Continuity Class 11 Maths 2 Exercise 8.1 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 8 Continuity Ex 8.1 Questions and Answers.

11th Maths Part 2 Continuity Exercise 8.1 Questions And Answers Maharashtra Board

Question 1.
Examine the continuity of
(i) f(x) = x3 + 2x2 – x – 2 at x = -2
Solution:
Given, f(x) = x3 + 2x2 – x – 2
f(x) is a polynomial function and hence it is continuous for all x ∈ R.
∴ f(x) is continuous at x = -2.

(ii) f(x) = sin x, for x ≤ \(\frac{\pi}{4}\)
= cos x, for x > \(\frac{\pi}{4}\), at x = \(\frac{\pi}{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q1 (ii)

(iii) f(x) = \(\frac{x^{2}-9}{x-3}\), for x ≠ 3
= 8 for x = 3, at x = 3.
Solution:
f(3) = 8 ….(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q1 (iii)
∴ f(x) is discontinuous at x = 3.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 2.
Examine whether the function is continuous at the points indicated against them.
(i) f(x) = x3 – 2x + 1, if x ≤ 2
= 3x – 2, if x > 2, at x = 2.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q2 (i)

(ii) f(x) = \(\frac{x^{2}+18 x-19}{x-1}\), for x ≠ 1
= 20, for x = 1, at x = 1.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q2 (ii)

(iii) f(x) = \(\frac{x}{\tan 3 x}+2\), for x < 0
= \(\frac{7}{3}\), for x ≥ 0, at x = 0.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q2 (iii)

Question 3.
Find all the points of discontinuities of f(x) = [x] on the interval (-3, 2).
Solution:
f(x) = [x], x ∈ (-3, 2)
i.e., f(x) = -3, x ∈ (-3, -2)
= -2, x ∈ [-2, -1)
= -1, x ∈ [- 1, 0)
= 0, x ∈ [0, 1)
= 1, x ∈ [1, 2)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q3
Similarly, f(x) is discontinuous at the points x = -1, x = 0, x = 1.
Thus all the integer values of x in the interval (-3, 2),
i.e., the points x = -2, x = -1, x = 0 and x = 1 are the required points of discontinuities.

Question 4.
Discuss the continuity of the function f(x) = |2x + 3|, at x = \(\frac{-3}{2}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q4
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q4.1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 5.
Test the continuity of the following functions at the points or intervals indicated against them.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5.1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (iii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (iv)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (iv).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (iv).2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (v)

Question 6.
Identify discontinuities for the following functions as either a jump or a removable discontinuity.
(i) f(x) = \(\frac{x^{2}-10 x+21}{x-7}\)
Solution:
Given, f(x) = \(\frac{x^{2}-10 x+21}{x-7}\)
It is a rational function and is discontinuous if
x – 7 = 0, i.e., x = 7
∴ f(x) is continuous for all x ∈ R, except at x = 7.
∴ f(7) is not defined.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q6 (i)
Thus, \(\lim _{x \rightarrow 7} \mathrm{f}(x)\) exist but f(7) is not defined.
∴ f(x) has a removable discontinuity.

(ii) f(x) = x2 + 3x – 2, for x ≤ 4
= 5x + 3, for x > 4.
Solution:
f(x) = x2 + 3x – 2, x ≤ 4
= 5x + 3, x > 4
f(x) is a polynomial function for both the intervals.
∴ f(x) is continuous for both the given intervals.
Let us test the continuity at x = 4.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q6 (ii)
∴ f(x) is discontinuous at x = 4.
∴ f(x) has a jump discontinuity at x = 4.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

(iii) f(x) = x2 – 3x – 2, for x < -3 = 3 + 8x, for x > -3.
Solution:
f(x) = x2 – 3x – 2, x < -3 = 3 + 8x, x > -3
f(x) is a polynomial function for both the intervals.
∴ f(x) is continuous for both the given intervals.
Let us test the continuity at x = -3.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q6 (iii)
∴ f(x) is discontinuous at x = -3.
∴ f(x) has a jump discontinuity at x = -3

(iv) f(x) = 4 + sin x, for x < π = 3 – cos x for x > π.
Solution:
f(x) = 4 + sin x, x < π = 3 – cos x, x > π
sin x and cos x are continuous for all x ∈ R.
4 and 3 are constant functions.
∴ 4 + sin x and 3 – cos x are continuous for all x ∈ R.
∴ f(x) is continuous for both the given intervals.
Let us test the continuity at x = π.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q6 (iv)
But f(π) is not defined.
∴ f(x) has a removable discontinuity at x = π.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 7.
Show that the following functions have a continuous extension to the point where f(x) is not defined. Also, find the extension.
(i) f(x) = \(\frac{1-\cos 2 x}{\sin x}\), for x ≠ 0.
Solution:
f(x) = \(\frac{1-\cos 2 x}{\sin x}\), for x ≠ 0
Here, f(0) is not defined.
Consider,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q7 (i)
But f(0) is not defined.
∴ f(x) has a removable discontinuity at x = 0.
∴ The extension of the original function is
f(x) = \(\frac{1-\cos 2 x}{\sin x}\) for x ≠ 0
= 0 for x = 0
∴ f(x) is continuous at x = 0.

(ii) f(x) = \(\frac{3 \sin ^{2} x+2 \cos x(1-\cos 2 x)}{2\left(1-\cos ^{2} x\right)}\), for x ≠ 0.
Solution:
f(x) = \(\frac{3 \sin ^{2} x+2 \cos x(1-\cos 2 x)}{2\left(1-\cos ^{2} x\right)}\), for x ≠ 0
Here, f(0) is not defined.
Consider,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q7 (ii)
But f(0) is not defined.
∴ f(x) has a removable discontinuity at x = 0.
∴ The extension of the original function is
f(x) = \(\frac{3 \sin ^{2} x+2 \cos x(1-\cos 2 x)}{2\left(1-\cos ^{2} x\right)}\), x ≠ 0
= \(\frac{7}{2}\), x = 0
∴ f(x) is continuous at x = 0.

(iii) f(x) = \(\frac{x^{2}-1}{x^{3}+1}\), for x ≠ -1
Solution:
f(x) = \(\frac{x^{2}-1}{x^{3}+1}\), for x ≠ -1
Here, f(-1) is not defined.
Consider,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q7 (iii)
But f(-1) is not defined.
∴ f(x) has a removable discontinuity at x = -1.
∴ The extension of the original function is
f(x) = \(\frac{x^{2}-1}{x^{3}+1}\), x ≠ -1
= \(-\frac{2}{3}\), x = -1
∴ f(x) is continuous at x = \(-\frac{2}{3}\)

Question 8.
Discuss the continuity of the following functions at the points indicated against them.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (i).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (i).2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (iii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (iii).1

Question 9.
Which of the following functions has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it becomes continuous.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9.1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (i).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (i).2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (ii).2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (iii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (iii).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (iv)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (v)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (v).1

Question 10.
(i) If f(x) = \(\frac{\sqrt{2+\sin x}-\sqrt{3}}{\cos ^{2} x}\), for x ≠ \(\frac{\pi}{2}\), is continuous at x = \(\frac{\pi}{2}\) then find f(\(\frac{\pi}{2}\)).
Solution:
f(x) is continuous at x = \(\frac{\pi}{2}\), …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (i).1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

(ii) If f(x) = \(\frac{\cos ^{2} x-\sin ^{2} x-1}{\sqrt{3 x^{2}+1}-1}\) for x ≠ 0, is continuous at x = 0 then find f(0).
Solution:
f(x) is continuous at x = 0, …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (ii).1

