:
(C) at vertex of feasible region

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
Feasible region is the set of points which satisfy _______.
(A) the objective function
(B) all of the given constraints
(C) some of the given constraints
(D) only one constraint
Solution:
(B) all of the given constraints

Question 9.
Solution of L.P.P. to minimize z = 2x + 3y such that x ≥ 0, y ≥ 0, 1 ≤ x + 2y ≤ 10 is _______.
(A) x = 0, y = \(\frac{1}{2}\)
(B) x = \(\frac{1}{2}\), y = 0
(C) x = 1, y = 2
(D) x = \(\frac{1}{2}\), y = \(\frac{1}{2}\)
Solution:
(A) x = 0, y = \(\frac{1}{2}\)

Question 10.
The corner points of the feasible solution given by the inequation x + y ≤ 4, 2x + y ≤ 7, x ≥ 0, y ≥ 0 are _______.
(A) (0, 0), (4, 0), (7, 1), (0, 4)
(B) (0, 0), (\(\frac{7}{2}\), 0), (3, 1), (0, 4)
(C) (0, 0), (\(\frac{7}{2}\), 0), (3, 1), (0, 7)
(D) (0, 0), (4, 0), (3, 1), (0, 7)
Solution:
(B) (0, 0), (\(\frac{7}{2}\), 0), (3, 1), (0, 4)

Question 11.
The corner points of the feasible solution are (0, 0), (2, 0), (\(\frac{12}{7}\), \(\frac{3}{7}\)), (0, 1). Then z = 7x + y is maximum at _______.
(A) (0, 0)
(B) (2, 0)
(C) (\(\frac{12}{7}\), \(\frac{3}{7}\))
(D) (0, 1)
Solution:
(B) (2, 0)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 12.
If the corner points of the feasible solution are (0, 0), (3, 0), (2, 1) and (0, \(\frac{7}{3}\) ), the maximum value of z = 4x + 5y is _______.
(A) 12
(B) 13
(C) 35
(D) 0
Solution:
(B) 13

Question 13.
If the corner points of the feasible solution are (0, 10), (2, 2) and (4, 0) then the point of minimum z = 3x + 2y is _______.
(A) (2, 2)
(B) (0, 10)
(C) (4, 0)
(D) (3 ,4)
Solution:
(A) (2, 2)

Question 14.
The half plane represented by 3x + 2y < 8 contains the point _______.
(A) (1, \(\frac{5}{2}\))
(B) (2, 1)
(C) (0, 0)
(D) (5, 1)
Solution:
(C) (0, 0)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 15.
The half plane represented by 4x + 3y > 14 contains the point _______.
(A) (0, 0)
(B) (2, 2)
(C) (3, 4)
(D) (1, 1)
Solution:
(C) (3, 4)

II) Solve the following :
Question 1.
Solve each of the following inequations graphically using X Y plane.
(i) 4x – 18 ≥ 0
Solution:
Consider the line whose equation is 4x – 18 ≥ 0 i.e. x = \(\frac{18}{4}=\frac{9}{2}\) = 4.5
This represents a line parallel to Y-axis passing3through the point (4.5, 0)
Draw the line x = 4.5
To find the solution set we have to check the position of the origin (0, 0).
When x = 0, 4x – 18 = 4 × 0 – 18 = -18 > 0
∴ the coordinates of the origin does not satisfy thegiven inequality.
∴ the solution set consists of the line x = 4.5 and the non-origin side of the line which is shaded in the graph.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 1

(ii) -11x – 55 ≤ 0
Solution:
Consider the line whose equation is -11x – 55 ≤ 0 i.e. x = -5
This represents a line parallel to Y-axis passing3through the point (-5, 0)
Draw the line x = – 5
To find the solution set we have to check the position of the origin (0, 0).
When x = 0, -11x – 55 = – 11(0) – 55 = -55 > 0
∴ the coordinates of the origin does not satisfy thegiven inequality.
∴ the solution set consists of the line x = -5 and the non-origin side of the line which is shaded in the graph.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 2

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) 5y – 12 ≥ 0
Solution:
Consider the line whose equation is 5y – 12 ≥ 0 i.e. y = \(\frac{12}{5}\)
This represents a line parallel to X-axis passing through the point (o, \(\frac{12}{5}\))
Draw the line y = \(\frac{12}{5}\)
To find the solution set, we have to check the position of the origin (0, 0).
When y = 0, 5y – 12 = 5(0) – 12 = -12 > 0
∴ the coordinates of the origin does not satisfy the given inequality.
∴ the solution set consists of the line y = \(\frac{12}{5}\) and the non-origin side of the line which is shaded in the graph.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 3

