Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

Balbharti Maharashtra State Board 11th Chemistry Textbook Solutions Chapter 13 Nuclear Chemistry and Radioactivity Textbook Exercise Questions and Answers.

Maharashtra State Board 11th Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

1. Choose the correct option.

Question A.
Identify nuclear fusion reaction
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 1
Answer:
Among the given options, reactions (i) and (ii) represent nuclear fusion reactions wherein lighter nuclei combine to form a heavy nucleus.

Question B.
The missing particle from the nuclear reaction is
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 2
Answer:
(A) \({ }_{15}^{30} \mathrm{P}\)

Question C.
\({ }_{27}^{60} \mathrm{CO}\) decays with half-life of 5.27 years to produce \({ }_{28}^{60} \mathrm{Ni}\). What is the decay constant for such radioactive disintegration ?
a. 0.132 y-1
b. 0.138
c. 29.6 y
d. 13.8%
Answer:
a. 0.132 y-1

Question D.
The radioactive isotope used in the treatment of Leukemia is
a. 60Co
b. 226Ra
c. 32P
d. 131I
Answer:
c. 32P

Question E.
The process by which nuclei having low masses are united to form nuclei with large masses is
a. chemical reaction
b. nuclear fission
c. nuclear fusion
d. chain reaction
Answer:
c. nuclear fusion

Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

2. Explain

Question A.
On the basis of even-odd of protons and neutrons, what type of nuclides are most stable ?
Answer:

  • Nuclides with even number of protons (Z) and even number of neutrons (N) are most stable.
  • These nuclides tend to form proton-proton and neutron-neutron pairs.
  • This impart stability to the nucleus.

Question B.
Explain in brief, nuclear fission.
Answer:
i. Nuclear fission: It is a process which involves splitting of the heavy nucleus of an atom into two nearly equal fragments accompanied by release of the large amount of energy.
e.g. Nuclear fission of 235U

ii. When a uranium nucleus absorbs neutron, it breaks into two lighter fragments and releases energy (heat), more neutrons, and other radiation. This can be given as,
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 3

iii. Characteristics of nuclear fission reactions:

  • The mass of the fission products is less than the parent nucleus. A large amount of energy corresponding to the mass loss is released in each fission.
  • When one uranium 235 nucleus undergoes fission, three neutrons are emitted, which subsequently disintegrate three more uranium nuclei and thereby produce nine neutrons. Such a chain continues by itself.
  • In a very short time enormous amount of energy is liberated, which can be utilized for destructive or peaceful purposes.
  • Energy released per fission is approximately 200 MeV.

Note:

  • Each fission may lead to different products.
  • There is no unique way for fission of 235U that produces Ba and Kr. There are 400 ways for fission of 235U leading to 800 fission products.
  • Many of these fission products are radioactive which undergo spontaneous disintegrations giving rise to new elements in the periodic table.

Question C.
The nuclides with odd number of both protons and neutrons are the least stable. Why ?
Answer:

  • The nuclides with odd number of both protons and neutrons are the least stable because, odd number of protons and neutrons results in the presence of two unpaired nucleons.
  • These unpaired nucleons result in instability. Hence, such nuclides are the least stable.

Question D.
Referring the stabilty belt of stable nuclides, which nuclides are β and β+ emitters ? Why ?
Answer:

  • Beta decay occurs when an unstable nucleus emits a beta particle and energy. A beta particle is either an electron or a positron. An electron is a negatively charged particle, and a positron is a positively charged electron (or anti-electron).
  • When the beta particle is an electron, the decay is called beta-minus (β) decay. In beta-minus decay, a neutron breaks down to a proton and an electron, and the electron is emitted from the nucleus.
  • When the beta particle is a positron, the decay is called beta-plus (β+) decay. In beta-plus decay, a proton breaks down to a neutron and a positron, and the positron is emitted from the nucleus.
  • Thus, beta-minus decay occurs when a nucleus has too many neutrons relative to protons (i.e., N/Z > 1) and beta-plus decay occurs when a nucleus has too few neutrons relative to protons (i.e., N/Z < 1).
  • By referring the stability belt of stable nuclides, nuclides with N/Z > 1 are to the left of the stability zone. Such nuclides are beta-minus emitters as they become stable when a neutron converts to a proton.
  • Nuclides with N/Z < 1 are to the right of the stability zone. Such nuclides are beta-plus emitters as they become stable when a proton converts to a neutron.

Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

Question E.
Explain with an example each nuclear transmutation and artifiacial radioactivity. What is the difference between them ?
Answer:
i. Nuclear transmutation: It involves transformation of a stable nucleus into another nucleus takes place which can be either stable or unstable.
ii. Artificial (induced) radioactivity: It is nuclear transmutation where the product nucleus is radioactive. The product nucleus decays spontaneously with emission of radiation and particles.
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 4
Step-I can be considered as nuclear transmutation as it produces a new nuclide \({ }_{7}^{13} \mathrm{~N}\).
However, the new nuclide is unstable (radioactive). Hence, step-I involves artificial (induced) radioactivity. Thus, in artificial transmutation, a stable element is collided with high speed particles to form another radioactive element.

Question F.
What is binding energy per nucleon ? Explain with the help of diagram how binding energy per nucleon affects nuclear stability ?
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 5
i. Binding energy per nucleon (\(\overline{\mathrm{B}}\)), for nucleus containing (A) nucleons with binding energy (B.E.) is given as,
\(\overline{\mathrm{B}}\) = B.E./A
ii. Mean binding energy per nucleon (\(\overline{\mathrm{B}}\)) for the most stable isotopes as a function of mass number is shown above. This plot leads to the following inferences:
a. Light nuclides: (A < 30)
The peaks with A values in multiples of 4. For example, \({ }_{2}^{4} \mathrm{He},{ }_{6}^{12} \mathrm{C},{ }_{8}^{16} \mathrm{O}\) are more stable.
b. Medium mass nuclides: (30 < A < 90)
\(\overline{\mathrm{B}}\) increases typically from 8 MeV for A = 16 to nearly 8.3 MeV for A between 28 and 32 and it remains nearly constant 8.5 MeV beyond this and shows a broad maximum. The nuclides falling on the maximum are most stable which turns possess high values. 56Fe with \(\overline{\mathrm{B}}\) value of 8.79 MeV is the most stable.
c. Heavy nuclides (A > 90)
\(\overline{\mathrm{B}}\) decreases from maximum 8.79 MeV to 7.7 MeV for A ≅ 210, 209Bi is the stable nuclide. Beyond this, all nuclides are radioactive (α-emitters).

Question G.
Explain with example α-decay.
Answer:
i. The emission of α-particle from the nuclei of an radioelement is called α-decay.
ii. The charge on an α-particle is +2 with a mass of 4 u.
It is identical with helium nucleus and hence an α-particle is designated as \({ }_{2}^{4} \mathrm{He}\).
iii. In the α-decay process, the parent nucleus \({ }_{\mathrm{z}}^{\mathrm{A}} \mathrm{X}\) emits an α-particle and produces daughter nucleus Y. The parent nucleus thus loses two protons (charge +2) and two neutrons. The total mass lost is 4 u. The daughter nucleus will therefore, have mass 4 units less and charge 2 units less than its parent.
iv. General equation for α-decay process can be given as:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 6
In α-decay process of radium, radon (daughter nuclei) is formed with loses of two protons (charge +2) and two neutrons. The total mass lost is 4 u.
Thus, radon has a mass of 4 units less and charge 2 units less than its parent radium.

Question H.
Energy produced in nuclear fusion is much larger than that produced in nuclear fission. Why is it difficult to use fusion to produce energy ?
Answer:

  • Nuclear fusion involves the fusion of lighter nuclei to form a heavy nucleus which is accompanied by an enormous amount of energy (heat).
  • Fusion reaction requires extremely high temperature typically of the order of 108 K.

Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

Question I.
How does N/Z ratio affect the nuclear stability ? Explain with a suitable diagram.
Answer:

