Practice Set 2.2 Geometry 10th Standard Maths Part 2 Chapter 2 Pythagoras Theorem Solutions Maharashtra Board

10th Standard Maths 2 Practice Set 2.2 Chapter 2 Pythagoras Theorem Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 2.2 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 2 Pythagoras Theorem.

Class 10 Maths Part 2 Practice Set 2.2 Chapter 2 Pythagoras Theorem Questions With Answers Maharashtra Board

Question 1.
In ∆PQR, point S is the midpoint of side QR. If PQ = 11, PR = 17, PS = 13, find QR.
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.2 1
Solution:
In ∆PQR, point S is the midpoint of side QR. [Given]
∴ seg PS is the median.
∴ PQ2 + PR2 = 2 PS2 + 2 SR2 [Apollonius theorem]
∴ 112 + 172 = 2 (13)2 + 2 SR2
∴ 121 + 289 = 2 (169)+ 2 SR2
∴ 410 = 338+ 2 SR2
∴ 2 SR2 = 410 – 338
∴ 2 SR2 = 72
∴ SR2 = \(\frac { 72 }{ 2 } \) = 36
∴ SR = \(\sqrt{36}\) [Taking square root of both sides]
= 6 units Now, QR = 2 SR [S is the midpoint of QR]
= 2 × 6
∴ QR = 12 units

Question 2.
In ∆ABC, AB = 10, AC = 7, BC = 9, then find the length of the median drawn from point C to side AB.
Solution:
Let CD be the median drawn from the vertex C to side AB.
BD = \(\frac { 1 }{ 2 } \) AB [D is the midpoint of AB]
= \(\frac { 1 }{ 2 } \) × 10 = 5 units
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.2 2
In ∆ABC, seg CD is the median. [Given]
∴ AC2 + BC2 = 2 CD2 + 2 BD2 [Apollonius theorem]
∴ 72 + 92 = 2 CD2 + 2 (5)2
∴ 49 + 81 = 2 CD2 + 2 (25)
∴ 130 = 2 CD2 + 50
∴ 2 CD2 = 130 – 50
∴ 2 CD2 = 80
∴ CD2 = \(\frac { 80 }{ 2 } \) = 40
∴ CD = \(\sqrt { 40 }\) [Taking square root of both sides]
= 2 \(\sqrt { 10 }\) units
∴ The length of the median drawn from point C to side AB is 2 \(\sqrt { 10 }\) units.

Question 3.
In the adjoining figure, seg PS is the median of APQR and PT ⊥ QR. Prove that,
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.2 3
i. PR2 = PS2 + QR × ST + (\(\frac { QR }{ 2 } \))2
ii. PQ2 = PS2 – QR × ST + (\(\frac { QR }{ 2 } \))2
Solution:
i. QS = SR = \(\frac { 1 }{ 2 } \) QR (i) [S is the midpoint of side QR]
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.2 4
∴ In ∆PSR, ∠PSR is an obtuse angle [Given]
and PT ⊥ SR [Given, Q-S-R]
∴ PR2 = SR2 +PS2 + 2 SR × ST (ii) [Application of Pythagoras theorem]
∴ PR2 = (\(\frac { 1 }{ 2 } \) QR)2 + PS2 + 2 (\(\frac { 1 }{ 2 } \) QR) × ST [From (i) and (ii)]
∴ PR2 = (\(\frac { QR }{ 2 } \))2 + PS2 + QR × ST
∴ PR2 = PS2 + QR × ST + (\(\frac { QR }{ 2 } \))2

ii. In.∆PQS, ∠PSQ is an acute angle and [Given]
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.2 5
PT ⊥QS [Given, Q-S-R]
∴ PQ2 = QS2 + PS2 – 2 QS × ST (iii) [Application of Pythagoras theorem]
∴ PR2 = (\(\frac { 1 }{ 2 } \) QR)2 + PS2 – 2 (\(\frac { 1 }{ 2 } \) QR) × ST [From (i) and (iii)]
∴ PR2 = (\(\frac { QR }{ 2 } \))2 + PS2 – QR × ST
∴ PR2 = PS2 – QR × ST + (\(\frac { QR }{ 2 } \))2

Question 4.
In ∆ABC, point M is the midpoint of side BC. If AB2 + AC2 = 290 cm, AM = 8 cm, find BC.
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.2 6
Solution:
In ∆ABC, point M is the midpoint of side BC. [Given]
∴ seg AM is the median.
∴ AB2 + AC2 = 2 AM2 + 2 MC2 [Apollonius theorem]
∴ 290 = 2 (8)2 + 2 MC2
∴ 145 = 64 + MC2 [Dividing both sides by 2]
∴ MC2 = 145 – 64
∴ MC2 = 81
∴ MC = \(\sqrt{81}\) [Taking square root of both sides]
MC = 9 cm
Now, BC = 2 MC [M is the midpoint of BC]
= 2 × 9
∴ BC = 18 cm

Question 5.
In the adjoining figure, point T is in the interior of rectangle PQRS. Prove that, TS2 + TQ2 = TP2 + TR2. (As shown in the figure, draw seg AB || side SR and A – T – B)
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.2
Given: ꠸PQRS is a rectangle.
Point T is in the interior of ꠸PQRS.
To prove: TS2 + TQ2 = TP2 + TR2
Construction: Draw seg AB || side SR such that A – T – B.
Solution:
Proof:
꠸PQRS is a rectangle. [Given]
∴ PS = QR (i) [Opposite sides of a rectangle]
In ꠸ASRB,
∠S = ∠R = 90° (ii) [Angles of rectangle PQRS]
side AB || side SR [Construction]
Also ∠A = ∠S = 90° [Interior angle theorem, from (ii)]
∠B = ∠R = 90°
∴ ∠A = ∠B = ∠S = ∠R = 90° (iii)
∴ ꠸ASRB is a rectangle.
∴ AS = BR (iv) [Opposite sides of a rectanglel
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.2
In ∆PTS, ∠PST is an acute angle
and seg AT ⊥ side PS [From (iii)]
∴ TP2 = PS2 + TS2 – 2 PS.AS (v) [Application of Pythagoras theorem]
In ∆TQR., ∠TRQ is an acute angle
and seg BT ⊥ side QR [From (iii)]
∴ TQ2 = RQ2 + TR2 – 2 RQ.BR (vi) [Application of pythagoras theorem]
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.2
TP2 – TQ2 = PS2 + TS2 – 2PS.AS
-RQ2 – TR2 + 2RQ.BR [Subtracting (vi) from (v)]
∴ TP2 – TQ2 = TS2 – TR2 + PS2
– RQ2 -2 PS.AS +2 RQ.BR
∴ TP2 – TQ2 = TS2 – TR2 + PS2
– PS2 – 2 PS.BR + 2PS.BR [From (i) and (iv)]
∴ TP2 – TQ2 = TS2 – TR2
∴ TS2 + TQ2 = TP2 + TR2

Question 1.
In ∆ABC, ∠C is an acute angle, seg AD Iseg BC. Prove that: AB2 = BC2 + A2 – 2 BC × DC. (Textbook pg. no. 44)
Given: ∠C is an acute angle, seg AD ⊥ seg BC.
To prove: AB2 = BC2 + AC2 – 2BC × DC
Solution:
Proof:
∴ LetAB = c, AC = b, AD = p,
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.2 9
∴ BC = a, DC = x
BD + DC = BC [B – D – C]
∴ BD = BC – DC
∴ BD = a – x
In ∆ABD, ∠D = 90° [Given]
AB2 = BD2 + AD2 [Pythagoras theorem]
∴ c2 = (a – x)2 + [P2] (i)
∴ c2 = a2 – 2ax + x2 + [P2]
In ∆ADC, ∠D = 90° [Given]
AC2 = AD2 + CD2 [Pythagoras theorem]
∴ b2 = p2 + [X2]
∴ p2 = b2 – [X2] (ii)
∴ c2 = a2 – 2ax + x2 + b2 – x2 [Substituting (ii) in (i)]
∴ c2 = a2 + b2 – 2ax
∴ AB2 = BC2 + AC2 – 2 BC × DC