(iii) If f(x) = \(\frac{4^{x-\pi}+4^{\pi-x}-2}{(x-\pi)^{2}}\) for x ≠ π, is continuous at x = π, then find f(π).
Solution:
f(x) is continuous at x = π, …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (iii)

Question 11.
(i) If f(x) = \(\frac{24^{x}-8^{x}-3^{x}+1}{12^{x}-4^{x}-3^{x}+1}\), for x ≠ 0
= k, for x = 0
is continuous at x = 0, then find k.
Solution:
f(x) is continuous at x = 0 …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (i).1

(ii) If f(x) = \(\frac{5^{x}+5^{-x}-2}{x^{2}}\), for x ≠ 0
= k, for x = 0
is continuous at x = 0, then find k.
Solution:
f(x) is continuous at x = 0 …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (ii)

(iii) If f(x) = \(\frac{\sin 2 x}{5 x}\) – a, for x > 0
= 4 for x = 0
= x2 + b – 3, for x < 0
is continuous at x = 0, find a and b.
Solution:
f(x) is continuous at x = 0 ……(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (iii)

(iv) For what values of a and b is the function
f(x) = ax + 2b + 18, for x ≤ 0
= x2 + 3a – b, for 0 < x ≤ 2 = 8x – 2, for x > 2,
continuous for every x?
Solution:
f(x) is continuous for every x …..(given)
∴ f(x) is continuous at x = 0 and x = 2.
As f(x) is continuous at x = 0,
\(\lim _{x \rightarrow 0^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 0^{+}} \mathrm{f}(x)\)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (iv)
∴ (2)2 + 3a – b = 8(2) – 2
∴ 4 + 3a – b = 14
∴ 3a – b = 10 …….(ii)
Subtracting (i) from (ii), we get
2a = 4
∴ a = 2
Substituting a = 2 in (i), we get
2 – b = 6
∴ b = -4
∴ a = 2 and b = -4

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

(v) For what values of a and b is the function
f(x) = \(\frac{x^{2}-4}{x-2}\), for x < 2
= ax2 – bx + 3, for 2 ≤ x < 3
= 2x – a + b, for x ≥ 3
continuous for every x on R?
Solution:
f(x) is continuous for every x on R …..(given)
∴ f(x) is continuous at x = 2 and x = 3.
As f(x) is continuous at x = 2,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (v)
∴ a(3)2 – b(3) + 3 = 2(3) – a + b
∴ 9a – 3b + 3 = 6 – a + b
∴ 10a – 4b = 3 …..(ii)
Multiplying (i) by 2, we get
8a – 4b = 2 ….(iii)
Subtracting (ii) from (iii), we get
-2a = -1
∴ a = \(\frac{1}{2}\)
Substituting a = \(\frac{1}{2}\) in (i), we get
4(\(\frac{1}{2}\)) – 2b = 1
∴ 2 – 2b = 1
∴ 1 = 2b
∴ b = \(\frac{1}{2}\)
∴ a = \(\frac{1}{2}\) and b = \(\frac{1}{2}\)

Question 12.
Discuss the continuity of f on its domain, where
f(x) = |x + 1|, for -3 ≤ x ≤ 2
= |x – 5|, for 2 < x ≤ 7
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q12

Question 13.
Discuss the continuity of f(x) at x = \(\frac{\pi}{4}\) where,
f(x) = \(\frac{(\sin x+\cos x)^{3}-2 \sqrt{2}}{\sin 2 x-1}\), for x ≠ \(\frac{\pi}{4}\)
= \(\frac{3}{\sqrt{2}}\), for x = \(\frac{\pi}{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q13
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q13.1

Question 14.
Determine the values of p and q such that the following function is continuous on the entire real number line.
f(x) = x + 1, for 1 < x < 3
= x2 + px + q, for |x – 2| ≥ 1.
Solution:
|x – 2| ≥ 1
∴ x – 2 ≥ 1 or x – 2 ≤ -1
∴ x ≥ 3 or x ≤ 1
∴ f(x) = x2 + px + q for x ≥ 3 as well as x ≤ 1
Thus, f(x) = x2 + px + q; x ≤ 1
= x + 1; 1 < x < 3 = x2 + px + q; x > 3
f(x) is continuous for all x ∈ R.
∴ f(x) is continuous at x = 1 and x = 3.
As f(x) is continuous at x = 1,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q14
Subtracting (i) from (ii), we get
2p = -6
∴ p = -3
Substituting p = -3 in (i), we get
-3 + q = 1
∴ q = 4
∴ p = -3 and q = 4

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 15.
Show that there is a root for the equation 2x3 – x – 16 = 0 between 2 and 3.
Solution:
Let f(x) = 2x3 – x – 16
f(x) is a polynomial function and hence it is continuous for all x ∈ R.
A root of f(x) exists, if f(x) = 0 for at least one value of x.
f(2) = 2(2)3 – 2 – 16 = -2 < 0
f(3) = 2(3)3 – 3 – 16 = 35 > 0
∴ f(2) < 0 and f(3) > 0
∴ By intermediate value theorem,
there has to be point ‘c’ between 2 and 3 such that f(c) = 0.
∴ There is a root of the given equation between 2 and 3.

Question 16.
Show that there is a root for the equation x3 – 3x = 0 between 1 and 2.
Solution:
Let f(x) = x3 – 3x
f(x) is a polynomial function and hence it is continuous for all x ∈ R.
A root of f(x) exists, if f(x) = 0 for at least one value of x.
f(1) = (1)3 – 3(1) = -2 < 0
f(2) = (2)3 – 3(2) = 2 > 0
∴ f(1) < 0 and f(2) > 0
∴ By intermediate value theorem,
there has to be point ‘c’ between 1 and 2 such that f(c) = 0.
There is a root of the given equation between 1 and 2.

Question 17.
Let f(x) = ax + b (where a and b are unknown)
= x2 + 5 for x ∈ R
Find the values of a and b, so that f(x) is continuous at x = 1.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q17
Solution:
f(x) = x2 + 5, x ∈ R
∴ f(1) = 1 + 5 = 6
If f(x) = ax + b is continuous at x = 1, then
f(1) = \(\lim _{x \rightarrow 1}(a x+b)\) = a + b
∴ 6 = a + b where, a, b ∈ R
∴ There are infinitely many values of a and b.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 18.
Activity: Suppose f(x) = px + 3 for a ≤ x ≤ b
= 5x2 – q for b < x ≤ c
Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the boxes.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q18
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q18.1

11th Standard State Board Maths Solutions

Limits Class 11 Maths 2 Miscellaneous Exercise 7 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Miscellaneous Exercise 7 Questions and Answers.