  • When the graph of number of neutrons (N) against protons (Z) is drawn, and all the stable isotopes are plotted on it, there is quite a clear correlation between N and Z. This graph is shown in the adjacent figure.
  • A large number of elements have several stable isotopes and hence, the curve appears as a belt or zone called stability zone. All stable nuclides fall with this zone and the nuclei that are to the left or to the right of the stability zone are unstable and exhibit radioactivity. Below the belt, a straight line which represents the ratio N/Z to be nearly unity (i.e., N = Z) is shown.
  • For nuclei lighter than \({ }_{20}^{40} \mathrm{Ca}\), the straight line (N = Z) passes through the belt. The lighter nuclides are therefore stable (N/Z being 1).
  • The N/Z ratio for the stable nuclides heavier than calcium gives a curved appearance to the belt with gradual increase of N/Z (> 1). The heavier nuclides therefore, need more number of neutrons than protons to attain stability. The heavier nuclides with increasing number of protons render large coulombic repulsions. With increased number of neutrons, the protons within the nuclei get more separated, which renders them stable.
  • Thus, nuclear stability is linked to the number of nucleons (neutrons and protons). In general, the lighter stable nuclei have equal numbers of protons and neutrons while heavier stable nuclei have increasingly more neutrons than protons.

Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 7
[Note: Atoms with unstable nuclei are radioactive (exhibit radioactivity). To become more stable, the nuclei undergo radioactive decay.]

Question J.
You are given a very old sample of wood. How will you determine its age ?
Answer:
The age of the wood sample can be determined by radiocarbon dating as 14C becomes a part of a plant due to the photosynthesis reaction (i.e., absorption of [14CO2 + 12CO2]).
i. The activity (N) of given wood sample and that of fresh sample of live plant (N0) is measured, where, N0 denotes the activity of the given sample at the time of death.
ii. The age of the given wood sample. can be determined by applying following Formulae:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 8
Note: The oldest rock found so far in Northern Canada is 3.96 billion years old.

3. Answer the following question

Question A.
Give example of mirror nuclei.
Answer:
Example of mirror nuclei: \({ }_{1}^{3} \mathrm{H}\) and \({ }_{2}^{3} \mathrm{He}\)

Question B.
Balance the nuclear reaction:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 9
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 10

Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

Question C.
Name the most stable nuclide known. Write two factors responsible for its stability.
Answer:
The most stable nuclide known is lead (\({ }_{82}^{208} \mathrm{~Pb}\)).
Two factors responsible for its stability are as follows:

  • It is a nuclide with even number of both protons (Z) and neutrons (N).
  • It has two magic numbers i.e., 82 (for protons) and 126 (for neutrons).

Question D.
Write relation between decay constant of a radioelement and its half life.
Answer:
Relation between decay constant of a radioelement and its half-life is given as, λ = \(\frac{0.693}{\mathrm{t}_{1 / 2}}\)
Where, λ = Decay constant, t1/2 = Half-life of a radioelement

Question E.
What is the difference between an α-particle and helium atom ?
Answer:

  • Helium atom is composed of 2 protons and 2 neutrons (or 1 neutron) along with 2 electrons in the outer shell.
  • On the other hand, α-particle constitutes 2 protons and 2 neutrons bound together to form a particle which is similar to helium (except presence of electrons).
  • Helium is one of the inert gas which is stable (duplet complete) whereas α-particle is unstable and highly reactive.

Question F.
Write one point that differentiates nuclear reations from chemical reactions.
Answer:
Chemical reactions:

  • Rearrangement of atoms by breaking and forming of chemical bonds.
  • Different isotopes of an element have same behaviour.

Nuclear reactions:

  • Elements or isotopes of one element are converted into another element in a nuclear reaction.
  • Isotopes of an element behave differently.

Question G.
Write pairs of isotones and one pair of mirror nuclei from the following :
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 11
Answer:
Isotones: i. \({ }_{5}^{10} \mathrm{~B} \text { and }{ }_{6}^{11} \mathrm{C}\)
ii. \({ }_{13}^{27} \mathrm{Al} \text { and }{ }_{14}^{28} \mathrm{~S}\)
Mirror nuclei: Since there are no isobars the given set of nuclides does not contain a pair of mirror nuclei.

Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

Question H.
Derive the relationship between half life and decay constant of a radioelement.
Answer:
Equation for the decay constant is given as,
λ = \(\frac{2.303}{t} \log _{10} \frac{\mathrm{N}_{0}}{\mathrm{~N}}\) …(i)
Where, λ = Decay constant
N = Number of nuclei (atoms) present at time t
At t = 0, N = N0.
Hence, at t = t1/2, N = N0/2
Substitution of these values of N and t in equation (i) gives,
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 12