Question 2.
In ∆ABC, ∠ACB is an obtuse angle, seg AD ⊥ seg BC. Prove that: AB2 = BC2 + AC2 + 2 BC × CD. (Textbook pg. no. 40 and 4.1)
Given: ∠ACB is an obtuse angle, seg AD ⊥ seg BC.
To prove: AB2 = BC2 + AC2 + 2BC × CD
Solution:
Proof:
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.2 10
Let AD = p, AC = b, AB = c,
BC = a, DC = x
BD = BC + DC [B – C – D]
∴ BD = a + x
In ∆ADB, ∠D = 90° [Given]
AB2 = BD2 + AD2 [Pythagoras theorem]
∴ c2 = (a + x)2 + p2 (i)
∴ c2 = a2 + 2ax + x2 + p2
Also, in ∆ADC, ∠D = 90° [Given]
AC2 = CD2 + AD2 [Pythagoras theorem]
∴ b2 = x2 + p2
∴ p2 = b2 – x2 (ii)
∴ c2 = a2 + 2ax + x2 + b2 – x2 [Substituting (ii) in (i)]
∴ c2 = a2 + b2 + 2ax
∴ AB2 = BC2 + AC2 + 2 BC × CD

Question 3.
In ∆ABC, if M is the midpoint of side BC and seg AM ⊥seg BC, then prove that
AB2 + AC2 = 2 AM2 + 2 BM2. (Textbook pg, no. 41)
Given: In ∆ABC, M is the midpoint of side BC and seg AM ⊥ seg BC.
To prove: AB2 + AC2 = 2 AM2 + 2 BM2
Solution:
Proof:
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.2
In ∆AMB, ∠M = 90° [segAM ⊥ segBC]
∴ AB2 = AM2 + BM2 (i) [Pythagoras theorem]
Also, in ∆AMC, ∠M = 90° [seg AM ⊥ seg BC]
∴ AC2 = AM2 + MC2 (ii) [Pythagoras theorem]
∴ AB2 + AC2 = AM2 + BM2 + AM2 + MC2 [Adding (i) and (ii)]
∴ AB2 + AC2 = 2 AM2 + BM2 + BM2 [∵ BM = MC (M is the midpoint of BC)]
∴ AB2 + AC2 = 2 AM2 + 2 BM2

Maharashtra State Board Class 10 Maths Solutions Part 2

Practice Set 2.1 Geometry 10th Standard Maths Part 2 Chapter 2 Pythagoras Theorem Solutions Maharashtra Board

10th Standard Maths 2 Practice Set 2.1 Chapter 2 Pythagoras Theorem Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 2.1 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 2 Pythagoras Theorem.

Class 10 Maths Part 2 Practice Set 2.1 Chapter 2 Pythagoras Theorem Questions With Answers Maharashtra Board

Question 1.
Identify, with reason, which of the following are Pythagorean triplets.
i. (3,5,4)
ii. (4,9,12)
iii. (5,12,13)
iv. (24,70,74)
v. (10,24,27)
vi. (11,60,61)
Solution:
i. Here, 52 = 25
32 + 42 = 9 + 16 = 25
∴ 52 = 32 + 42
The square of the largest number is equal to the sum of the squares of the other two numbers.
∴ (3,5,4) is a Pythagorean triplet.

ii. Here, 122 = 144
42 + 92= 16 + 81 =97
∴ 122 ≠ 42 + 92
The square of the largest number is not equal to the sum of the squares of the other two numbers.
∴ (4,9,12) is not a Pythagorean triplet.

iii. Here, 132 = 169
52 + 122 = 25 + 144 = 169
∴ 132 = 52 + 122
The square of the largest number is equal to the sum of the squares of the other two numbers.
∴ (5,12,13) is a Pythagorean triplet.

iv. Here, 742 = 5476
242 + 702 = 576 + 4900 = 5476
∴ 742 = 242 + 702
The square of the largest number is equal to the sum of the squares of the other two numbers.
∴ (24, 70,74) is a Pythagorean triplet.

v. Here, 272 = 729
102 + 242 = 100 + 576 = 676
∴ 272 ≠ 102 + 242
The square of the largest number is not equal to the sum of the squares of the other two numbers.
∴ (10,24,27) is not a Pythagorean triplet.

vi. Here, 612 = 3721
112 + 602 = 121 + 3600 = 3721
∴ 612 = 112 + 602
The square of the largest number is equal to the sum of the squares of the other two numbers.
∴ (11,60,61) is a Pythagorean triplet.

Question 2.
In the adjoining figure, ∠MNP = 90°, seg NQ ⊥ seg MP,MQ = 9, QP = 4, find NQ.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 25
Solution:
In ∆MNP, ∠MNP = 90° and [Given]
seg NQ ⊥ seg MP
NQ2 = MQ × QP [Theorem of geometric mean]
∴ NQ = \(\sqrt { MQ\times QP }\) [Taking square root of both sides]
= \(\sqrt { 9\times 4 } \)
= 3 × 2
∴NQ = 6 units

Question 3.
In the adjoining figure, ∠QPR = 90°, seg PM ⊥ seg QR and Q – M – R, PM = 10, QM = 8, find QR.
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.1 2
Solution:
In ∆PQR, ∠QPR = 90° and [Given]
seg PM ⊥ seg QR
∴ PM2 = OM × MR [Theorem of geometric mean]
∴ 102 = 8 × MR
∴ MR = \(\frac { 100 }{ 8 } \)
= 12.5
Now, QR = QM + MR [Q – M – R]
= 8 + 12.5
∴ QR = 20.5 units

Question 4.
See adjoining figure. Find RP and PS using the information given in ∆PSR.
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.1 3
Solution:
In ∆PSR, ∠S = 90°, ∠P = 30° [Given]
∴ ∠R = 60° [Remaining angle of a triangle]
∴ ∆PSR is a 30° – 60° – 90° triangle.
RS = \(\frac { 1 }{ 2 } \) RP [Side opposite to 30°]
∴6 = \(\frac { 1 }{ 2 } \) RP
∴ RP = 6 × 2 = 12 units
Also, PS = \(\frac{\sqrt{3}}{2}\) RP [Side opposite to 60°]
= \(\frac{\sqrt{3}}{2}\) × 12
= \(6 \sqrt{3}\) units
∴ RP = 12 units, PS = 6 \(\sqrt { 3 }\) units

Question 5.
For finding AB and BC with the help of information given in the adjoining figure, complete the following activity.
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.1 4
Solution:
AB = BC [Given]
∴ ∠BAC = ∠BCA [Isosceles triangle theorem]
Let ∠BAC = ∠BCA = x (i)
In ∆ABC, ∠A + ∠B + ∠C = 180° [Sum of the measures of the angles of a triangle is 180°]
∴ x + 90° + x = 180° [From (i)]
∴ 2x = 90°
∴ x = \(\frac { 90° }{ 2 } \) [From (i)]
∴ x = 45°
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.1

Question 6.
Find the side and perimeter of a square whose diagonal is 10 cm.
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.1
Solution:
Let ꠸ABCD be the given square.
l(diagonal AC) = 10 cm
Let the side of the square be ‘x’ cm.
In ∆ABC,
∠B = 90° [Angle of a square]
∴ AC2 = AB2 + BC2 [Pythagoras theorem]
∴ 102 = x2 + x2
∴ 100 = 2x2
∴ x2 = \(\frac { 100 }{ 2 } \)
∴x2 = 50
∴ x = \(\sqrt { 50 }\) [Taking square root of both sides]
= \(=\sqrt{25 \times 2}=5 \sqrt{2}\)
∴side of square is 5\(\sqrt { 2 }\) cm.
= 4 × 5 \(\sqrt { 2 }\)
∴ Perimeter of square = 20 \(\sqrt { 2 }\) cm

Question 7.
In the adjoining figure, ∠DFE = 90°, FG ⊥ ED. If GD = 8, FG = 12, find
i. EG
ii. FD, and
iii. EF
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.1 6
Solution:
i. In ∆DEF, ∠DFE = 90° and FG ⊥ ED [Given]
∴ FG2 = GD × EG [Theorem of geometric mean]
∴ 122 = 8 × EG .
∴ EG = \(\frac { 144 }{ 8 } \)
∴ EG = 18 units

ii. In ∆FGD, ∠FGD = 90° [Given]
∴ FD2 = FG2 + GD2 [Pythagoras theorem]
= 122 + 82 = 144 + 64
= 208
∴ FD = \(\sqrt { 208 }\) [Taking square root of both sides]
∴ FD = 4 \(\sqrt { 13 }\) units

iii. In ∆EGF, ∠EGF = 90° [Given]
∴ EF2 = EG2 + FG2 [Pythagoras theorem]
= 182 + 122 = 324 + 144
= 468
∴ EF = \(\sqrt { 468 }\) [Taking square root of both sides]
∴ EF = 6 \(\sqrt { 13 }\) units

Question 8.
Find the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.1 7
Solution:
Let ꠸ABCD be the given rectangle.
AB = 12 cm, BC 35 cm
In ∆ABC, ∠B = 90° [Angle of a rectangle]
∴ AC2 = AB2 + BC2 [Pythagoras theorem]
= 122 + 352
= 144 + 1225
= 1369
∴ AC = \(\sqrt { 1369 }\) [Taking square root of both sides]
= 37 cm
∴ The diagonal of the rectangle is 37 cm.