11th Maths Part 2 Limits Miscellaneous Exercise 7 Questions And Answers Maharashtra Board

I. Select the correct answer from the given alternatives.

Question 1.
\(\lim _{x \rightarrow 2}\left(\frac{x^{4}-16}{x^{2}-5 x+6}\right)=\)
(A) 23
(B) 32
(C) -32
(D) -16
Answer:
(C) -32
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q1

Question 2.
\(\lim _{x \rightarrow-2}\left(\frac{x^{7}+128}{x^{3}+8}\right)=\)
(A) \(\frac{56}{3}\)
(B) \(\frac{112}{3}\)
(C) \(\frac{121}{3}\)
(D) \(\frac{28}{3}\)
Answer:
(B) \(\frac{112}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q2

Question 3.
\(\lim _{x \rightarrow 3}\left(\frac{1}{x^{2}-11 x+24}+\frac{1}{x^{2}-x-6}\right)=\)
(A) \(-\frac{2}{25}\)
(B) \(\frac{2}{25}\)
(C) \(\frac{7}{25}\)
(D) \(-\frac{7}{25}\)
Answer:
(A) \(-\frac{2}{25}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q3

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 4.
\(\lim _{x \rightarrow 5}\left(\frac{\sqrt{x+4}-3}{\sqrt{3 x-11-2}}\right)=\)
(A) \(\frac{-2}{9}\)
(B) \(\frac{2}{7}\)
(C) \(\frac{5}{9}\)
(D) \(\frac{2}{9}\)
Answer:
(D) \(\frac{2}{9}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q4

Question 5.
\(\lim _{x \rightarrow \frac{\pi}{3}}\left(\frac{\tan ^{2} x-3}{\sec ^{3} x-8}\right)=\)
(A) 1
(B) \(\frac{1}{2}\)
(C) \(\frac{1}{3}\)
(D) \(\frac{1}{4}\)
Answer:
(C) \(\frac{1}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q5

Question 6.
\(\lim _{x \rightarrow 0}\left(\frac{5 \sin x-x \cos x}{2 \tan x-3 x^{2}}\right)=\)
(A) 0
(B) 1
(C) 2
(D) 3
Answer:
(C) 2
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q6

Question 7.
\(\lim _{x \rightarrow \frac{\pi}{2}}\left[\frac{3 \cos x+\cos 3 x}{(2 x-\pi)^{3}}\right]=\)
(A) \(\frac{3}{2}\)
(B) \(\frac{1}{2}\)
(C) \(-\frac{1}{2}\)
(D) \(\frac{1}{4}\)
Answer:
(C) \(-\frac{1}{2}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q7

Question 8.
\(\lim _{x \rightarrow 0}\left(\frac{15^{x}-3^{x}-5^{x}+1}{\sin ^{2} x}\right)=\)
(A) log 15
(B) log 3 + log 5
(C) log 3 . log 5
(D) 3 log 5
Answer:
(C) log 3 . log 5
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q8

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 9.
\(\lim _{x \rightarrow 0}\left(\frac{3+5 x}{3-4 x}\right)^{\frac{1}{x}}=\)
(A) e3
(B) e6
(C) e9
(D) e-3
Answer:
(A) e3
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q9

Question 10.
\(\lim _{x \rightarrow 0}\left[\frac{\log (5+x)-\log (5-x)}{\sin x}\right]=\)
(A) \(\frac{3}{2}\)
(B) \(-\frac{5}{2}\)
(C) \(-\frac{1}{2}\)
(D) \(\frac{2}{5}\)
Answer:
(D) \(\frac{2}{5}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q10

Question 11.
\(\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{3^{\cos x}-1}{\frac{\pi}{2}-x}\right)=\)
(A) 1
(B) log 3
(C) \(3^{\frac{\pi}{2}}\)
(D) 3 log 3
Answer:
(B) log 3
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q11
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q11.1

Question 12.
\(\lim _{x \rightarrow 0}\left[\frac{x \cdot \log (1+3 x)}{\left(e^{3 x}-1\right)^{2}}\right]=\)
(A) \(\frac{1}{\mathrm{e}^{9}}\)
(B) \(\frac{1}{\mathrm{e}^{3}}\)
(C) \(\frac{1}{9}\)
(D) \(\frac{1}{3}\)
Answer:
(D) \(\frac{1}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q12

Question 13.
\(\lim _{x \rightarrow 0}\left[\frac{\left(3^{\sin x}-1\right)^{3}}{\left(3^{x}-1\right) \cdot \tan x \cdot \log (1+x)}\right]=\)
(A) 3 log 3
(B) 2 log 3
(C) (log 3)2
(D) (log 3)3
Answer:
(C) (log 3)2
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q13

Question 14.
\(\lim _{x \rightarrow 3}\left[\frac{5^{x-3}-4^{x-3}}{\sin (x-3)}\right]=\)
(A) log 5 – 4
(B) log \(\frac{5}{4}\)
(C) \(\frac{\log 5}{\log 4}\)
(D) \(\frac{\log 5}{4}\)
Answer:
(B) log \(\frac{5}{4}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q14

Question 15.
\(\lim _{x \rightarrow \infty}\left[\frac{(2 x+3)^{7}(x-5)^{3}}{(2 x-5)^{10}}\right]=\)
(A) \(\frac{3}{8}\)
(B) \(\frac{1}{8}\)
(C) \(\frac{1}{6}\)
(D) \(\frac{1}{4}\)
Answer:
(B) \(\frac{1}{8}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q15

(II) Evaluate the following.

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{(1-x)^{5}-1}{(1-x)^{3}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q1

Question 2.
\(\lim _{x \rightarrow 0}[x]\) ([*] is a greatest integer function.)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q2.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 3.
If f(r) = πr2 then find \(\lim _{h \rightarrow 0}\left[\frac{f(r+h)-f(r)}{h}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q3

Question 4.
\(\lim _{x \rightarrow 0}\left[\frac{x}{|x|+x^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q4.1

Question 5.
Find the limit of the function, if it exists, at x = 1
\(f(x)=\left\{\begin{array}{lll}
7-4 x & \text { for } & x<1 \\
x^{2}+2 & \text { for } & x \geq 1
\end{array}\right.\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q5

Question 6.
Given that 7x ≤ f(x) ≤ 3x2 – 6 for all x. Determine the value of \(\lim _{x \rightarrow 3} f(x)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q6

Question 7.
\(\lim _{x \rightarrow 0}\left[\frac{\sec x^{2}-1}{x^{4}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q7
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q7.1

Question 8.
\(\lim _{x \rightarrow 0}\left[\frac{e^{x}+e^{-x}-2}{x \cdot \tan x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q8

Question 9.
\(\lim _{x \rightarrow 0}\left[\frac{x\left(6^{x}-3^{x}\right)}{\cos (6 x)-\cos (4 x)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q9
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q9.1

Question 10.
\(\lim _{x \rightarrow 0}\left[\frac{a^{3 x}-a^{2 x}-a^{x}+1}{x \cdot \tan x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q10

Question 11.
\(\lim _{x \rightarrow a}\left[\frac{\sin x-\sin a}{x-a}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q11

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 12.
\(\lim _{x \rightarrow 2}\left[\frac{\log x-\log 2}{x-2}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q12

Question 13.
\(\lim _{x \rightarrow 1}\left[\frac{a b^{x}-a^{x} b}{x^{2}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q13

Question 14.
\(\lim _{x \rightarrow 0}\left[\frac{\left(5^{x}-1\right)^{2}}{\left(2^{x}-1\right) \log (1+x)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q14
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q14.1

Question 15.
\(\lim _{x \rightarrow \infty}\left[\frac{(2 x+1)^{2}(7 x-3)^{3}}{(5 x+2)^{5}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q15

Question 16.
\(\lim _{x \rightarrow a}\left[\frac{x \cos a-a \cos x}{x-a}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q16
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q16.1

Question 17.
\(\lim _{x \rightarrow \frac{\pi}{4}}\left[\frac{(\sin x-\cos x)^{2}}{\sqrt{2}-\sin x-\cos x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q17
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q17.1

Question 18.
\(\lim _{x \rightarrow 1}\left[\frac{2^{2 x-2}-2^{x}+1}{\sin ^{2}(x-1)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q18

Question 19.
\(\lim _{x \rightarrow 1}\left[\frac{4^{x-1}-2^{x}+1}{(x-1)^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q19
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q19.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 20.
\(\lim _{x \rightarrow 1}\left[\frac{\sqrt{x}-1}{\log x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q20

Question 21.
\(\lim _{x \rightarrow 0}\left(\frac{\sqrt{1-\cos x}}{x}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q21
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q21.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q21.2

Question 22.
\(\lim _{x \rightarrow 1}\left(\frac{x+3 x^{2}+5 x^{3}+\cdots \cdots \cdots \cdots \cdots+(2 n-1) x^{n}-n^{2}}{x-1}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q22
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q22.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q22.2

Question 23.
\(\lim _{x \rightarrow 0} \frac{1}{x^{12}}\left[1-\cos \left(\frac{x^{2}}{2}\right)-\cos \left(\frac{x^{4}}{4}\right)+\cos \left(\frac{x^{2}}{2}\right) \cdot \cos \left(\frac{x^{4}}{4}\right)\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q23
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q23.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 24.
\(\lim _{x \rightarrow \infty}\left(\frac{8 x^{2}+5 x+3}{2 x^{2}-7 x-5}\right)^{\frac{4 x+3}{8 x-1}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q24
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q24.1

State Board Class 11 Maths Solutions

Limits Class 11 Maths 2 Exercise 7.7 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Ex 7.7 Questions and Answers.