(iv) y ≤ -3.5
Solution:
Consider the line whose equation is y ≤ – 3.5 i.e. y = – 3.5
This represents a line parallel to X-axis passing3through the point (0, -3.5)
Draw the line y = – 3.5
To find the solution set, we have to check the position of the origin (0, 0).
∴ the coordinates of the origin does not satisfy the given inequality.
∴ the solution set consists of the line y = – 3.5 and the non-origin side of the line which is shaded in the graph.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 4

Question 2.
Sketch the graph of each of following inequations in XOY co-ordinate system.
(i) x ≥ 5y
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 5

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) x + y≤ 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 6

(iii) 2y – 5x ≥ 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 7

(iv) |x + 5| ≤ y
Solution:
|x + 5| ≤ y
∴ -y ≤ x + 5 ≤ y
∴ -y ≤ x + 5 and x + 5 ≤ y
∴ x + y ≥ -5 and x – y ≤ -5
First we draw the lines AB and AC whose equations are
x + y= -5 and x – y = -5 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 8
The graph of |x + 5| ≤ y is as below:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 9

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
Find graphical solution for each of the following system of linear inequation.
(i) 2x + y ≥ 2, x – y ≤ 1
Solution:
First we draw the lines AB and AC whose equations are 2x + y = 2 and x – y = 1 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 10
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 11
The solution set of the given system of inequalities is shaded in the graph.

(ii) x + 2y ≥ 4, 2x – y ≤ 6
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 52

(iii) 3x + 4y ≤ 12, x – 2y ≥ 2, y ≥ -1
Solution:
First we draw the lines AB, CD and ED whose equations are 3x + 4y = 12, x – 2y = 2 and y = -1 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 12
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 13
The solution set of given system of inequation is shaded in the graph.

Question 4.
Find feasible solution for each of the following system of linear inequations graphically.
(i) 2x + 3y ≤ 12, 2x + y ≤ 8, x ≥ 0, y ≥ 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 53
The feasible solution is OCPBO.

(ii) 3x + 4y ≥ 12, 4x + 7y ≤ 28, x ≥ 0, y ≥ 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 54
The feasible solution is ACDBA.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Solve each of the following L.P.P.
(i) Maximize z = 5x1 + 6x2 subject to 2x1 + 3x2 ≤ 18, 2x1 + x2 ≤ 12, x1 ≥ 0, x2 ≥ 0
Solution:
First we draw the lines AB and CD whose equations are 2x1 + 3x2 = 18 and 2x1 + x2 = 12 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 14
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 15
The feasible region is OCPBO which is shaded in the graph. The vertices of the feasible region are O(0, 0), C(6, 0), P and B (0,6).
P is the point of intersection of the lines
2x1 + 3x2 = 18 ….(1)
and 2x1 + x2 = 12
On subtracting, we get
2x2 = 6 ∴ x2 = 3
Substituting x2 = 3 in (2), we get
2x1 + 3 = 12 ∴ x2 = 9
∴ P is (\(\frac{9}{2}\), 3)
The values of objective function z = 5x1 + 6x2 at these vertices are
z(O) = 5(0) + 6(0) = 0 + 0 = 0
z(C) = 5(6) + 6(0) = 30 + 0 = 30
z(P) = 5(\(\frac{9}{2}\)) + 6(3) = \(\frac{45}{2}\) + 18 = \(\frac{45+36}{2}=\frac{81}{2}\) = 40.5
z(B) = 5(0) + 6(3) = 0 + 18 = 18
Maximum value of z is 40.5 when x1 = 9/2, y = 3.

(ii) Maximize z = 4x + 2y subject to 3x + y ≥ 27, x + y ≥ 21
Question is modified.
Maximize z = 4x + 2y subject to 3x + y ≤ 27, x + y ≤ 21, x ≥ 0, y ≥ 0
Solution:
First we draw the lines AB and CD whose equations are 3x + y = 27 and x + y = 21 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 16
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 17
The feasible region is OAPDO which is shaded region in the graph. The vertices of the feasible region are 0(0, 0), A (9, 0), P and D(0, 21). P is the point of intersection of lines
3x + y = 27 … (1)
and x + y = 21 … (2)
On substracting, we get 2x = 6 ∴ x = 3
Substituting x = 3 in equation (1), we get
9 + y = 27 ∴ y = 18
∴ P = (3, 18)
The values of the objective function z = 4x + 2y at these vertices are
z(O) = 4(0) + 2(0) = 0 + 0 = 0
z(a) = 4(9) + 2(0) = 36 + 0 = 36
z(P) = 4(3) + 2(18) = 12 + 36 = 48
z (D) = 4(0) + 2(21) = 0 + 42 = 42
∴ 2 has minimum value 48 when x = 3, y = 18.