Question 9.
In the adjoining figure, M is the midpoint of QR. ∠PRQ = 90°.
Prove that, PQ2 = 4 PM2 – 3 PR2.
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.1 8
Solution:
Proof:
In ∆PQR, ∠PRQ = 90° [Given]
PQ2 = PR2 + QR2 (i) [Pythagoras theorem]
RM = \(\frac { 1 }{ 2 } \) QR [M is the midpoint of QR]
∴ 2RM = QR (ii)
∴ PQ2 = PR2 + (2RM)2 [From (i) and (ii)]
∴ PQ2 = PR2 + 4RM2 (iii)
Now, in ∆PRM, ∠PRM = 90° [Given]
∴ PM2 = PR2 + RM2 [Pythagoras theorem]
∴ RM2 = PM2 – PR2 (iv)
∴ PQ2 = PR2 + 4 (PM2 – PR2) [From (iii) and (iv)]
∴ PQ2 = PR2 + 4 PM2 – 4 PR2
∴ PQ2 = 4 PM2 – 3 PR2

Question 10.
Walls of two buildings on either side of a street are parallel to each other. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building at the height of 4 m. On turning the ladder over to the other side of the street, its top touches the window of the other building at a height 4.2 m. Find the width of the street.
Solution:
Let AC and CE represent the ladder of length 5.8 m, and A and E represent windows of the buildings on the opposite sides of the street. BD is the width of the street.
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.1 9
AB = 4 m and ED = 4.2 m
In ∆ABC, ∠B = 90° [Given]
AC2 = AB2 + BC2 [Pythagoras theorem]
∴ 5.82 = 42 + BC2
∴ 5.82 – 42 = BC2
∴ (5.8 – 4) (5.8 + 4) = BC2
∴ 1.8 × 9.8 = BC2
Maharashtra Board Class 10 Maths Solutions Chapter 2 Pythagoras Theorem Practice Set 2.1

CE2 = CD2 + DE2 [Pythagoras theorem]
∴ 5.82 = CD2 + 4.22
∴ 5.82 – 4.22 = CD2
∴ (5.8 – 4.2) (5.8 + 4.2) = CD2
∴ 1.6 × 10 = CD2
∴ CD2 = 16
∴ CD = 4m (ii) [Taking square root of both sides]
Now, BD = BC + CD [B – C – D]
= 4.2 + 4 [From (i) and (ii)]
= 8.2 m
∴ The width of the street is 8.2 metres.

Question 1.
Verify that (3,4,5), (5,12,13), (8,15,17), (24,25,7) are Pythagorean triplets. (Textbook pg. no. 30)
Solution:
i. Here, 52 = 25
32 + 42 = 9 + 16 = 25
∴ 52 = 32 + 42
The square of the largest number is equal to the sum of the squares of the other two numbers.
∴ 3,4,5 is a Pythagorean triplet.

ii. Here, 132 = 169
52 + 122 = 25 + 144 = 169
∴ 132 = 52 + 122
The square of the largest number is equal to the sum of the squares of the other two numbers.
∴ 5,12,13 is a Pythagorean triplet.

iii. Here, 172 = 289
82 + 152 = 64 + 225 = 289
∴ 172 = 82 + 152
The square of the largest number is equal to the sum of the squares of the other two numbers.
∴ 8,15,17 is a Pythagorean triplet.

iv. Here, 252 = 625
72 + 242 = 49 + 576 = 625
∴ 252 = 72 + 242
The square of the largest number is equal to the sum of the squares of the other two numbers.
∴ 24,25, 7 is a Pythagorean triplet.

Question 2.
Assign different values to a and b and obtain 5 Pythagorean triplets. (Textbook pg. no. 31)
Solution:
i. Let a = 2, b = 1
a2 + b2 = 22 + 12 = 4 + 1 = 5
a2 – b2 = 22 – 12 = 4 – 1 = 3
2ab = 2 × 2 × 1 = 4
∴ (5, 3, 4) is a Pythagorean triplet.

ii. Let a = 4,b = 3
a2 + b2 = 42 + 32 = 16 + 9 = 25
a2 – b2 = 42 – 32 = 16 – 9 = 7
2ab = 2 × 4 × 3 = 24
∴ (25, 7, 24) is a Pythagorean triplet.

iii. Let a = 5, b = 2
a2 + b2 = 52 + 22 = 25 + 4 = 29
a2 – b2 = 52 – 22 = 25 – 4 = 21
2ab = 2 × 5 × 2 = 20
∴ (29, 21, 20) is a Pythagorean triplet.

iv. Let a = 4,b = 1
a2 + b2 = 42 + 12 = 16 + 1 = 17
a2 – b2 = 42 – 12 = 16 – 1 = 15
2ab = 2 × 4 × 1 = 8
∴ (17, 15, 8) is a Pythagorean triplet.

v. Let a = 9, b = 7
a2 + b2 = 92 + 72 = 81 + 49 = 130
a2 – b2 = 92 – 72 = 81 – 49 = 32
2ab = 2 × 9 × 7 = 126
∴ (130,32,126) is a Pythagorean triplet.

Note: Numbers in Pythagorean triplet can be written in any order.

Maharashtra State Board Class 10 Maths Solutions Part 2

Problem Set 1 Geometry 10th Standard Maths Part 2 Chapter 1 Similarity Solutions Maharashtra Board

10th Standard Maths 2 Problem Set 1 Chapter 1 Similarity Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Problem Set 1 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 6 Statistics.

Class 10 Maths Part 2 Problem Set 1 Chapter 1 Similarity Questions With Answers Maharashtra Board

Question 1.
Select the appropriate alternative.
i. In ∆ABC and ∆PQR, in a one to one correspondence \(\frac { AB }{ QR } \) = \(\frac { BC }{ PR } \) = \(\frac { CA }{ PQ } \), then
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 1
(A) ∆PQR – ∆ABC
(B) ∆PQR – ∆CAB
(C) ∆CBA – ∆PQR
(D) ∆BCA – ∆PQR
Answer:
(B)

ii. If in ∆DEF and ∆PQR, ∠D ≅ ∠Q, ∠R ≅ ∠E, then which of the following statements is false?
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 2
(A) \(\frac { EF }{ PR } \) = \(\frac { DF }{ PQ } \)
(B) \(\frac { DE }{ PQ } \) = \(\frac { EF }{ RP } \)
(C) \(\frac { DE }{ QR } \) = \(\frac { DF }{ PQ } \)
(D) \(\frac { EF }{ RP } \) = \(\frac { DE }{ QR } \)
Answer:
∆DEF ~ ∆QRP … [AA test of similarity]
∴ \(\frac { DE }{ QR } \) = \(\frac { EF }{ RP } \) = \(\frac { DF }{ PQ } \) …[Corresponding sides of similar triangles]
(B)

iii. In ∆ABC and ∆DEF, ∠B = ∠E, ∠F = ∠C and AB = 3 DE, then which of the statements regarding the two triangles is true?
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 3
(A) The triangles are not congruent and not similar.
(B) The triangles are similar but not congruent.
(C) The triangles are congruent and similar.
(D) None of the statements above is true.
Answer:
(B)

iv. ∆ABC and ∆DEF are equilateral triangles, A(∆ABC) : A(∆DEF) = 1 : 2. If AB = 4, then what is length of DE?
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 4
(A) 2√2
(B) 4
(C) 8
(D) 4√2
Answer:
Refer Q. 6 Practice Set 1.4
(D)

v. In the adjoining figure, seg XY || seg BC, then which of the following statements is true?
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 5
(A) \(\frac { AB }{ AC } \) = \(\frac { AX }{ AY } \)
(B) \(\frac { AX }{ XB } \) = \(\frac { AY }{ AC } \)
(C) \(\frac { AX }{ YC } \) = \(\frac { AY }{ XB } \)
(D) \(\frac { AB }{ YC } \) = \(\frac { AC }{ XB } \)
Answer:
∆ABC ~ ∆AXY … [AA test of similarity]
∴ \(\frac { AB }{ AX } \) = \(\frac { AC }{ AY } \) …[Corresponding sides of similar triangles]
∴ \(\frac { AB }{ AC } \) = \(\frac { AX }{ AY } \) …[Altemendo]
(A)