11th Maths Part 2 Limits Exercise 7.7 Questions And Answers Maharashtra Board

I. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow \infty}\left[\frac{a x^{3}+b x^{2}+c x+d}{e x^{3}+f x^{2}+g x+h}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 I Q1

Question 2.
\(\lim _{x \rightarrow \infty}\left[\frac{x^{3}+3 x+2}{(x+4)(x-6)(x-3)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 I Q2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7

Question 3.
\(\lim _{x \rightarrow \infty}\left[\frac{7 x^{2}+5 x-3}{8 x^{2}-2 x+7}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 I Q3

II. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow \infty}\left[\frac{7 x^{2}+2 x-3}{\sqrt{x^{4}+x+2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q1.1

Question 2.
\(\lim _{x \rightarrow \infty}\left[\sqrt{x^{2}+4 x+16}-\sqrt{x^{2}+16}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q2.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7

Question 3.
\(\lim _{x \rightarrow \infty}\left[\sqrt{x^{4}+4 x^{2}}-x^{2}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q3.1

III. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow \infty}\left[\frac{\left(3 x^{2}+4\right)\left(4 x^{2}-6\right)\left(5 x^{2}+2\right)}{4 x^{6}+2 x^{4}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q1.1

Question 2.
\(\lim _{x \rightarrow \infty}\left[\frac{(3 x-4)^{3}(4 x+3)^{4}}{(3 x+2)^{7}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q2

Question 3.
\(\lim _{x \rightarrow \infty}[\sqrt{x}(\sqrt{x+1}-\sqrt{x})]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q3.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7

Question 4.
\(\lim _{x \rightarrow \infty}\left[\frac{(2 x-1)^{20}(3 x-1)^{30}}{(2 x+1)^{50}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q4

Question 5.
\(\lim _{x \rightarrow \infty}\left[\frac{\sqrt{x^{2}+5}-\sqrt{x^{2}-3}}{\sqrt{x^{2}+3}-\sqrt{x^{2}+1}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q5
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q5.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q5.2

State Board Class 11 Maths Solutions

Limits Class 11 Maths 2 Exercise 7.6 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Ex 7.6 Questions and Answers.

11th Maths Part 2 Limits Exercise 7.6 Questions And Answers Maharashtra Board

I. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{9^{x}-5^{x}}{4^{x}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q1

Question 2.
\(\lim _{x \rightarrow 0}\left[\frac{5^{x}+3^{x}-2^{x}-1}{x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6

Question 3.
\(\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}-3}{\sin x}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q3

Question 4.
\(\lim _{x \rightarrow 0}\left(\frac{6^{x}+5^{x}+4^{x}-3^{x+1}}{\sin x}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q4.1

Question 5.
\(\lim _{x \rightarrow 0}\left(\frac{8^{\sin x}-2^{\tan x}}{e^{2 x}-1}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q5
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q5.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q5.2

II. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{3^{x}+3^{-x}-2}{x \cdot \tan x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6

Question 2.
\(\lim _{x \rightarrow 0}\left[\frac{3+x}{3-x}\right]^{\frac{1}{x}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q2.1

Question 3.
\(\lim _{x \rightarrow 0}\left[\frac{5 x+3}{3-2 x}\right]^{\frac{2}{x}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q3

Question 4.
\(\lim _{x \rightarrow 0}\left[\frac{\log (3-x)-\log (3+x)}{x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q4

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6

Question 5.
\(\lim _{x \rightarrow 0}\left[\frac{4 x+1}{1-4 x}\right]^{\frac{1}{x}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q5

Question 6.
\(\lim _{x \rightarrow 0}\left[\frac{5+7 x}{5-3 x}\right]^{\frac{1}{3 x}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q6
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q6.1

III. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{a^{x}-b^{x}}{\sin (4 x)-\sin (2 x)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 III Q1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6

Question 2.
\(\lim _{x \rightarrow 0}\left[\frac{\left(2^{x}-1\right)^{3}}{\left(3^{x}-1\right) \cdot \sin x \cdot \log (1+x)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 III Q2

Question 3.
\(\lim _{x \rightarrow 0}\left[\frac{15^{x}-5^{x}-3^{x}+1}{x \cdot \sin x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 III Q3

Question 4.
\(\lim _{x \rightarrow 0}\left[\frac{(25)^{x}-2(5)^{x}+1}{x \cdot \sin x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 III Q4

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6

Question 5.
\(\lim _{x \rightarrow 0}\left[\frac{(49)^{x}-2(35)^{x}+(25)^{x}}{\sin x \cdot \log (1+2 x)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 III Q5
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 III Q5.1

State Board Class 11 Maths Solutions

Limits Class 11 Maths 2 Exercise 7.5 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Ex 7.5 Questions and Answers.

11th Maths Part 2 Limits Exercise 7.5 Questions And Answers Maharashtra Board

I. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow \frac{\pi}{2}}\left[\frac{cosec x-1}{\left(\frac{\pi}{2}-x\right)^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q1.1

Question 2.
\(\lim _{x \rightarrow a} \frac{\sin x-\sin a}{\sqrt[5]{x}-\sqrt[5]{a}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q2.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5

Question 3.
\(\lim _{x \rightarrow \pi}\left[\frac{\sqrt{5+\cos x}-2}{(\pi-x)^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q3.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q3.2

Question 4.
\(\lim _{x \rightarrow \frac{\pi}{6}}\left[\frac{\cos x-\sqrt{3} \sin x}{\pi-6 x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q4.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5

Question 5.
\(\lim _{x \rightarrow 1}\left[\frac{1-x^{2}}{\sin \pi x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q5

II. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow \frac{\pi}{6}}\left[\frac{2 \sin x-1}{\pi-6 x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q1.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5

Question 2.
\(\lim _{x \rightarrow \frac{\pi}{4}}\left[\frac{\sqrt{2}-\cos x-\sin x}{(4 x-\pi)^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q2.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q2.2

Question 3.
\(\lim _{x \rightarrow \frac{\pi}{6}}\left[\frac{2-\sqrt{3} \cos x-\sin x}{(6 x-\pi)^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q3.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q3.2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5

Question 4.
\(\lim _{x \rightarrow a}\left[\frac{\sin (\sqrt{x})-\sin (\sqrt{a})}{x-a}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q4.1

Question 5.
\(\lim _{x \rightarrow \frac{\pi}{2}}\left[\frac{\cos 3 x+3 \cos x}{(2 x-\pi)^{3}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q5
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q5.1

State Board Class 11 Maths Solutions

Limits Class 11 Maths 2 Exercise 7.4 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Ex 7.4 Questions and Answers.