(iii) Maximize z = 6x + 10y subject to 3x + 5y ≤ 10, 5x + 3y ≤ 15, x ≥ 0, y ≥ 0
Solution:
First we draw the lines AB and CD whose equations are 3x + 5y = 10 and 5x + 3y = 15 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 18
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 19
The feasible region is OCPBD which is shaded in the graph.
The vertices of the feasible region are 0(0, 0), C(3, 0), P and B (0, 2).
P is the point of intersection of the lines
3x + 5y = 10 … (1)
and 5x + 3y = 15 … (2)
Multiplying equation (1) by 5 and equation (2) by 3, we get
15x + 25y = 50
15x + 9y = 45
On subtracting, we get
16y = 5 ∴ y = \(\frac{5}{16}\)
Substituting y = \(\frac{5}{16}\) in equation (1), we get
3x + \(\frac{25}{16}\) = 10 ∴ 3x = 10 – \(\frac{25}{16}=\frac{135}{16}\)
∴ x = \(\frac{45}{16}\) ∴ P ≡ \(\left(\frac{45}{16}, \frac{5}{16}\right)\)
The values of objective function z = 6x + 10y at these vertices are
z(O) = 6(0) + 10(0) = 0 + 0 = 0
z(C) = 6(3) + 10(0) = 18 + 0 = 18
z(P) = 6\(\left(\frac{45}{16}\right)\) + 10\(\left(\frac{5}{10}\right)\) = \(\frac{270}{16}+\frac{50}{16}=\frac{320}{16}\) = 20
z(B) = 6(0) + 10(2) = 0 + 20 = 20
The maximum value of z is 20 at P\(\left(\frac{45}{16}, \frac{5}{16}\right)\) and B (0, 2) two consecutive vertices.
∴ z has maximum value 20 at each point of line segment PB where B is (0, 2) and P is \(\left(\frac{45}{16}, \frac{5}{16}\right)\).
Hence, there are infinite number of optimum solutions.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) Maximize z = 2x + 3y subject to x – y ≥ 3, x ≥ 0, y ≥ 0
Solution:
First we draw the lines AB whose equation is x – y = 3.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 20
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 21
The feasible region is shaded which is unbounded.
Therefore, the value of objective function can be in- j creased indefinitely. Hence, this LPP has unbounded solution.

Question 6.
Solve each of the following L.P.P.
(i) Maximize z = 4x1 + 3x2 subject to 3x1 + x2 ≤ 15, 3x1 + 4x2 ≤ 24, x1 ≥ 0, x2 ≥ 0
Solution:
We first draw the lines AB and CD whose equations are 3x1 + x2 = 15 and 3x1 + 4x2 = 24 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 22
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 23
The feasible region is OAPDO which is shaded in the graph.
The Vertices of the feasible region are 0(0, 0), A(5, 0), P and D(0, 6).
P is the point of intersection of lines.
3x1 + 4x2 = 24 … (1)
and 3x1 + x2 = 15 … (2)
On subtracting, we get
3x2 = 9 ∴ x2 = 3
Substituting x2 = 3 in (2), we get
3x1 + 3 = 15
∴ 3x1 = 12 ∴ x1 = 4 ∴ P is (4, 3)
The values of objective function z = 4x1 + 3x2 at these vertices are
z(O) = 4(0) + 3(0) = 0 + 0 = 0
z(a) = 4(5) + 3(0) = 20 + 0 = 20
z(P) = 4(4) + 3(3) = 16 + 9 = 25
z(D) = 4(0) + 3(6) = 0 + 18 = 18
∴ z has maximum value 25 when x = 4 and y = 3.