Question 2.
In ∆ABC, B-D-C and BD = 7, BC = 20, then find following ratios.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 6
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 7
Draw AE ⊥ BC, B – E – C.
BC = BD + DC [B – D – C]
∴ 20 = 7 + DC
∴ DC = 20 – 7 = 13

i. ∆ABD and ∆ADC have same height AE.
\(\frac{\mathrm{A}(\Delta \mathrm{ABD})}{\mathrm{A}(\Delta \mathrm{ADC})}=\frac{\mathrm{BD}}{\mathrm{DC}}\) [Triangles having equal height]
∴ \(\frac{A(\Delta A B D)}{A(\Delta A D C)}=\frac{7}{13}\)

ii. ∆ABD and ∆ABC have same height AE.
\(\frac{\mathrm{A}(\Delta \mathrm{ABD})}{\mathrm{A}(\Delta \mathrm{ABC})}=\frac{\mathrm{BD}}{\mathrm{BC}}\) [Triangles having equal height]
∴ \(\frac{A(\Delta A B D)}{A(\Delta A B C)}=\frac{7}{20}\)

iii. ∆ADC and ∆ABC have same height AE.
\(\frac{A(\Delta A D C)}{A(\Delta A B C)}=\frac{D C}{B C}\) [Triangles having equal height]
∴ \(\frac{A(\Delta A D C)}{A(\Delta A B C)}=\frac{13}{20}\)

Question 3.
Ratio of areas of two triangles with equal heights is 2 : 3. If base of the smaller triangle is 6 cm, then what is the corresponding base of the bigger triangle?
Solution:
Let A1 and A2 be the areas of two triangles. Let b1 and b2 be their corresponding bases.
A1 : A2 = 2 : 3
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 8

∴ The corresponding base of the bigger triangle is 9 cm.

Question 4.
In the adjoining figure, ∠ABC = ∠DCB = 90°, AB = 6, DC = 8, then \(\frac{\mathbf{A}(\Delta \mathbf{A} \mathbf{B} \mathbf{C})}{\mathbf{A}(\mathbf{\Delta D C B})}=?\)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 9
Solution:
∆ABC and ∆DCB have same base BC.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 10

Question 5.
In the adjoining figure, PM = 10 cm, A(∆PQS) = 100 sq. cm,
A(∆QRS) = 110 sq. cm, then find NR.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 11
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 12
∴ NR = 11 cm

Question 6.
∆MNT ~ ∆QRS. Length of altitude drawn from point T is 5 and length of altitude drawn from point S is 9. Find the ratio \(\frac{A(\Delta M N T)}{A(\Delta Q R S)}\)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 13
Solution:
∆MNT- ∆QRS [Given]
∴ ∠M ≅ ∠Q (i) [Corresponding angles of similar triangles]
In ∆MLT and ∆QPS,
∠M ≅ ∠Q [From (i)]
∠MLT ≅ ∠QPS [Each angle is of measure 90°]
∴ ∆MLT ~ ∆QPS [AA test of similarity]
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 14

Question 7.
In the adjoining figure, A – D – C and B – E – C. seg DE || side AB. If AD = 5, DC = 3, BC = 6.4, then find BE.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 15
Solution:
In ∆ABC,
seg DE || side AB [Given]
∴ \(\frac { DC }{ AD } \) = \(\frac { EC }{ BE } \) [Basic proportionality theorem]
∴ \(\frac { 3 }{ 4 } \) = \(\frac { 6.4-x }{ x } \)
∴ 3x = 5 (6.4 – x)
∴ 3x = 32 – 5x
∴ 8x = 32
∴ x = \(\frac { 32 }{ 8 } \) =4
∴ BE = 4 units

Question 8.
In the adjoining figure, seg PA, seg QB, seg RC and seg SD are perpendicular to line AD. AB = 60, BC = 70, CD = 80, PS = 280, then find PQ, QR and RS.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 16
Solution:
seg PA, seg QB, seg RC and seg SD are perpendicular to line AD. [Given]
∴ seg PA || seg QB || seg RC || seg SD (i) [Lines perpendicular to the same line are parallel to each other]
Let the value of PQ be x and that of QR be y.
PS = PQ + QS [P – Q – S]
∴ 280 – x + QS
∴ QS = 280 – x (ii)
Now, seg PA || seg QB || seg SD [From (i)]
∴ \(\frac { AB }{ BD } \) = \(\frac { PQ }{ QS } \) [Property of three parallel lines and their transversals]
∴\(\frac { AB }{ BC+CD } \) = \(\frac { PQ }{ QS } \) [B – C – D]
∴ \(\frac { 60 }{ 70+80 } \) = \(\frac { x }{ 280-x } \)
∴ \(\frac { 60 }{ 150 } \) = \(\frac { x }{ 280-x } \)
∴ \(\frac { 2 }{ 5 } \) = \(\frac { x }{ 280-x } \)
∴ 5x = 2 (280 – x)
∴ 5x = 560 – 2x
∴ 7x = 560
∴ x = \(\frac { 560 }{ 7 } \) = 80
∴ PQ = 80 units
QS = 280 – x [From (ii)]
= 280 – 80
= 200 units
But, QS = QR + RS [Q – R – S]
∴ 200 = y + RS
∴ RS = 200 – y (ii)
Now, seg QB || seg RC || seg SD [From (i)]
∴\(\frac { BC }{ CD } \) = \(\frac { QR }{ RS } \) [Property of three parallel lines and their transversals]
∴ \(\frac { 70 }{ 80 } \) = \(\frac { y }{ 200-y } \)
∴ \(\frac { 7 }{ 8 } \) = \(\frac { y }{ 200-y } \)
∴ 8y = 7(200 – y)
∴ 8y = 1400 – 7y
∴ 15y = 1400
∴ y = \(\frac { 1400 }{ 15 } \) = \(\frac { 280 }{ 3 } \)
∴ QR = \(\frac { 280 }{ 3 } \) units
RS = 200 – 7 [From (iii)]
= 200 – \(\frac { 280 }{ 3 } \)
= \(\frac{200 \times 3-280}{3}\)
= \(\frac { 600-280 }{ 3 } \)
∴ RS = \(\frac { 320 }{ 3 } \) units

Question 9.
In ∆PQR, seg PM is a median. Angle bisectors of ∠PMQ and ∠PMR intersect side PQ and side PR in points X and Y respectively. Prove that XY || QR
Complete the proof by filling in the boxes.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 17
Solution:
Proof:
In ∆PMQ, ray MX is bisector of ∠PMQ.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 18

Question 10.
In the adjoining figure, bisectors of ∠B and ∠C of ∆ABC intersect each other in point X. Line AX intersects side BC in point Y.
AB = 5, AC = 4, BC = 6, then find \(\frac { AX }{ XY } \).
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 19
Solution:
Let the value of BY be x.
BC = BY + YC [B – Y – C]
∴ 6 = x + YC
∴ YC = 6 – x
in ∆BAY, ray BX bisects ∠B. [Given]
∴ \(\frac { AB }{ BY } \) = \(\frac { AX }{ XY } \) (i) [Property of angle bisector of a triangle]
Also, in ∆CAY, ray CX bisects ∠C. [Given]
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 20

Question 11.
In ꠸ABCD, seg AD || seg BC. Diagonal AC and diagonal BD intersect each other in point P. Then show that \(\frac { AP }{ PD } \) = \(\frac { PC }{ BP } \)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 21
Solution:
proof:
seg AD || seg BC and BD is their transversal. [Given]
∴ ∠DBC ≅ ∠BDA [Alternate angles]
∴ ∠PBC ≅ ∠PDA (i) [D – P – B]
In ∆PBC and ∆PDA,
∠PBC ≅ ∠PDA [From (i)]
∠BPC ≅ ∠DPA [Vertically opposite angles]
∴ ∆PBC ~ ∆PDA [AA test of similarity]
∴ \(\frac { BP }{ PD } \) = \(\frac { PC }{ AP } \) [Corresponding sides of similar triangles]
∴ \(\frac { AP }{ PD } \) = \(\frac { PC }{ BP } \) [By altemendo]

Question 12.
In the adjoining figure, XY || seg AC. If 2 AX = 3 BX and XY = 9, complete the activity to find the value of AC.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 22
Solution:
2 AX = 3 BX [Given]
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 23 Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 24