11th Maths Part 2 Limits Exercise 7.4 Questions And Answers Maharashtra Board

I. Evaluate the following limits:

Question 1.
\(\lim _{\theta \rightarrow 0}\left[\frac{\sin (m \theta)}{\tan (n \theta)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 I Q1

Question 2.
\(\lim _{\theta \rightarrow 0}\left[\frac{1-\cos 2 \theta}{\theta^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 I Q2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4

Question 3.
\(\lim _{x \rightarrow 0}\left[\frac{x \cdot \tan x}{1-\cos x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 I Q3

Question 4.
\(\lim _{x \rightarrow 0}\left(\frac{\sec x-1}{x^{2}}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 I Q4

II. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{1-\cos (n x)}{1-\cos (m x)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 II Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 II Q1.1

Question 2.
\(\lim _{x \rightarrow \frac{\pi}{6}}\left[\frac{2-{cosec} x}{\cot ^{2} x-3}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 II Q2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4

Question 3.
\(\lim _{x \rightarrow \frac{\pi}{4}}\left[\frac{\cos x-\sin x}{\cos 2 x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 II Q3

III. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{\cos (a x)-\cos (b x)}{\cos (c x)-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 III Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 III Q1.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 III Q1.2

Question 2.
\(\lim _{x \rightarrow \pi}\left[\frac{\sqrt{1-\cos x}-\sqrt{2}}{\sin ^{2} x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 III Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 III Q2.1

Question 3.
\(\lim _{x \rightarrow \frac{\pi}{4}}\left[\frac{\tan ^{2} x-\cot ^{2} x}{\sec x-{cosec} x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 III Q3

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4

Question 4.
\(\lim _{x \rightarrow \frac{\pi}{6}}\left[\frac{2 \sin ^{2} x+\sin x-1}{2 \sin ^{2} x-3 \sin x+1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 III Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.4 III Q4.1

State Board Class 11 Maths Solutions

Limits Class 11 Maths 2 Exercise 7.3 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Ex 7.3 Questions and Answers.

11th Maths Part 2 Limits Exercise 7.3 Questions And Answers Maharashtra Board

I. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{\sqrt{6+x+x^{2}}-\sqrt{6}}{x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 I Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 I Q1.1

Question 2.
\(\lim _{x \rightarrow 3}\left[\frac{\sqrt{2 x+3}-\sqrt{4 x-3}}{x^{2}-9}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 I Q2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3

Question 3.
\(\lim _{y \rightarrow 0}\left[\frac{\sqrt{1-y^{2}}-\sqrt{1+y^{2}}}{y^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 I Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 I Q3.1

Question 4.
\(\lim _{x \rightarrow 2}\left[\frac{\sqrt{2+x}-\sqrt{6-x}}{\sqrt{x}-\sqrt{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 I Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 I Q4.1

II. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow a}\left[\frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 II Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 II Q1.1

Question 2.
\(\lim _{x \rightarrow 2}\left[\frac{x^{2}-4}{\sqrt{x+2}-\sqrt{3 x-2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 II Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 II Q2.1

Question 3.
\(\lim _{x \rightarrow 2}\left[\frac{\sqrt{1+\sqrt{2+x}}-\sqrt{3}}{x-2}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 II Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 II Q3.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3

Question 4.
\(\lim _{y \rightarrow 0}\left[\frac{\sqrt{a+y}-\sqrt{a}}{y \sqrt{a+y}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 II Q4

Question 5.
\(\lim _{x \rightarrow 0}\left(\frac{\sqrt{x^{2}+9}-\sqrt{2 x^{2}+9}}{\sqrt{3 x^{2}+4}-\sqrt{2 x^{2}+4}}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 II Q5
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 II Q5.1

III. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 1}\left[\frac{x^{2}+x \sqrt{x}-2}{x-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 III Q1

Question 2.
\(\lim _{x \rightarrow 0}\left[\frac{\sqrt{1+x^{2}}-\sqrt{1+x}}{\sqrt{1+x^{3}}-\sqrt{1+x}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 III Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 III Q2.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3

Question 3.
\(\lim _{x \rightarrow 4}\left[\frac{x^{2}+x-20}{\sqrt{3 x+4}-4}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 III Q3

Question 4.
\(\lim _{z \rightarrow 4}\left[\frac{3-\sqrt{5+z}}{1-\sqrt{5-z}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 III Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 III Q4.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3

Question 5.
\(\lim _{x \rightarrow 0}\left(\frac{3}{x \sqrt{9-x}}-\frac{1}{x}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.3 III Q5

State Board Class 11 Maths Solutions

Limits Class 11 Maths 2 Exercise 7.2 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Ex 7.2 Questions and Answers.

11th Maths Part 2 Limits Exercise 7.2 Questions And Answers Maharashtra Board

I. Evaluate the following limits:

Question 1.
\(\lim _{z \rightarrow 2}\left[\frac{z^{2}-5 z+6}{z^{2}-4}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 I Q1

Question 2.
\(\lim _{x \rightarrow-3}\left[\frac{x+3}{x^{2}+4 x+3}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 I Q2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2

Question 3.
\(\lim _{y \rightarrow 0}\left[\frac{5 y^{3}+8 y^{2}}{3 y^{4}-16 y^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 I Q3

Question 4.
\(\lim _{x \rightarrow-2}\left[\frac{-2 x-4}{x^{3}+2 x^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 I Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 I Q4.1

Question 5.
\(\lim _{x \rightarrow 3}\left[\frac{x^{2}+2 x-15}{x^{2}-5 x+6}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 I Q5

II. Evaluate the following limits:

Question 1.
\(\lim _{u \rightarrow 1}\left[\frac{u^{4}-1}{u^{3}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 II Q1

Question 2.
\(\lim _{x \rightarrow 3}\left[\frac{1}{x-3}-\frac{9 x}{x^{3}-27}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 II Q2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2

Question 3.
\(\lim _{x \rightarrow 2}\left[\frac{x^{3}-4 x^{2}+4 x}{x^{2}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 II Q3

Question 4.
\(\lim _{\Delta x \rightarrow 0}\left[\frac{(x+\Delta x)^{2}-2(x+\Delta x)+1-\left(x^{2}-2 x+1\right)}{\Delta x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 II Q4

Question 5.
\(\lim _{x \rightarrow \sqrt{2}}\left[\frac{x^{2}+x \sqrt{2}-4}{x^{2}-3 x \sqrt{2}+4}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 II Q5

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2

Question 6.
\(\lim _{x \rightarrow 2}\left[\frac{x^{3}-7 x+6}{x^{3}-7 x^{2}+16 x-12}\right]\)
Solution:
\(\lim _{x \rightarrow 2}\left[\frac{x^{3}-7 x+6}{x^{3}-7 x^{2}+16 x-12}\right]\)
As x → 2, numerator and denominator both tend to zero
∴ x – 2 is a factor of both.
To find the other factor for both of them, by synthetic division
Consider, Numerator = x3 + 0x2 – 7x + 6
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 II Q6
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 II Q6.1
∴ The limit does not exist

III. Evaluate the following limits:

Question 1.
\(\lim _{y \rightarrow \frac{1}{2}}\left[\frac{1-8 y^{3}}{y-4 y^{3}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 III Q1

Question 2.
\(\lim _{x \rightarrow 1}\left[\frac{x-2}{x^{2}-x}-\frac{1}{x^{3}-3 x^{2}+2 x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 III Q2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2