(ii) Maximize z = 60x + 50y subject to x + 2y ≤ 40, 3x + 2y ≤ 60, x ≥ 0, y ≥ 0
Solution:
We first draw the lines AB and CD whose equations are x + 2y = 40 and 3x + 2y = 60 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 24
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 25
The feasible region is OCPBO which is shaded in the graph.
The vertices of the feasible region are O (0, 0), C (20, 0), P and B (0, 20).
P is the point of intersection of the lines.
3x + 2y = 60 … (1)
and x + 2y = 40 … (2)
On subtracting, we get
2x = 20 ∴ x = 10
Substituting x = 10 in (2), we get
10 + 2y = 40
∴ 2y = 30 ∴ y = 15 ∴ P is (10, 15)
The values of the objective function z = 60x + 50y at these vertices are
z(O) = 60(0) + 50(0) = 0 + 0 = 0
z(C) = 60(20) + 50(0) = 1200 + 0 = 1200
z(P) = 60(10) + 50(15) = 600 + 750 = 1350
z(B) = 60(0) + 50(20) = 0 + 1000 = 1000 .
∴ z has maximum value 1350 at x = 10, y = 15.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) Maximize z = 4x + 2y subject to 3x + y ≥ 27, x + y ≥ 21, x + 2y ≥ 30; x ≥ 0, y ≥ 0
Solution:
We first draw the lines AB, CD and EF whose equations are 3x + y = 27, x + y = 21, x + 2y = 30 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 26
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 27
The feasible region is XEPQBY which is shaded in the graph.
The vertices of the feasible region are E (30,0), P, Q and B (0,27).
P is the point of intersection of the lines
x + 2y = 30 … (1)
and x + y = 21 … (2)
On subtracting, we get
y = 9
Substituting y = 9 in (2), we get
x + 9 = 21 ∴ x = 12
∴ P is (12, 9)
Q is the point of intersection of the lines
x + y = 21 … (2)
and 3x + y = 27 … (3)
On subtracting, we get
2x = 6 ∴ x = 3
Substituting x = 3 in (2), we get
3 + y = 21 ∴ y = 18
∴ Q is (3, 18).
The values of the objective function z = 4x + 2y at these vertices are
z(E) = 4(30) + 2(0) = 120 + 0 = 120
z(P) = 4(12) + 2(9) = 48 + 18 = 66
z(Q) = 4(3) + 2(18) = 12 + 36 = 48
z(B) = 4(0) + 2(27) = 0 + 54 = 54
∴ z has minimum value 48, when x = 3 and y = 18.

Question 7.
A carpenter makes chairs and tables. Profits are ₹140/- per chair and ₹ 210/- per table. Both products are processed on three machines : Assembling, Finishing and Polishing. The time required for each product in hours and availability of each machine is given by following table:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 28
Formulate the above problem as L.P.P. Solve it graphically to get maximum profit.
Solution:
Let the number of chairs and tables made by the carpenter be x and y respectively.
The profits are ₹ 140 per chair and ₹ 210 per table.
∴ total profit z = ₹ (140x + 210y) This is the objective function which is to be maximized.
The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 29
From the table, the constraints are
3x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60.
The number of chairs and tables cannot be negative.
∴ x ≥ 0, y ≥ 0
Hence, the mathematical formulation of given LPP is :
Maximize z = 140x + 210y, subject to
3x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60, x ≥ 0, y ≥ 0.
We first draw the lines AB, CD and EF whose equations are 3x + 3y = 36, 5x + 2y = 50 and 2x + 6y = 60 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 30
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 31
The feasible region is OCPQFO which is shaded in the graph.
The vertices of the feasible region are O (0, 0), C (10, 0), P, Q and F (0, 10).
P is the point of intersection of the lines
5x + 2y = 50 … (1)
and 3x + 3y = 36 … (2)
Multiplying equation (1) by 3 and equation (2) by 2, we get
15x + 6y = 150
6x + 6y = 72
On subtracting, we get 26
9x = 78 ∴ x = \(\frac{26}{3}\)
Substituting x = \(\frac{26}{3}\) in (2), we get
3\(\left(\frac{26}{3}\right)\) + 3y = 36
3y = 1o y = \(\frac{10}{3}\)
Q is the point of intersection of the lines
3x + 3y = 36 … (2)
and 2x + 6y = 60 … (3)
Multiplying equation (2) by 2, we get
6x + 6 y = 72
Subtracting equation (3) from this equation, we get
4x = 12 ∴ x = 3
Substituting x = 3 in (2), we get
3(3) + 3y = 36
∴ 3y = 27 ∴ y = 9
∴ Q is (3, 9).
Hence, the vertices of the feasible region are O (0, 0),
C(10, 0), P\(\left(\frac{26}{3}, \frac{10}{3}\right)\), Q(3, 9) and F(0, 10).
The values of the objective function z = 140x + 210y at these vertices are
z(O) = 140(0) + 210(0) = 0 + 0 = 0
z(C) = 140 (10) + 210(0) = 1400 + 0 = 1400
z(P) = 140\(\left(\frac{26}{3}\right)\) + 210\(\left(\frac{10}{3}\right)\) = \(\frac{3640+2100}{3}=\frac{5740}{3}\) = 1913.33
z(Q) = 140(3) + 210(9) = 420 + 1890 = 2310
z(F) = 140(0) + 210(10) = 0 + 2100 = 2100
∴ z has maximum value 2310 when x = 3 and y = 9 Hence, the carpenter should make 3 chairs and 9 tables to get the maximum profit of ₹ 2310.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
A company manufactures bicycles and tricycles, each of which must be processed through two machines A and B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on Machine A and 3 hours on Machine B. Manufacturing a tricycles requires 4 hours on Machine A and 10 hours on Machine B. If profits are ₹180/- for a bicycle and ₹220/- for a tricycle. Determine the number of bicycles and tricycles that should be manufactured in order to maximize the profit.
Solution:
Let x bicycles and y tricycles are to be manu¬factured. Then the total profit is z = ₹ (180x + 220y)
This is a linear function which is to be maximized. Hence, it is the objective function. The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 32
From the table, the constraints are
6x + 4y ≤ 120, 3x +10y ≤ 180
Also, the number of bicycles and tricycles cannot be i negative.
∴ x ≥ 0, y ≥ 0.
Hence, the mathematical formulation of given LPP is :
Maximize z = 180x + 220y, subject to
6x + 4y ≤ 120, 3x + 10y ≤ 180, x ≥ 0, y ≥ 0.
First we draw the lines AB and CD whose equations are 6x + 4y = 120 and 3x + 10y = 180 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 33
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 34
The feasible region is OAPDO which is shaded in the graph.
The vertices of the feasible region are O(0, 0), A(20, 0) P and D(0, 18).
P is the point of intersection of the lines
3x + 10y = 180 … (1)
and 6x + 4y = 120 … (2)
Multiplying equation (1) by 2, we get
6x + 20y = 360
Subtracting equation (2) from this equation, we get
16y = 240 ∴ y = 15
∴ from (1), 3x + 10(15) = 180
∴ 3x = 30 ∴ x = 10
∴ P = (10, 15)
The values of the objective function z = 180x + 220y at these vertices are
z(O) = 180(0) + 220(0) = 0 + 0 = 0
z(a) = 180(20) + 220(0) = 3600 + 0 = 3600
z(P) = 180(10) + 220(15) = 1800 + 3300 = 5100
z(D) = 180(0) +220(18) = 3960
∴ the maximum value of z is 5100 at the point (10, 15).
Hence, 10 bicycles and 15 tricycles should be manufactured in order to have the maximum profit of ₹ 5100.