Question 13.
In the adjoining figure, the vertices of square DEFG are on the sides of ∆ABC. If ∠A = 90°, then prove that DE2 = BD × EC.
(Hint: Show that ∆GBD is similar to ∆ CFE. Use GD = FE = DE.)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Problem Set 1 25
Solution:
proof:
꠸DEFG is a square.
∴ DE = EF = GF = GD (i) [Sides of a square]
∠GDE = ∠DEF = 90° [Angles of a square]
∴ seg GD ⊥ side BC, seg FE ⊥ side BC (ii)
In ∆BAC and ∆BDG,
∠BAC ≅ ∠BDG [From (ii), each angle is of measure 90°]
∠ABC ≅ ∠DBG [Common angle]
∴ ∆BAC – ∆BDG (iii) [AA test of similarity]
In ∆BAC and ∆FEC,
∠BAC ≅ ∠FEC [From (ii), each angle is measure 90°]
∠ACB ≅ ∠ECF [Common angle]
∴ ∆BAC – ∆FEC (iv) [AA test of similarity]
∴ ∆BDG – ∆FEC [From (iii) and (iv)]
∴ \(\frac { BD }{ EF } \) = \(\frac { GD }{ EC } \) (v) [Corresponding sides of similar triangles]
∴ \(\frac { BD }{ DE } \) = \(\frac { DE }{ EC } \) [From (i) and (v)]
∴ DE2 = BD × EC

Maharashtra State Board Class 10 Maths Solutions Part 2

Practice Set 1.4 Geometry 10th Standard Maths Part 2 Chapter 1 Similarity Solutions Maharashtra Board

10th Standard Maths 2 Practice Set 1.4 Chapter 1 Similarity Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 1.4 Algebra 10th Class Maths Part 2 Answers Solutions Chapter 1 Similarity.

Class 10 Maths Part 2 Practice Set 1.4 Chapter 1 Similarity Questions With Answers Maharashtra Board

Question 1.
The ratio of corresponding sides of similar triangles is 3 : 5, then find the ratio of their areas.
Solution:
Let the corresponding sides of similar triangles be S1 and S2.
Let A1 and A2 be their corresponding areas.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.4 1
∴ Ratio of areas of similar triangles = 9 : 25

Question 2.
If ∆ABC ~ ∆PQR and AB : PQ = 2:3, then fill in the blanks.
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.4

Question 3.
If ∆ABC ~ ∆PQR, A(∆ABC) = 80, A(∆PQR) = 125, then fill in the blanks.
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.4 2

Question 4.
∆LMN ~ ∆PQR, 9 × A(∆PQR) = 16 × A(∆LMN). If QR = 20, then find MN.
Solution:
9 × A(∆PQR) = 16 × A(∆LMN) [Given]
∴ \(\frac{\mathrm{A}(\Delta \mathrm{LMN})}{\mathrm{A}(\Delta \mathrm{PQR})}=\frac{9}{16}\) (i)
Now, ∆LMN ~ ∆PQR [Given]
∴ \(\frac{\mathrm{A}(\Delta \mathrm{LMN})}{\mathrm{A}(\Delta \mathrm{PQR})}=\frac{\mathrm{MN}^{2}}{\mathrm{QR}^{2}}\) (ii) [Theorem of areas of similar triangles]
∴ \(\frac{\mathrm{MN}^{2}}{\mathrm{QR}^{2}}=\frac{9}{16}\) [From (i) and (ii)]
∴ \(\frac{M N}{Q R}=\frac{3}{4}\) [Taking square root of both sides]
∴ \(\frac{\mathrm{MN}}{20}=\frac{3}{4}\)
∴ MN = \(\frac{20 \times 3}{4}\)
∴ MN = 15 units

Question 5.
Areas of two similar triangles are 225 sq. cm. and 81 sq. cm. If a side of the smaller triangle is 12 cm, then find corresponding side of the bigger triangle.
Solution:
Let the areas of two similar triangles be A1 and A2.
A1 = 225 sq. cm. A2 = 81 sq. cm.
Let the corresponding sides of triangles be S1 and S2 respectively.
S1 = 12 cm
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.4
∴ The length of the corresponding side of the bigger triangle is 20 cm.

Question 6.
∆ABC and ∆DEF are equilateral triangles. If A(∆ABC): A(∆DEF) = 1:2 and AB = 4, find DE.
Solution:
In ∆ABC and ∆DEF,
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.4

Question 7.
In the adjoining figure, seg PQ || seg DE, A(∆PQF) = 20 sq. units, PF = 2 DP, then find A (꠸ DPQE) by completing the following activity.
Solution:
A(∆PQF) = 20 sq.units, PF = 2 DP, [Given]
Let us assume DP = x.
∴ PF = 2x
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.4

Maharashtra State Board Class 10 Maths Solutions Part 2

Practice Set 1.2 Geometry 10th Standard Maths Part 2 Chapter 1 Similarity Solutions Maharashtra Board

10th Standard Maths 2 Practice Set 1.2 Chapter 1 Similarity Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 1.2 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 1 Similarity.

Class 10 Maths Part 2 Practice Set 1.2 Chapter 1 Similarity Questions With Answers Maharashtra Board

Question 1.
Given below are some triangles and lengths of line segments. Identify in which figures, ray PM is the bisector of ∠QPR.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 1
Solution:
In ∆ PQR,
\(\frac { PQ }{ PR } \) = \(\frac { 7 }{ 3 } \) (i)
\(\frac { QM }{ RM } \) = \(\frac { 3.5 }{ 1.5 } \) = \(\frac { 35 }{ 15 } \) = \(\frac { 7 }{ 3 } \) (ii)
∴ \(\frac { PQ }{ PR } \) = \(\frac { QM }{ RM } \) [From (i) and (ii)]
∴ Ray PM is the bisector of ∠QPR. [Converse of angle bisector theorem]

ii. In ∆PQR,
\(\frac { PQ }{ PR } \) = \(\frac { 10 }{ 7 } \) (i)
\(\frac { QM }{ RM } \) = \(\frac { 8 }{ 6 } \) = \(\frac { 4 }{ 3 } \) (ii)
∴ \(\frac { PQ }{ PR } \) ≠ \(\frac { QM }{ RM } \) [From (i) and (ii)]
∴ Ray PM is not the bisector of ∠QPR

iii. In ∆PQR,
\(\frac { PQ }{ PR } \) = \(\frac { 9 }{ 10 } \) (i)
\(\frac { QM }{ RM } \) = \(\frac { 3.6 }{ 4 } \) = \(\frac { 36 }{ 40 } \) = \(\frac { 9 }{ 10 } \) (ii)
∴ \(\frac { PQ }{ PR } \) = \(\frac { QM }{ RM } \) [From (i) and (ii)]
∴ Ray PM is the bisector of ∠QPR [Converse of angle bisector theorem]

Question 2.
In ∆PQR PM = 15, PQ = 25, PR = 20, NR = 8. State whether line NM is parallel to side RQ. Give reason.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 2
Solution:
PN + NR = PR [P – N – R]
∴ PN + 8 = 20
∴ PN = 20 – 8 = 12
Also, PM + MQ = PQ [P – M – Q]
∴ 15 + MQ = 25
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 3
∴ line NM || side RQ [Converse of basic proportionality theorem]

Question 3.
In ∆MNP, NQ is a bisector of ∠N. If MN = 5, PN = 7, MQ = 2.5, then find QP.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 4
Solution:
In ∆MNP, NQ is the bisector of ∠N. [Given]
∴\(\frac { PN }{ MN } \) = \(\frac { QP }{ MQ } \) [Property of angle bisector of a triangle]
∴\(\frac { 7 }{ 5 } \) = \(\frac { QP }{ 2.5 } \)
∴ QP = \(\frac { 7\times 2.5 }{ 5 } \)
∴ QP = 3.5 units

Question 4.
Measures of some angles in the figure are given. Prove that \(\frac { AP }{ PB } \) = \(\frac { AQ }{ QC } \)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 5
Solution:
Proof
∠APQ = ∠ABC = 60° [Given]
∴ ∠APQ ≅ ∠ABC
∴ side PQ || side BC (i) [Corresponding angles test]
In ∆ABC,
sidePQ || sideBC [From (i)]
∴\(\frac { AP }{ PB } \) = \(\frac { AQ }{ QC } \) [Basic proportionality theorem]

Question 5.
In trapezium ABCD, side AB || side PQ || side DC, AP = 15, PD = 12, QC = 14, find BQ.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 6
Solution:
side AB || side PQ || side DC [Given]
∴\(\frac { AP }{ PD } \) = \(\frac { BQ }{ QC } \) [Property of three parallel lines and their transversals]
∴\(\frac { 15 }{ 12 } \) = \(\frac { BQ }{ 14 } \)
∴ BQ = \(\frac { 15\times 14 }{ 12 } \)
∴ BQ = 17.5 units