Question 3.
\(\lim _{x \rightarrow 1}\left[\frac{x^{4}-3 x^{2}+2}{x^{3}-5 x^{2}+3 x+1}\right]\)
Solution:
\(\lim _{x \rightarrow 1}\left[\frac{x^{4}-3 x^{2}+2}{x^{3}-5 x^{2}+3 x+1}\right]\)
As x → 1, numerator and denominator both tend to zero
∴ x – 1 is a factor of both.
To find the factor of numerator and denominator by synthetic division
Consider, numerator = x4 + 0x3 – 3x2 + 0x + 2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 III Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 III Q3.1

Question 4.
\(\lim _{x \rightarrow 1}\left[\frac{x+2}{x^{2}-5 x+4}+\frac{x-4}{3\left(x^{2}-3 x+2\right)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 III Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 III Q4.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2

Question 5.
\(\lim _{x \rightarrow a}\left[\frac{1}{x^{2}-3 a x+2 a^{2}}+\frac{1}{2 x^{2}-3 a x+a^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 III Q5
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.2 III Q5.1

State Board Class 11 Maths Solutions

Limits Class 11 Maths 2 Exercise 7.1 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Ex 7.1 Questions and Answers.

11th Maths Part 2 Limits Exercise 7.1 Questions And Answers Maharashtra Board

I. Evaluate the following limits:

Question 1.
\(\lim _{z \rightarrow-3}\left[\frac{\sqrt{Z+6}}{Z}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 I Q1

Question 2.
\(\lim _{y \rightarrow-3}\left[\frac{y^{5}+243}{y^{3}+27}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 I Q2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1

Question 3.
\(\lim _{z \rightarrow-5}\left[\frac{\left(\frac{1}{z}+\frac{1}{5}\right)}{z+5}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 I Q3

II. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 3}\left[\frac{\sqrt{2 x+6}}{x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 II Q1

Question 2.
\(\lim _{x \rightarrow 2}\left[\frac{x^{-3}-2^{-3}}{x-2}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 II Q2

Question 3.
\(\lim _{x \rightarrow 5}\left[\frac{x^{3}-125}{x^{5}-3125}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 II Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 II Q3.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1

Question 4.
If \(\lim _{x \rightarrow 1}\left[\frac{x^{4}-1}{x-1}\right]=\lim _{x \rightarrow a}\left[\frac{x^{3}-a^{3}}{x-a}\right]\), find all possible values of a.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 II Q4

III. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 1}\left[\frac{x+x^{2}+x^{3}+\ldots \ldots \ldots+x^{n}-n}{x-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 III Q1

Question 2.
\(\lim _{x \rightarrow 7}\left[\frac{(\sqrt[3]{x}-\sqrt[3]{7})(\sqrt[3]{x}+\sqrt[3]{7})}{x-7}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 III Q2

Question 3.
If \(\lim _{x \rightarrow 5}\left[\frac{x^{k}-5^{k}}{x-5}\right]\) = 500, find all possible values of k.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 III Q3

Question 4.
\(\lim _{x \rightarrow 0}\left[\frac{(1-x)^{8}-1}{(1-x)^{2}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 III Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 III Q4.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1

Question 5.
\(\lim _{x \rightarrow 0}\left[\frac{\sqrt[3]{1+x}-\sqrt{1+x}}{x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 III Q5
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 III Q5.1

Question 6.
\(\lim _{y \rightarrow 1}\left[\frac{2 y-2}{\sqrt[3]{7+y}-2}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 III Q6
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 III Q6.1

Question 7.
\(\lim _{z \rightarrow a}\left[\frac{(z+2)^{\frac{3}{2}}-(a+2)^{\frac{3}{2}}}{z-a}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 III Q7

Question 8.
\(\lim _{x \rightarrow 7}\left[\frac{x^{3}-343}{\sqrt{x}-\sqrt{7}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 III Q8

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1

Question 9.
\(\lim _{x \rightarrow 1}\left(\frac{x+x^{3}+x^{5}+\ldots+x^{2 n-1}-n}{x-1}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 III Q9
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1 III Q9.1

IV. In the following examples, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

Question 1.
\(\lim _{x \rightarrow 2}(2 x+3)=7\)
Solution:
We have to find some δ so that
\(\lim _{x \rightarrow 2}(2 x+3)=7\)
Here a = 2, l = 1 and f(x) = 2x + 3
Consider ∈ > 0 and |f(x) – l| < ∈
∴ |(2x + 3) – 7| < ∈
∴ |2x + 4| < ∈
∴ 2(x – 2)|< ∈
∴ |x – 2| < \(\frac{\epsilon}{2}\)
∴ δ ≤ \(\frac{\epsilon}{2}\) such that
|2x + 4| < δ ⇒ |f(x) – 7| < ∈

Question 2.
\(\lim _{x \rightarrow-3}(3 x+2)=-7\)
Solution:
We have to find some δ so that
\(\lim _{x \rightarrow-3}(3 x+2)=-7\)
Here a = -3, l = -7 and f(x) = 3x + 2
Consider ∈ > 0 and |f(x) – l| < ∈
∴ |3x + 2 – (-7)| < ∈
∴ |3x + 9| < ∈
∴ |3(x + 3)| < ∈
∴ |x + 3| < \(\frac{\epsilon}{3}\)
∴ δ < \(\frac{\epsilon}{3}\) such that
|x + 3| ≤ δ ⇒ |f(x) + 7| < ∈

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1

Question 3.
\(\lim _{x \rightarrow 2}\left(x^{2}-1\right)=3\)
Solution:
We have to find some δ > 0 such that
\(\lim _{x \rightarrow 2}\left(x^{2}-1\right)=3\)
Here, a = 2, l = 3 and f(x) = x2 – 1
Consider ∈ > 0 and |f(x) – l| < ∈
∴ |(x2 – 1) – 3| < ∈
∴ |x2 – 4| < ∈
∴ |(x + 2)(x – 2)| < ∈ …..(i)
We have to get rid of the factor |x + 2|
As |x – 2| < δ
-δ < x – 2 < δ
∴ 2 – δ < x < 2 + δ
Since δ can be assumed as very small, let us choose δ < 1
∴ 1 < x < 3
∴ 3 < x + 2 < 5 …..(Adding 2 throughout)
∴ |x + 2| < 5
∴ |(x + 2)(x – 2)| < 5|x – 2| ……(ii)
From (i) and (ii), we get
5|x – 2|< ∈
∴ x – 2 < \(\frac{\epsilon}{5}\)
If δ = \(\frac{\epsilon}{5}\), |x – 2| < δ ⇒ |x2 – 4| < ∈
∴ We choose δ = min{\(\frac{\epsilon}{5}\), 1} then
|x – 2| < δ ⇒ |f(x) – 3| < ∈

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.1

Question 4.
\(\lim _{x \rightarrow 1}\left(x^{2}+x+1\right)=3\)
Solution:
We have to find some δ > 0 such that
\(\lim _{x \rightarrow 1}\left(x^{2}+x+1\right)=3\)
Here a = 1, l = 3 and f(x) = x2 + x + 1
Consider ∈ > 0 and |f(x) – l| < ∈
∴ |x2 + x + 1 – 3| < ∈
∴ |x2 + x – 2| < ∈
∴ |(x + 2)(x – 1)| < ∈ …..(i)
We have to get rid of the factor |x + 2|
As |x – 1| < δ
-δ < x – 1 < δ
∴ 1 – δ < x < 1 + δ
Since δ can be assumed as very small, let us choose δ < 1
∴ 0 < x < 2
∴ 2 < x + 2 < 4
∴ |x + 2| < 4
∴ |(x + 2)(x – 1)|< 4 |x – 1| …..(ii)
From (i) and (ii), we get
4|x – 1| < ∈
∴ |x – 1| < \(\frac{\epsilon}{4}\)
If δ = \(\frac{\epsilon}{4}\),
|x – 1| < δ ⇒ x2 + x – 2 < ∈
∴ We choose δ = min{\(\frac{\epsilon}{4}\), 1} then
|x – 1| < δ ⇒ |f(x) – 3| < ∈

State Board Class 11 Maths Solutions

Functions Class 11 Maths 2 Exercise 6.2 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 6 Functions Ex 6.2 Questions and Answers.