Question 9.
A factory produced two types of chemicals A and B. The following table gives the units of ingredients P and Q (per kg) of chemicals A and B as well as minimum requirements of P and Q and also cost per kg. chemicals A and B :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 35
Find the number of units of chemicals A and B should be produced so as to minimize the cost.
Solution:
Let the factory produce x units of chemical A and y units of chemical B. Then the total cost is z = ₹ (4x + 6y). This is the objective function which is to be minimized.
From the given table, the constraints are
x + 2y ≥ 80, 3x + y ≥ 75.
Also, the number of units x and y of chemicals A and B cannot be negative.
∴ x ≥ 0, y ≥ 0.
∴ the mathematical formulation of given LPP is
Minimize z = 4x + 6y, subject to
x + 2y ≥ 80, 3x + y ≥ 75, x ≥ 0, y ≥ 0.
First we draw the lines AB and CD whose equations are x + 2y = 80 and 3x + y = 75 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 36
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 37
The feasible region is shaded in the graph.
The vertices of the feasible region are A (80, 0), P and D (0, 75).
P is the point of intersection of the lines
x + 2y = 80 … (1)
and 3x + y = 75 … (2)
Multiplying equation (2) by 2, we get
6x + 2 y = 150
Subtracting equation (1) from this equation, we get
5x = 70 ∴ x = 14
∴ from (2), 3(14) + y = 75
∴ 42 + y = 75 ∴ y = 33
∴ P = (14, 33)
The values of the objective function z = 4x + 6y at these vertices are
z(a) = 4(80)+ 6(0) =320 + 0 = 320
z(P) = 4(14)+ 6(33) = 56+ 198 = 254
z(D) = 4(0) + 6(75) = 0 + 450 = 450
∴ the minimum value of z is 254 at the point (14, 33).
Hence, 14 units of chemical A and 33 units of chemical B are to be produced in order to have the j minimum cost of ₹ 254.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 10.
A company produces mixers and food processors. Profit on selling one mixer and one food processor is ₹ 2,000/- and ₹ 3,000/- respectively. Both the products are processed through three Machines A, B, C. The time required in hours by each product and total time available in hours per week on each machine are as follows :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 38
How many mixers and food processors should be produced to maximize the profit?
Solution:
Let the company produce x mixers and y food processors.
Then the total profit is z = ₹ (2000x + 3000y)
This is the objective function which is to be maximized. From the given table in the problem, the constraints are 3x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60
Also, the number of mixers and food processors cannot be negative,
∴ x ≥ 0, y ≥ 0.
∴ the mathematical formulation of given LPP is
Maximize z = 2000x + 3000y, subject to 3x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤60, x ≥ 0, y ≥ 0.
First we draw the lines AB, CD and EF whose equations are 3x + 3y = 36, 5x + 2y = 50 and 2x + 6y = 60 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 39
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 40
The feasible region is OCPQFO which is shaded in the graph.
The vertices of the feasible region are O(0, 0), C(10, 0), P, Q and F(0,10).
P is the point of intersection of the lines
3x + 3y = 36 … (1)
and 5x + 2y = 50 … (2)
Multiplying equation (1) by 2 and equation (2) by 3, we get
6x + 6y = 72
15x + 6y = 150
On subtracting, we get
9x = 78
∴ x = \(\frac{26}{3}\)
∴ from (1), 3\(\left(\frac{26}{3}\right)\) + 3y = 36
∴ 3y = 10
∴ y = \(\frac{10}{3}\)
∴ P = \(\left(\frac{26}{3}, \frac{10}{3}\right)\)
Q is the point of intersection of the lines
3x + 3y = 36 … (1)
and 2x + 6y = 60 … (3)
Multiplying equation (1) by 2, we get
6x + 6y = 72
Subtracting equation (3), from this equation, we get
4x = 12
∴ x = 3
∴ from (1), 3(3) + 3y = 36
∴ 3y = 27
∴ y = 9
∴ Q = (3, 9)
The values of the objective function z = 2000x + 3000y at these vertices are
z(O) = 2000(0) + 3000(0) = 0 + 0 = 0
z(C) = 2000(10) + 3000(0) = 20000 + 0 = 20000
z(P) = 2000\(\left(\frac{26}{3}\right)\) + 3000\(\left(\frac{10}{3}\right)\) = \(\frac{52000}{3}+\frac{30000}{3}=\frac{82000}{3}\)
z(Q) = 2000(3) + 3000(9) = 6000 + 27000 = 33000
z(F) = 2000(0) + 3000(10) = 30000 + 0 = 30000
∴ the maximum value of z is 33000 at the point (3, 9).
Hence, 3 mixers and 9 food processors should be produced in order to get the maximum profit of ₹ 33,000.