Question 6.
Find QP using given information in the figure.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 7
Solution:
In ∆MNP, seg NQ bisects ∠N. [Given]
∴\(\frac { PN }{ MN } \) = \(\frac { QP }{ MQ } \) [Property of angle bisector of a triangle]
∴\(\frac { 40 }{ 25 } \) = \(\frac { QP }{ 14 } \)
∴ QP = \(\frac { 40\times 14 }{ 25 } \)
∴ QP = 22.4 units

Question 7.
In the adjoining figure, if AB || CD || FE, then find x and AE.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 8
Solution:
line AB || line CD || line FE [Given]
∴\(\frac { BD }{ DF } \) = \(\frac { AC }{ CE } \) [Property of three parallel lines and their transversals]
∴\(\frac { 8 }{ 4 } \) = \(\frac { 12 }{ X } \)
∴ X = \(\frac { 12\times 4 }{ 8 } \)
∴ X = 6 units
Now, AE AC + CE [A – C – E]
= 12 + x
= 12 + 6
= 18 units
∴ x = 6 units and AE = 18 units

Question 8.
In ∆LMN, ray MT bisects ∠LMN. If LM = 6, MN = 10, TN = 8, then find LT.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 9
Solution:
In ∆LMN, ray MT bisects ∠LMN. [Given]
∴\(\frac { LM }{ MN } \) = \(\frac { LT }{ TN } \) [Property of angle bisector of a triangle]
∴\(\frac { 6 }{ 10 } \) = \(\frac { LT }{ 8 } \)
∴ LT = \(\frac { 6\times 8 }{ 10 } \)
∴ LT = 4.8 units

Question 9.
In ∆ABC,seg BD bisects ∠ABC. If AB = x,BC x+ 5, AD = x – 2, DC = x + 2, then find the value of x.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 10
Solution:
In ∆ABC, seg BD bisects ∠ABC. [Given]
∴\(\frac { AB }{ BC } \) = \(\frac { AD }{ CD } \) [Property of angle bisector of a triangle]
∴\(\frac { x }{ x+5 } \) = \(\frac { x-2 }{ x+2 } \)
∴ x(x + 2) = (x – 2)(x + 5)
∴ x2 + 2x = x2 + 5x – 2x – 10
∴ 2x = 3x – 10
∴ 10 = 3x – 2x
∴ x = 10

Question 10.
In the adjoining figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ || seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 11
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 12

Question 11.
In ∆ABC, ray BD bisects ∠ABC and ray CE bisects ∠ACB. If seg AB = seg AC, then prove that ED || BC.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 13
Solution:
In ∆ABC, ray BD bisects ∠ABC. [Given]
∴\(\frac { AB }{ BC } \) = \(\frac { AE }{ EB } \) (i) [Property of angle bisector of a triangle]
Also, in ∆ABC, ray CE bisects ∠ACB. [Given]
∴\(\frac { AC }{ BC } \) = \(\frac { AE }{ EB } \) (ii) [Property of angle bisector of a triangle]
But, seg AB = seg AC (iii) [Given]
∴\(\frac { AB }{ BC } \) = \(\frac { AE }{ EB } \) (iv) [From (ii) and (iii)]
∴\(\frac { AD }{ DC } \) = \(\frac { AE }{ EB } \) [From (i) and (iv)]
∴ ED || BC [Converse of basic proportionality theorem]

Question 1.
i. Draw a ∆ABC.
ii. Bisect ∠B and name the point of intersection of AC and the angle bisector as D.
iii. Measure the sides.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 14
iv. Find ratios \(\frac { AB }{ BC } \) and \(\frac { AD }{ DC } \)
v. You will find that both the ratios are almost equal.
vi. Bisect remaining angles of the triangle and find the ratios as above. Verify that the ratios are equal. (Textbook pg. no. 8)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 15
Note: Students should bisect the remaining angles and verify that the ratios are equal.

Question 2.
Write another proof of the above theorem (property of an angle bisector of a triangle). Use the following properties and write the proof.
i. The areas of two triangles of equal height are proportional to their bases.
ii. Every point on the bisector of an angle is equidistant from the sides of the angle. (Textbook pg. no. 9)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 16
Given: In ∆CAB, ray AD bisects ∠A.
To prove: \(\frac { AB }{ AC } \) = \(\frac { BD }{ DC } \)
Construction: Draw seg DM ⊥ seg AB A – M – B and seg DN ⊥ seg AC, A – N – C.
Solution:
Proof:
In ∆ABC,
Point D is on angle bisector of ∠A. [Given]
∴DM = DN [Every point on the bisector of an angle is equidistant from the sides of the angle]
\(\frac{A(\Delta A B D)}{A(\Delta A C D)}=\frac{A B \times D M}{A C \times D N}\) [Ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights]
∴ \(\frac{A(\Delta A B D)}{A(\Delta A C D)}=\frac{A B}{A C}\) (ii) [From (i)]
Also, ∆ABD and ∆ACD have equal height.
∴ \(\frac{\mathrm{A}(\Delta \mathrm{ABD})}{\mathrm{A}(\Delta \mathrm{ACD})}=\frac{\mathrm{BD}}{\mathrm{CD}}\) (iii) [Triangles having equal height]
∴\(\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{DC}}\) [From (ii) and (iii)]

Question 3.
i. Draw three parallel lines.
ii. Label them as l, m, n.
iii. Draw transversals t1 and t2.
iv. AB and BC are intercepts on transversal t1.
v. PQ and QR are intercepts on transversal t2.
vi. Find ratios \(\frac { AB }{ BC } \) and \(\frac { PQ }{ QR } \). You will find that they are almost equal. Verify that they are equal.(Textbook pg, no. 10)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 17
(Students should draw figures similar to the ones given and verify the properties.)

Question 4.
In the adjoining figure, AB || CD || EF. If AC = 5.4, CE = 9, BD = 7.5, then find DF.(Textbook pg, no. 12)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 18
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 19

Question 5.
In ∆ABC, ray BD bisects ∠ABC. A – D – C, side DE || side BC, A – E – B, then prove that \(\frac { AB }{ BC } \) = \(\frac { AE }{ EB } \) (Textbook pg, no. 13)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 20
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 21

Maharashtra State Board Class 10 Maths Solutions Part 2

Practice Set 1.1 Geometry 10th Standard Maths Part 2 Chapter 1 Similarity Solutions Maharashtra Board

10th Standard Maths 2 Practice Set 1.1 Chapter 1 Similarity Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 1.1 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 1 Similarity.

Class 10 Maths Part 2 Practice Set 1.1 Chapter 1 Similarity Questions With Answers Maharashtra Board

Question 1.
Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.
Solution:
Let the base, height and area of the first triangle be b1, h1, and A1 respectively.
Let the base, height and area of the second triangle be b2, h2 and A2 respectively.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 1

[Since Ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights]
∴ The ratio of areas of the triangles is 3:4.

Question 2.
In the adjoining figure, BC ± AB, AD _L AB, BC = 4, AD = 8, then find \(\frac{A(\Delta A B C)}{A(\Delta A D B)}\)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 2
Solution:
∆ABC and ∆ADB have same base AB.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 3
[Since Triangles having equal base]

Question 3.
In the adjoining figure, seg PS ± seg RQ, seg QT ± seg PR. If RQ = 6, PS = 6 and PR = 12, then find QT.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 4
Solution:
In ∆PQR, PR is the base and QT is the corresponding height.
Also, RQ is the base and PS is the corresponding height.
\(\frac{A(\Delta P Q R)}{A(\Delta P Q R)}=\frac{P R \times Q T}{R Q \times P S}\) [Ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights]
∴ \(\frac{1}{1}=\frac{P R \times Q T}{R Q \times P S}\)
∴ PR × QT = RQ × PS
∴ 12 × QT = 6 × 6
∴ QT = \(\frac { 36 }{ 12 } \)
∴ QT = 3 units

Question 4.
In the adjoining figure, AP ⊥ BC, AD || BC, then find A(∆ABC) : A(∆BCD).
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 5
Solution:
Draw DQ ⊥ BC, B-C-Q.

Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 6
AD || BC [Given]
∴ AP = DQ   (i)  [Perpendicular distance between two parallel lines is the same]
∆ABC and ∆BCD have same base BC.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 7

Question 5.
In the adjoining figure, PQ ⊥ BC, AD ⊥ BC, then find following ratios.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 8
Solution:
i. ∆PQB and tPBC have same height PQ.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 9
ii. ∆PBC and ∆ABC have same base BC.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 10
iii. ∆ABC and ∆ADC have same height AD.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 11

Question 1.
Find \(\frac{A(\Delta A B C)}{A(\Delta A P Q)}\)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 12
Solution:
In ∆ABC, BC is the base and AR is the height.
In ∆APQ, PQ is the base and AR is the height.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 13

Maharashtra State Board Class 10 Maths Solutions Part 2

Practice Set 5.3 Algebra 10th Standard Maths Part 1 Chapter 5 Probability Solutions Maharashtra Board

10th Standard Maths 1 Practice Set 5.3 Chapter 5 Probability Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 5.3 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 5 Probability.