11th Maths Part 2 Functions Exercise 6.2 Questions And Answers Maharashtra Board

Question 1.
If f(x) = 3x + 5, g(x) = 6x – 1, then find
(i) (f + g) (x)
(ii) (f – g) (2)
(iii) (fg) (3)
(iv) (f/g) (x) and its domain
Solution:
f(x) = 3x + 5, g (x) = 6x – 1
(i) (f + g) (x) = f (x) + g (x)
= 3x + 5 + 6x – 1
= 9x + 4

(ii) (f – g) (2) = f(2) – g(2)
= [3(2) + 5] – [6(2) – 1]
= 6 + 5 – 12 + 1
= 0

(iii) (fg) (3) = f (3) g(3)
= [3(3) + 5] [6(3) – 1]
= (14) (17)
= 238

(iv) \(\left(\frac{\mathrm{f}}{\mathrm{g}}\right)(x)=\frac{\mathrm{f}(x)}{\mathrm{g}(x)}=\frac{3 x+5}{6 x-1}, x \neq \frac{1}{6}\)
Domain = R – {\(\frac{1}{6}\)}

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.2

Question 2.
Let f: (2, 4, 5} → {2, 3, 6} and g: {2, 3, 6} → {2, 4} be given by f = {(2, 3), (4, 6), (5, 2)} and g = {(2, 4), (3, 4), (6, 2)}. Write down gof.
Solution:
f = {(2, 3), (4, 6), (5, 2)}
∴ f(2) = 3, f(4) = 6, f(5) = 2
g ={(2, 4), (3, 4), (6, 2)}
∴ g(2) = 4, g(3) = 4, g(6) = 2
gof: {2, 4, 5} → {2, 4}
(gof) (2) = g(f(2)) = g(3) = 4
(gof) (4) = g(f(4)) = g(6) = 2
(gof) (5) = g(f(5)) = g(2) = 4
∴ gof = {(2, 4), (4, 2), (5, 4)}

Question 3.
If f(x) = 2x2 + 3, g(x) = 5x – 2, then find
(i) fog
(ii) gof
(iii) fof
(iv) gog
Solution:
f(x) = 2x2 + 3, g(x) = 5x – 2
(i) (fog) (x) = f(g(x))
= f(5x – 2)
= 2(5x – 2)2 + 3
= 2(25x2 – 20x + 4) + 3
= 50x2 – 40x + 11

(ii) (gof) (x) = g(f(x))
= g(2x2 + 3)
= 5(2x + 3) – 2
= 10x2 + 13

(iii) (fof) (x) = f(f(x))
= f(2x2 + 3)
= 2(2x2 + 3)2 + 3
= 2(4x4 + 12x2 + 9) + 3
= 8x4 + 24x2 + 21

(iv) (gog) (x) = g(g(x))
= g(5x – 2)
= 5(5x – 2) – 2
= 25x – 12

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.2

Question 4.
Verify that f and g are inverse functions of each other, where
(i) f(x) = \(\frac{x-7}{4}\), g(x) = 4x + 7
(ii) f(x) = x3 + 4, g(x) = \(\sqrt[3]{x-4}\)
(iii) f(x) = \(\frac{x+3}{x-2}\), g(x) = \(\frac{2 x+3}{x-1}\)
Solution:
(i) f(x) = \(\frac{x-7}{4}\)
Replacing x by g(x), we get
f[g(x)] = \(\frac{g(x)-7}{4}=\frac{4 x+7-7}{4}\) = x
g(x) = 4x + 7
Replacing x by f(x), we get
g[f(x)] = 4f(x) + 7 = 4(\(\frac{x-7}{4}\)) + 7 = x
Here, f[g(x)] = x and g[f(x)] = x.
∴ f and g are inverse functions of each other.

(ii) f(x) = x3 + 4
Replacing x by g(x), we get
f[g(x)] = [g(x)]3 + 4
= \((\sqrt[3]{x-4})^{3}+4\)
= x – 4 + 4
= x
g(x) = \(\sqrt[3]{x-4}\)
Replacing x by f(x), we get
g[f(x)] = \(\sqrt[3]{f(x)-4}=\sqrt[3]{x^{3}+4-4}=\sqrt[3]{x^{3}}\) = x
Here, f[g(x)] = x and g[f(x)] = x
∴ f and g are inverse functions of each other.

(iii) f(x) = \(\frac{x+3}{x-2}\)
Replacing x by g(x), we get
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.2 Q4 (iii)
Here, f[g(x)] = x and g[f(x)] = x.
∴ f and g are inverse functions of each other.

Question 5.
Check if the following functions have an inverse function. If yes, find the inverse function.
(i) f(x) = 5x2
(ii) f(x) = 8
(iii) f(x) = \(\frac{6 x-7}{3}\)
(iv) f(x) = \(\sqrt{4 x+5}\)
(v) f(x) = 9x3 + 8
(vi) f(x) = Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.2 Q5
Solution:
(i) f(x) = 5x2 = y (say)
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.2 Q5 (i)
For two values (x1 and x2) of x, values of the function are equal.
∴ f is not one-one.
∴ f does not have an inverse.

(ii) f(x) = 8 = y (say)
For every value of x, the value of the function f is the same.
∴ f is not one-one i.e. (many-one) function.
∴ f does not have the inverse.

(iii) f(x) = \(\frac{6 x-7}{3}\)
Let f(x1) = f(x2)
∴ \(\frac{6 x_{1}-7}{3}=\frac{6 x_{2}-7}{3}\)
∴ x1 = x2
∴ f is a one-one function.
f(x) = \(\frac{6 x-7}{3}\) = y (say)
∴ x = \(\frac{3y+7}{6}\)
∴ For every y, we can get x
∴ f is an onto function.
∴ x = \(\frac{3y+7}{6}\) = f-1 (y)
Replacing y by x, we get
f-1 (x) = \(\frac{3x+7}{6}\)

(iv) f(x) = \(\sqrt{4 x+5}, x \geq \frac{-5}{4}\)
Let f(x1) = f(x2)
∴ \(\sqrt{4 x_{1}+5}=\sqrt{4 x_{2}+5}\)
∴ x1 = x2
∴ f is a one-one function.
f(x) = \(\sqrt{4 x+5}\) = y, (say) y ≥ 0
Squaring on both sides, we get
y2 = 4x + 5
∴ x = \(\frac{y^{2}-5}{4}\)
∴ For every y we can get x.
∴ f is an onto function.
∴ x = \(\frac{y^{2}-5}{4}\) = f-1 (y)
Replacing y by x, we get
f-1 (x) = \(\frac{x^{2}-5}{4}\)

(v) f(x) 9x3 + 8
Let f(x1) = f(x2)
∴ \(9 x_{1}^{3}+8=9 x_{2}^{3}+8\)
∴ x1 = x2
∴ f is a one-one function.
∴ f(x) = 9x3 + 8 = y, (say)
∴ x = \(\sqrt[3]{\frac{y-8}{9}}\)
∴ For every y we can get x.
∴ f is an onto function.
∴ x = \(\sqrt[3]{\frac{y-8}{9}}\) = f-1 (y)
Replacing y by x, we get
f-1 (x) = \(\sqrt[3]{\frac{x-8}{9}}\)

(vi) f(x) = x + 7, x < 0
= 8 – x, x ≥ 0
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.2 Q5 (vi).1
We observe from the graph that for two values of x, say x1, x2 the values of the function are equal.
i.e. f(x1) = f(x2)
∴ f is not one-one (i.e. many-one) function.
∴ f does not have inverse.