Question 11.
A chemical company produces a chemical containing three basic elements A, B, C so that it has at least 16 liters of A, 24 liters of B and 18 liters of C. This chemical is made by mixing two compounds I and II. Each unit of compound I has 4 liters of A, 12 liters of B, 2 liters of C. Each unit of compound II has 2 liters of A, 2 liters of B and 6 liters of C. The cost per unit of compound I is ₹ 800/- and that of compound II is ₹ 640/-. Formulate the problem as L.P.P. and solve it to minimize the cost.
Solution:
Let the company buy x units of compound I and y units of compound II.
Then the total cost is z = ₹(800x + 640y).
This is the objective function which is to be minimized.
The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 41
From the table, the constraints are
4x + 2y ≥ 16, 12x + 2y ≥ 24, 2x + 6y ≥ 18.
Also, the number of units of compound I and compound II cannot be negative.
∴ x ≥ 0, y ≥ 0.
∴ the mathematical formulation of given LPP is
Minimize z = 800x + 640y, subject to 4x + 2y ≥ 16, 12x + 2y ≥ 24, 2x + 6y ≥ 18, x ≥ 0, y ≥ 0.
First we draw the lines AB, CD and EF whose equations are 4x + 2y = 16, 12x + 2y = 24 and 2x + 6y = 18
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 42
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 43
The feasible region is shaded in the graph.
The vertices of the feasible region are E(9, 0), P, Q, and D(0, 12).
P is the point of intersection of the lines
2x + 6y = 18 … (1)
and 4x + 2y = 16 … (2)
Multiplying equation (1) by 2, we get 4x + 12y = 36
Subtracting equation (2) from this equation, we get
10y = 20
∴ y = 2
∴ from (1), 2x + 6(2) = 18
∴ 2x = 6
∴ x = 3
∴ P = (3, 2)
Q is the point of intersection of the lines
12x + 2y = 24 … (3)
and 4x + 2y = 16 … (2)
On subtracting, we get
8x = 8 ∴ x = 1
∴ from (2), 4(1) + 2y = 16
∴ 2y = 12 ∴ y = 6
∴ Q = (1, 6)
The values of the objective function z = 800x + 640y at these vertices are
z(E) = 800(9)+ 640(0) =7200 + 0 = 7200
z(P) = 800(3) + 640(2) = 2400 + 1280 = 3680
z(Q) = 800(1) + 640(6) =800 + 3840 =4640
z(D) = 800(0) + 640(12) = 0 + 7680 = 7680
∴ the minimum value of z is 3680 at the point (3, 2).
Hence, the company should buy 3 units of compound I and 2 units of compound II to have the minimum cost of ₹ 3680.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 12.
A person makes two types of gift items A and B requires the services of a cutter and a finisher. Gift item A requires 4 hours of cutter’s time and 2 hours of finisher’s time. B requires 2 hours of cutter’s time and 4 hours of finisher’s time. The cutter and finisher have 208 hours and 152 hours available times respectively every month. The profit of one gift item of type A is ₹ 75/- and on gift item B is ₹ 125/-. Assuming that the person can sell all the gift items produced, determine how many gift items of each type should he make every month to obtain the best returns?
Solution:
Let x: number of gift item A
y: number of gift item B
As numbers of the items are never negative
x ≥ 0; y ≥ 0
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 44
Total time required for the cutter = 4x + 2y
Maximum available time 208 hours
∴ 4x+ 2y ≤ 208
Total time required for the finisher 2x +4y
Maximum available time 152 hours
2x + 4y ≤ 152
Total Profit is 75x + 125y
∴ L.P.P. of the above problem is
Minimize z = 75x + 125y
Subject to 4x+ 2y ≤ 208
2x + 4y ≤ 152
x ≥ 0; y ≥ 0
Graphical solution
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 45
Corner points
Now, Z at
x = (75x + 125y)
O(0, 0) = 75 × 0 + 125 × 0 = 0
A(52,0) = 75 × 52 + 125 × 0 = 3900
B(44, 16) = 75 × 44 + 125 × 16 = 5300
C(0, 38) = 75 × 0 + 125 × 38 = 4750
A person should make 44 items of type A and 16 Uems of type Band his returns are ₹ 5,300.