Class 10 Maths Part 1 Practice Set 5.3 Chapter 5 Probability Questions With Answers Maharashtra Board

Question 1.
Write sample space ‘S’ and number of sample points n(S) for each of the following experiments. Also write events A, B, C in the set form and write n(A), n(B), n(C).

i. One die is rolled,
Event A: Even number on the upper face.
Event B: Odd number on the upper face.
Event C: Prime number on the upper face.

ii. Two dice are rolled simultaneously,
Event A: The sum of the digits on upper faces is a multiple of 6.
Event B: The sum of the digits on the upper faces is minimum 10.
Event C: The same digit on both the upper faces.

iii. Three coins are tossed simultaneously.
Condition for event A: To get at least two heads.
Condition for event B: To get no head.
Condition for event C: To get head on the second coin.

iv. Two digit numbers are formed using digits 0, 1, 2, 3, 4, 5 without repetition of the digits.
Condition for event A: The number formed is even.
Condition for event B: The number is divisible by 3.
Condition for event C: The number formed is greater than 50.

v. From three men and two women, environment committee of two persons is to be formed.
Condition for event A: There must be at least one woman member.
Condition for event B: One man, one woman committee to be formed.
Condition for event C: There should not be a woman member.

vi. One coin and one die are thrown simultaneously.
Condition for event A: To get head and an odd number.
Condition for event B: To get a head or tail and an even number.
Condition for event C: Number on the upper face is greater than 7 and tail on the coin.
Solution:
i. Sample space (S) = {1, 2, 3, 4, 5, 6}
∴ n(S) = 6
Condition for event A: Even number on the upper face.
∴ A = {2,4,6}
∴ n(A) = 3
Condition for event B: Odd number on the upper face.
∴ B = {1, 3, 5}
∴ n(B) = 3
Condition for event C: Prime number on the upper face.
∴ C = {2, 3, 5}
∴ n(C) = 3

ii. Sample space,
S = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6),
(2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
(3,1), (3,2), (3,3), (3,4), (3,5), (3,6),
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6),
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}
∴ n(S) = 36
Condition for event A: The sum of the digits on the upper faces is a multiple of 6.
A = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (6, 6)}
∴ n(A) = 6

Condition for event B: The sum of the digits on the upper faces is minimum 10.
B = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}
∴ n(B) = 6

Condition for event C: The same digit on both the upper faces.
C = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}
∴ n(C) = 6

iii. Sample space,
S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
∴ n(S) = 8

Condition for event A: To get at least two heads.
∴ A = {HHT, HTH, THH, HHH}
∴ n(A) = 4

Condition for event B: To get no head.
∴ B = {TTT}
∴ n(B) = 1

Condition for event C: To get head on the second coin.
∴ C = {HHH, HHT, THH, THT}
∴ n(C) = 4

iv. Sample space (S) = {10, 12, 13, 14, 15,
20, 21, 23, 24, 25,
30, 31, 32, 34, 35,
40, 41, 42, 43,
45, 50, 51, 52, 53, 54}
∴ n(S) = 25
Condition for event A: The number formed is even
∴ A = {10, 12, 14, 20, 24, 30, 32, 34, 40, 42, 50, 52, 54)
∴ n(A) = 13
Condition for event B: The number formed is divisible by 3.
∴ B = {12, 15, 21, 24, 30, 42, 45, 51, 54}
∴ n(B) = 9
Condition for event C: The number formed is greater than 50.
∴ C = {51,52, 53,54}
∴ n(C) = 4

v. Let the three men be M1, M2, M3 and the two women be W1, W2.
Out of these men and women, a environment committee of two persons is to be formed.
∴ Sample space,
S = {M1M2, M1M3, M1W1, M1W2, M2M3, M2W1, M2W2, M3W1, M3W2, W1W2}
∴ n(S) = 10
Condition for event A: There must be at least one woman member.
∴ A = {M1W1, M1W2, M2W1, M2W2, M3W1, M3W2, W1W2}
∴ n(A) = 7
Condition for event B: One man, one woman committee to be formed.
∴ B = {M1W1, M1W2, M2W1, M2W2, M3W2, M3W2}
∴ n(B) = 6
Condition for event C: There should not be a woman member.
∴ C = {M1M2, M1M3, M2M3}
∴ n(C) = 3

vi. Sample space,
S = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}
∴ n(S) = 12
Condition for event A: To get head and an odd number.
∴ A = {(H, 1), (H, 3), (H, 5)}
∴ n(A) = 3
Condition for event B: To get a head or tail and an even number.
∴ B = {(H, 2), (H, 4), (H, 6), (T, 2), (T, 4), (T, 6)}
∴ n(B) = 6
Condition for event C: Number on the upper face is greater than 7 and tail on the coin.
The greatest number on the upper face of a die is 6.
∴ Event C is an impossible event.
∴ C = { }
∴ n(C) = 0

Maharashtra State Board Class 10 Maths Solutions Part 1

Practice Set 5.2 Algebra 10th Standard Maths Part 1 Chapter 5 Probability Solutions Maharashtra Board

10th Standard Maths 1 Practice Set 5.2 Chapter 5 Probability Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 5.2 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 5 Probability.

Class 10 Maths Part 1 Practice Set 5.2 Chapter 5 Probability Questions With Answers Maharashtra Board

Question 1.
For each of the following experiments write sample space ‘S’ and number of sample Point n(S)
i. One coin and one die are thrown simultaneously.
ii. Two digit numbers are formed using digits 2,3 and 5 without repeating a digit.
Solution:
i. Sample space,
S = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}
∴ n(S) =12
ii. Sample space,
S = {23,25,32, 35, 52, 53}
∴ n(S) = 6

Question 2.
The arrow is rotated and it stops randomly on the disc. Find out on which colour it may stop.
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Practice Set 5.2 1
Solution:
There are total six colours on the disc.
Sample space,
S = {Red, Orange, Yellow, Blue, Green, Purple}
∴ n(S) = 6
∴ Arrow may stop on any one of the six colours.

Question 3.
In the month of March 2019, find the days on which the date is a multiple of 5. (see the given page of the calendar).
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Practice Set 5.2 2
Solution:
Dates which are multiple of 5:
5,10, 15,20,25,30
∴ S = {Tuesday, Sunday, Friday, Wednesday, Monday, Saturday}
∴ n(S) = 6
∴ The days on which the date will be a multiple of 5 are Tuesday, Sunday, Friday, Wednesday, Monday and Saturday.

Question 4.
Form a ‘Road safety committee’ of two, from 2 boys (B1 B2) and 2 girls (G1, G2). Complete the following activity to write the sample space.
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Practice Set 5.2 3

Question 1.
Sample Space

  • The set of all possible outcomes of a random experiment is called sample space.
  • It is denoted by ‘S’ or ‘Ω’ (omega).
  • Each element of a sample space is called a sample point.
  • The number of elements in the set S is denoted by n(S).
  • If n(S) is finite, then the sample space is called a finite sample space.

Some examples of finite sample space. (Textbook pg. no, 117)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Practice Set 5.2 4 Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Practice Set 5.2 5

Maharashtra State Board Class 10 Maths Solutions Part 1

Practice Set 5.1 Algebra 10th Standard Maths Part 1 Chapter 5 Probability Solutions Maharashtra Board

10th Standard Maths 1 Practice Set 5.1 Chapter 5 Probability Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 5.1 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 5 Probability.

Class 10 Maths Part 1 Practice Set 5.1 Chapter 5 Probability Questions With Answers Maharashtra Board

Question 1.
How many possibilities are there in each of the following?
i. Vanita knows the following sites in Maharashtra. She is planning to visit one of them in her summer vacation. Ajintha, Mahabaleshwar, Lonar Sarovar, Tadoba wild life sanctuary, Amboli, Raigad, Matheran, Anandavan.
ii. Any day of a week is to be selected randomly.
iii. Select one card from the pack of 52 cards.
iv. One number from 10 to 20 is written on each card. Select one card randomly.
Solution:
i. Here, 8 sites of Maharashtra are given.
∴ There are 8 possibilities in a random experiment of visiting a site out of 8 sites in Maharashtra.

ii. There are 7 days in a week.
∴ There are 7 possibilities in a random experiment of selecting a day of the week.

iii. There are 52 cards in a pack of cards.
∴ There are 52 possibilities in a random experiment of selecting one card from the pack of 52 cards.

iv. There are 11 cards numbered from 10 to 20.
∴ There are 11 possibilities in a random experiment of selecting one card from the given set of cards.