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.2

Question 6.
If f(x) = Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.2 Q6, then find
(i) f(3)
(ii) f(2)
(iii) f(0)
Solution:
f(x) = x2 + 3, x ≤ 2
= 5x + 7, x > 2
(i) f(3) = 5(3) + 7
= 15 + 7
= 22

(ii) f(2) = 22 + 3
= 4 + 3
= 7

(iii) f(0) = 02 + 3 = 3

Question 7.
If f(x) = Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.2 Q7, then find
(i) f(-4)
(ii) f(-3)
(iii) f(1)
(iv) f(5)
Solution:
f(x) = 4x – 2, x ≤ -3
= 5, -3 < x < 3
= x2, x ≥ 3
(i) f(-4) = 4(-4) – 2
= -16 – 2
= -18

(ii) f(-3) = 4(-3) – 2
= -12 – 2
= -14

(iii) f(1) = 5

(iv) f(5) = 52 = 25

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.2

Question 8.
If f(x) = 2 |x| + 3x, then find
(i) f(2)
(ii) f(-5)
Solution:
f(x) = 2 |x| + 3x
(i) f(2) = 2|2| + 3(2)
= 2 (2) + 6 ….. [∵ |x| = x, x > 0]
= 10

(ii) f(-5) = 2 |-5| + 3(-5)
= 2(5) – 15 …..[∵ |x| = -x, x < 0]
= 10 – 15
= -5

Question 9.
If f(x) = 4[x] – 3, where [x] is greatest integer function of x, then find
(i) f(7.2)
(ii) f(0.5)
(iii) \(f\left(-\frac{5}{2}\right)\)
(iv) f(2π), where π = 3.14
Solution:
f(x) = 4[x] – 3
(i) f(7.2) = 4 [7.2] – 3
= 4(7) – 3 ………[∵ 7 ≤ 7.2 < 8, [7.2] = 7]
= 25

(ii) f(0.5) = 4[0.5] – 3
= 4(0) – 3 ………[∵ 0 ≤ 0.5 < 1, [0.5] = 0]
= -3

(iii) \(f\left(-\frac{5}{2}\right)\) = f(-2.5)
= 4[-2.5] – 3
= 4(-3) – 3 …….[∵-3 ≤ -2.5 ≤ -2, [-2.5] = -3]
= -15

(iv) f(2π) = 4[2π] – 3
= 4[6.28] – 3 …..[∵ π = 3.14]
= 4(6) – 3 …….[∵ 6 ≤ 6.28 < 7, [6.28] = 6]
= 21

Question 10.
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find
(i) f(-1)
(ii) f(\(\frac{1}{4}\))
(iii) f(-1.2)
(iv) f(-6)
Solution:
f(x) = 2{x} + 5x
(i) {-1} = -1 – [-1] = -1 + 1 = 0
∴ f(-1) = 2 {-1} + 5(-1)
= 2(0) – 5
= -5

(ii) {\(\frac{1}{4}\)} = \(\frac{1}{4}\) – [latex]\frac{1}{4}[/latex] = \(\frac{1}{4}\) – 0 = \(\frac{1}{4}\)
f(\(\frac{1}{4}\)) = 2{\(\frac{1}{4}\)} + 5(\(\frac{1}{4}\))
= 2(\(\frac{1}{4}\)) + \(\frac{5}{4}\)
= \(\frac{7}{4}\)
= 1.75

(iii) {-1.2} = -1.2 – [-1.2] = -1.2 + 2 = 0.8
f(-1.2) = 2{-1.2} + 5(-1.2)
= 2(0.8) + (-6)
= -4.4

(iv) {-6} = -6 – [-6] = -6 + 6 = 0
f(-6) = 2{-6} + 5(-6)
= 2(0) – 30
= -30

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.2

Question 11.
Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function.
(i) |x + 4| ≥ 5
(ii) |x – 4| + |x – 2| = 3
(iii) x2 + 7|x| + 12 = 0
(iv) |x| ≤ 3
(v) 2|x| = 5
(vi) [x + [x + [x]]] = 9
(vii) {x} > 4
(viii) {x} = o
(ix) {x} = 0.5
(x) 2{x} = x + [x]
Solution:
(i) |x + 4| ≥ 5
The solution of |x| ≥ a is x ≤ -a or x ≥ a
∴ |x + 4| ≥ 5 gives
∴ x + 4 ≤ -5 or x + 4 ≥ 5
∴ x ≤ -5 – 4 or x ≥ 5 – 4
∴ x ≤ -9 or x ≥ 1
∴ The solution set = (-∞, – 9] ∪ [1, ∞)

(ii) |x – 4| + |x – 2| = 3 …..(i)
Case I: x < 2
Equation (i) reduces to
4 – x + 2 – x = 3 …….[x < 2 < 4, x – 4 < 0, x – 2 < 0]
∴ 6 – 3 = 2x
∴ x = \(\frac{3}{2}\)

Case II: 2 ≤ x < 4
Equation (i) reduces to
4 – x + x – 2 = 3
∴ 2 = 3 (absurd)
There is no solution in [2, 4)

Case III: x ≥ 4
Equation (i) reduces to
x – 4 + x – 2 = 3
∴ 2x = 6 + 3 = 9
∴ x = \(\frac{9}{2}\)
∴ x = \(\frac{3}{2}\), \(\frac{9}{2}\) are solutions.
The solution set = {\(\frac{3}{2}\), \(\frac{9}{2}\)}

(iii) x2 + 7|x| + 12 = 0
∴ (|x|)2 + 7|x| + 12 = 0
∴ (|x| + 3) (|x| + 4) = 0
∴ There is no x that satisfies the equation.
The solution set = { } or Φ

(iv) |x| ≤ 3 The solution set of |x| ≤ a is -a ≤ x ≤ a
∴ The required solution is -3 ≤ x ≤ 3
∴ The solution set is [-3, 3]

(v) 2|x| = 5
∴ |x| = \(\frac{5}{2}\)
∴ x = ±\(\frac{5}{2}\)

(vi) [x + [x + [x]]] = 9
∴ [x + [x] + [x] ] = 9 …….[[x + n] = [x] + n, if n is an integer]
∴ [x + 2[x]] = 9
∴ [x] + 2[x] = 9 …..[[2[x] is an integer]]
∴ [x] = 3
∴ x ∈ [3, 4)

(vii) {x} > 4
This is a meaningless statement as 0 ≤ {x} < 1
∴ The solution set = { } or Φ

(viii) {x} = 0
∴ x is an integer
∴ The solution set is Z.

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.2

(ix) {x} = 0.5
∴ x = ….., -2.5, -1.5, -0.5, 0.5, 1.5, …..
∴ The solution set = {x : x = n + 0.5, n ∈ Z}

(x) 2{x} = x + [x]
= [x] + {x} + [x] ……[x = [x] + {x}]
∴ {x} = 2[x]
R.H.S. is an integer
∴ L.H.S. is an integer
∴ {x} = 0
∴ [x] = 0
∴ x = 0

11th Maths Practical Handbook Pdf