Question 13.
A firm manufactures two products A and B on which profit earned per unit ₹3/- and ₹4/- respectively. Each product is processed on two machines M1 and M2. The product A requires one minute of processing time on M1 and two minute of processing time on M2, B requires one minute of processing time on M1 and one minute of processing time on M2. Machine M1 is available for use for 450 minutes while M2 is available for 600 minutes during any working day. Find the number of units of product A and B to be manufactured to get the maximum profit.
Solution:
Let the firm manufactures x units of product
A and y units of product B.
The profit earned per unit of A is ₹3 and B is ₹ 4.
Hence, the total profit is z = ₹ (3x + 4y).
This is the linear function which is to be maximized.
Hence, it is the objective function.
The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 46
From the table, the constraints are
x + y ≤ 450, 2x + y ≤ 600
Since, the number of gift items cannot be negative, x ≥ 0, y ≥ o.
∴ the mathematical formulation of LPP is,
Maximize z = 3x + 4y, subject to x + y ≤ 450, 2x + y ≤ 600, x ≥ 0, y ≥ 0.
Now, we draw the lines AB and CD whose equations are x + y = 450 and 2x + y — 600 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 47
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 48
The feasible region is OCPBO which is shaded in the graph.
The vertices of the feasible region are O(0, 0), C(300, 0), P and B (0, 450).
P is the point of intersection of the lines
2x + y = 600 … (1)
and x + y = 450 … (2)
On subtracting, we get
∴ x = 150
Substituting x = 150 in equation (2), we get
150 + y = 450
∴ y = 300
∴ P = (150, 300)
The values of the objective function z = 3x + 4y at these vertices are
z(O) = 3(0) + 4(0) = 0 + 0 = 0
z(C) = 3(300) + 4(0) = 900 + 0 = 900
z(P) = 3(150) + 4(300) = 450 + 1200 = 1650
z(B) = 3(0) + 4(450) = 0 + 1800 = 1800
∴ z has the maximum value 1800 when x = 0 and y = 450 Hence, the firm gets maximum profit of ₹ 1800 if it manufactures 450 units of product B and no unit product A.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 14.
A firm manufacturing two types of electrical items A and B, can make a profit of ₹ 20/- per unit of A and ₹ 30/- per unit of B. Both A and B make use of two essential components a motor and a transformer. Each unit of A requires 3 motors and 2 transformers and each units of B requires 2 motors and 4 transformers. The total supply of components per month is restricted to 210 motors and 300 transformers. How many units of A and B should the manufacture per month to maximize profit? How much is the maximum profit?
Solution:
Let the firm manufactures x units of item A and y units of item B.
Firm can make profit of ₹ 20 per unit of A and ₹ 30 per unit of B.
Hence, the total profit is z = ₹ (20x + 30y).
This is the objective function which is to be maximized. The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 49
From the table, the constraints are
3x + 2y ≤ 210, 2x + 4y ≤ 300
Since, number of items cannot be negative, x ≥ 0, y ≥ 0.
Hence, the mathematical formulation of given LPP is :
Maximize z = 20x + 30y, subject to 3x + 2y ≤ 210, 2x + 4y ≤ 300, x ≥ 0, y ≥ 0.
We draw the lines AB and CD whose equations are 3x + 2y = 210 and 2x + 4y = 300 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 50
The feasible region is OAPDO which is shaded in the graph.
The vertices of the feasible region are O (0, 0), A (70, 0), P and D (0, 75).
P is the point of intersection of the lines
2x + 4y = 300 … (1)
and 3x + 2y = 210 … (2)
Multiplying equation (2) by 2, we get
6x + 4y = 420
Subtracting equation (1) from this equation, we get
∴ 4x = 120 ∴ x = 30
Substituting x = 30 in (1), we get
2(30) + 4y = 300
∴ 4y = 240 ∴ y = 60
∴ P is (30, 60)
The values of the objective function z = 20x + 30y at these vertices are
z(O) = 20(0) + 30(0) = 0 + 0 = 0
z(A) = 20(70) + 30(0) = 1400 + 0 = 1400
z(P) = 20(30) + 30(60) = 600 + 1800 = 2400
z(D) = 20(0) + 30(75) = 0 + 2250 = 2250
∴ z has the maximum value 2400 when x = 30 and y = 60. Hence, the firm should manufactured 30 units of item A and 60 units of item B to get the maximum profit of ₹ 2400.

Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 7 Linear Programming Ex 7.2 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2

I) Find the feasible solution of the following inequations graphically.
Question 1.
3x + 2y ≤ 18, 2x + y ≤ 10, x ≥ 0, y ≥ 0
Solution:
First we draw the lines AB and CD whose equations are 3x + 2y = 18 and 2x + y = 10 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 1
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 2
The feasible solution is OCPBO which is shaded in the graph.

Question 2.
2x + 3y ≤ 6, x + y ≥ 2, x ≥ 0, y ≥ 0
Solution:
First we draw the lines AB and CB whose equations are 2x + 3y = 6 and x + y = 2 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 3
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 4
The feasible solution is ∆ABC which is shaded in the graph.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
3x + 4y ≥ 12, 4x + 7y ≤ 28, y ≥ 1, x ≥ 0
Solution:
First we draw the lines AB, CD and EF whose equations are 3x + 4 y = 12, 4x + 7y = 28 and y = 1 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 5
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 6
The feasible solution is PQDBP. which is shaded in the graph.

Question 4.
x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0.
Solution:
First we draw the lines AB, CD and EF whose equations are x + 4y = 24, 3x + y = 21 and x + y = 9 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 7
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 8
The feasible solution is OCPQBO. which is shaded in the graph.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
0 ≤ x ≤ 3, 0 ≤ y ≤ 3, x + y ≤ 5, 2x + y ≥ 4
Solution:
First we draw the lines AB, CD, EF and GH whose equations are x + y = 5, 2x + y = 4, x = 3 and y = 3 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 9
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 10
The feasible solution is CEPQRC. which is shaded in the graph.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 6.
x – 2y ≤ 2, x + y ≥ 3, -2x + y ≤ 4, x ≥ 0, y ≥ 0
Solution:
First we draw the lines AB, CD and EF whose equations are x – 2y = 2, x + y = 3 and -2x + y = 4 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 11
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 12
The feasible solution is shaded in the graph.

Question 7.
A company produces two types of articles A and B which requires silver and gold. Each unit of A requires 3 gm of silver and 1 gm of gold, while each unit of B requires 2 gm of silver and 2 gm of gold. The company has 6 gm of silver and 4 gm of gold. Construct the inequations and find the feasible solution graphically.
Solution:
Let the company produces x units of article A and y units of article B.
The given data can be tabulated as:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 13
Inequations are :
x + 2y ≤ 4 and 3x + 2y ≤ 6
x and y are number of items, x ≥ 0, y ≥ 0
First we draw the lines AB and CD whose equations are x + 2y = 4 and 3x + 2y = 6 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 14
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 15
The feasible solution is OCPBO. which is shaded in the graph.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
A furniture dealer deals in tables and chairs. He has Rs.1,50,000 to invest and a space to store at most 60 pieces. A table costs him Rs.1500 and a chair Rs.750. Construct the inequations and find the feasible solution.
Question is modified
A furniture dealer deals in tables and chairs. He has ₹ 15,000 to invest and a space to store at most 60 pieces. A table costs him ₹ 150 and a chair ₹ 750. Construct the inequations and find the feasible solution.
Solution:
Let x be the number of tables and y be the number of chairs. Then x ≥ 0, y ≥ 0.
The dealer has a space to store at most 60 pieces.
∴ x + y ≤ 60
Since, the cost of each table is ₹ 150 and that of each chair is ₹ 750, the total cost of x tables and y chairs is 150x + 750y. Since the dealer has ₹ 15,000 to invest, 150x + 750y ≤ 15,000
Hence the system of inequations are
x + y ≤ 60, 150x + 750y ≤ 15000, x ≥ 0, y ≥ 0.
First we draw the lines AB and CD whose equations are x + y = 60 and 150x + 750y = 15,000 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 16
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.2 17
The feasible solution is OAPDO. which is shaded in the graph.