Question 1.
In which of the following experiments possibility of expected outcome is more? (Textbook pg, no. 116)
i. Getting 1 on the upper face when a die is thrown.
ii. Getting head by tossing a coin.
Solution:
i. On a die there are 6 numbers.
∴ There are 6 possibilities of getting any one number from 1 to 6 on the upper face i.e. \(\frac { 1 }{ 6 } \) is the possibility.

ii. There are two possibilities (H or T) on tossing a coin i.e. \(\frac { 1 }{ 2 } \) possibility.
∴ In the second experiment, the possibility of expected outcome is more.

Question 2.
Throw a die, once. What are the different possibilities of getting dots on the upper face? (Textbook pg. no. 114)
Answer:
There are six different possibilities of getting dots on the upper face. They are
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Practice Set 5.1

Maharashtra State Board Class 10 Maths Solutions Part 1

Practice Set 4.4 Algebra 10th Standard Maths Part 1 Chapter 4 Financial Planning Solutions Maharashtra Board

10th Standard Maths 1 Practice Set 4.4 Chapter 4 Financial Planning Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 4.4 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 4 Financial Planning.

Class 10 Maths Part 1 Practice Set 4.4 Chapter 4 Financial Planning Questions With Answers Maharashtra Board

Question 1.
Market value of a share is ₹ 200. If the brokerage rate is 0.3% then find the purchase value of the share.
Solution:
Here, MV = ₹ 200, Brokerage = 0.3%
Brokerage = 0.3% of MV
= \(\frac { 0.3 }{ 100 } \) × 200
= ₹ 0.6
∴ Purchase value of the share = MV + Brokerage
= 200 + 0.6
= ₹ 200.60
∴ Purchase value of the share is ₹ 200.60.

Question 2.
A share is sold for the market value of ₹ 1000. Brokerage is paid at the rate of 0.1%. What is the amount received after the sale?
Solution:
Here, MV = ₹ 1000, Brokerage = 0.1%
∴ Brokerage = 0.1 % of MV
= \(\frac { 0.1 }{ 100 } \) × 1000
∴ Brokerage = ₹ 1
∴ Selling value of the share = MV – Brokerage
= 1000 – 1
= ₹ 999
∴ Amount received after the sale is ₹ 999.

Question 3.
Fill in the blanks given in the contract note of sale-purchase of shares.
(B – buy S – sell)
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.4 1
Solution:
For buying shares:
Here, Number of shares = 100,
MV of one share = ₹ 45
∴ Total value = 100 × 45
= ₹ 4500
Brokerage= 0.2% of total value 0.2
= \(\frac { 0.2 }{ 100 } \) × 4500
CGST = 9% of brokerage
= \(\frac { 9 }{ 100 } \) × 9 = ₹ 0.81
But, SGST = CGST
∴ SGST = ₹ 0.81
∴ Purchase value of shares
= Total value + Brokerage
= 4500 + 9 + 0.81 + 0.81
= ₹ 4510.62

ii. For selling shares:
Here, Number of shares = 75,
MV of one share = ₹ 200
∴ Total value = 75 × 200
= ₹ 15000
Brokerage = 0.2% of total value
= \(\frac { 0.2 }{ 100 } \) × 15000
= ₹ 30
CGST = 9% of brokerage
= \(\frac { 9 }{ 100 } \) × 30 = ₹ 2.70
But, SGST = CGST
∴ SGST = ₹ 2.70
∴ Selling value of shares = Total value – (Brokerage + CGST + SGST)
= 15000 – (30 + 2.70 + 2.70)
= 15000 – 35.40
= ₹ 14964.60
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.4 2

Question 4.
Smt. Desai sold shares of face value ₹ 100 when the market value was ₹ 50 and received ₹ 4988.20. She paid brokerage 0.2% and GST on brokerage 18%, then how many shares did she sell?
Solution:
Here, face value of share = ₹ 100,
MV = ₹ 50,
Selling price of shares = ₹ 4988.20,
Rate of brokerage = 0.2%, Rate of GST = 18%
Brokerage = 0.2% of MV
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.4 3

Question 5.
Mr. D’souza purchased 200 shares of FV ₹ 50 at a premium of ₹ 100. He received 50% dividend on the shares. After receiving the dividend he sold 100 shares at a discount of ₹ 10 and remaining shares were sold at a premium of ₹ 75. For each trade he paid the brokerage of ₹ 20. Find whether Mr. D’souza gained or incurred a loss? By how much?
Solution:
For purchasing shares:
Here, FV = ₹ 50, Number of shares = 200,
premium = ₹ 100
MV of 1 share = FV + premium
= 50 + 100
= ₹ 150
∴ MV of 200 shares = 200 × 150 = ₹ 30,000
∴ Mr. D’souza invested amount
= MV of 200 shares + brokerage
= 30,000 + 20
= ₹ 30,020
For selling shares:
Rate of dividend = 50 %, FV = ₹ 50,
brokerage = ₹ 20
Number of shares = 200
Dividend per share = 50% of FV
= \(\frac { 50 }{ 100 } \) × 50
= ₹ 25
∴ Dividend of 200 shares = 200 × 25 = ₹ 5,000
Now, 100 shares are sold at a discount of ₹ 10.
∴ Selling price of 1 share = FV – discount
= 50 – 10
= ₹ 40
∴ Selling price of 100 shares = 100 × 40
= ₹ 4000
∴ Amount obtained by selling 100 shares
= selling price – brokerage
= 4000 – 20
= ₹ 3980
Also, remaining 100 shares are sold at premium of ₹ 75.
∴ selling price of 1 share = FV + premium
= 50 + 75
= ₹ 125
∴ selling price of 100 shares = 100 × 125
= ₹ 12,500
∴ Amount obtained by selling 100 shares
= selling price – brokerage
= 12,500 – 20
= ₹ 12,480
∴ Mr D’souza income = 5000 + 3980 + 12480
= ₹ 21460
Now, Mr D’souza invested amount > income
∴ Mr D’souza incurred a loss.
∴ Loss = amount invested – income
= 30020 – 21460
= ₹ 8560
∴ Mr. D’souza incurred a loss of ₹ 8560.

Question 1.
Nalinitai invested ₹ 6024 in the shares of FV ₹ 10 when the Market Value was ₹ 60. She sold all the shares at MV of ₹ 50 after taking 60% dividend. She paid 0.4% brokerage at each stage of transactions. What was the total gain or loss in this transaction? (Textbook pg. no. 106)
Solution:
Rate of GST is not given in the example, so it is not considered.
For Purchased Shares:
FV = ₹ 10, MV = ₹ 60
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.4 4

Question 2.
In the above example if GST was paid at 18% on brokerage, then the loss is ₹ 451.92. Verify whether you get the same answer. (Textbook pg, no. 107)
Solution:
For Purchased Shares:
FV = ₹ 10, MV = ₹ 60, sum invested = ₹ 6024, brokerage = 0.4 %, GST = 18%
Brokerage per share = \(\frac { 0.4 }{ 100 } \) × 60 = ₹ 0.24 100
GST per share = \(\frac { 18 }{ 100 } \) × 0.24 = ₹ 0.0432
∴ Cost of one share = 60 + 0.24 + 0.0432
= ₹ 60.2832
∴ Cost of 100 shares = 100 × 60.2832 = ₹ 6028.32
For sold shares:
FV = ₹ 10, MV = ₹ 50, brokerage = 0.4 %,
GST = 18%, Number of shares = 100
Brokerage per share = \(\frac { 0.4 }{ 100 } \) × 50 = ₹ 0.20
GST per share = \(\frac { 18 }{ 100 } \) × 0.20 = ₹ 0.036
Selling price per share = 50 – 0.2 – 0.036
= ₹ 49.764
Selling price of 100 shares = 100 × 49.764
= ₹ 4976.4
Dividend received 60 %
∴ Dividend per share = \(\frac { 60 }{ 100 } \) × 10 = ₹ 6
Dividend on 100 shares = 6 × 100 = ₹ 600
∴ Nalinitai’s income = 4976.4 + 600 = ₹ 5576.4
∴ Cost of 100 shares = ₹ 6028.32
∴ Loss = 6028.32 – 5576.4 = ₹ 451.92
∴ Nalinitai’s loss is ₹ 451.92.

Maharashtra State Board Class 10 Maths Solutions Part 1