Question I.
Represent graphically log10 (activity /dps) versus t/s. What is its slope ?
Answer:
Equation for a decay constant (λ) is given as,
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 13
Hence, instead if log10N versus t, log10 \(\left(\frac{-\mathrm{d} \mathrm{N}}{\mathrm{dt}}\right)\) which is log10 (activity) is plotted.
The graph of log10 (activity/dps) versus t/s gives a straight line which can be represented as follows:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 14

Question J.
Write two units of radioactivity. How are they interrelated ?
Answer:
The unit of radioactivity is curie (Ci).
1 Ci = 3.7 × 1010 dps
ii. Other unit of radioactivity is Becquerel (Bq).
1 Bq = 1 dps
Thus, 1 Ci = 3.7 × 1010 dps = 3.7 × 1010 Bq

Question K.
Half life of 24Na is 900 minutes. What is its decay constant?
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 15

Question L.
Decay constant of 197Hg is 0.017 h-1. What is its half life ?
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 16

Question M.
The total binding energy of 58Ni is 508 MeV. What is its binding energy per nucleon ?
Answer:
Given: B.E. of 58Ni = 508 MeV,
A = 58
To find: Binding energy per nucleon \(\bar{B}\)
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 17

Question N.
Atomic mass of \({ }_{16}^{32} \mathrm{~S}\) is 31.97 u. If masses of neutron and H atom are 1.0087 u and 1.0078 u respectively. What is the mass defect ?
Answer:
Given: m = 31.97 u, Z = 16, A = 32
mn = 1.0087 u
mH = 1.0078 u
To find: Δm
Formula: Δm = ZmH + (A – Z)mn – m
Calculation: Δm = ZmH + (A – Z)mn – m
= 16 × 1.0078 + (16 × 1.0087) – 31.97
= [16.1248 + 16.1392] – 31.97
= 0.294 u
Ans: The mass defect is 0.294 u.

Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

Question O.
Write the fusion reactions occuring in the Sun and stars.
Answer:
Fusion reactions occurring in the Sun and stars are can be represented as,
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 18

Question P.
How many α and β – particles are emitted in the trasmutation
\({ }_{90}^{232} \mathrm{Th} \longrightarrow{ }_{82}^{208} \mathrm{~Pb}\)
Answer:
\({ }_{90}^{232} \mathrm{Th} \longrightarrow{ }_{82}^{208} \mathrm{~Pb}\)
The emission of one α-particle decreases the mass number by 4 whereas the emission of β-particles has no effect on mass number.
Net decrease in mass number = 232 – 208 = 24.
This decrease is only due to α-particles. Hence, number of α-particles emitted = \(\frac {24}{4}\) = 6
Now, the emission of one α-particle decrease the atomic number by 2 and one β-particle emission increases it by 1.
The net decrease in atomic number = 90 – 82 = 8
The emission of 6 α-particles causes decrease in atomic number by 12. However, the actual decrease is only 8. Thus, atomic number increases by 4. This increase is due to emission of 4 β-particles.
Thus, 6 α and 4 β-particles are emitted.

Question Q.
A produces B by α- emission. If B is in the group 16 of periodic table, what is the group of A ?
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 19
When α-emission occurs, atomic number decreases by 2 and atomic mass number by 4.
Thus, if ‘B’ belongs to group 16 of periodic table, that means outermost orbit will contain 6 electrons.
Thus, ‘A’ will have 8 electrons in its valence shell and it will belong to group 18 of the periodic table.

Question R.
Find the number of α and β- particles emitted in the process
\({ }_{86}^{222} \mathrm{Rn} \longrightarrow{ }_{84}^{214} \mathrm{PO}\)
Answer:
The emission of one α-particle decreases the mass number by 4 whereas the emission of β-particles has no effect on mass number.
Net decrease in mass number = 222 – 214 = 8. This decrease is only due to α-particle. Hence, number of α-particle emitted = 8/4 = 2
Now, the emission of one α-particle decreases the atomic number by 2 and one β-particle emission increases it by 1.
The net decrease in atomic number = 86 – 84 = 2
The emission of 2 α-particles causes decrease in atomic number by 4. However, the actual decrease is only 2. It means atomic number increases by 2. This increase is due to emission of 2 β-particles.
Thus, 2 α and 2 β-particles are emitted.

[Note: The above question is modified to include the final decay product so as to determine the number of α-particles and β-particles emitted in the process. Here, the final decay product is assumed to be Po-214.]

Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

4. Solve the problems

Question A.
Half life of 18F is 110 minutes. What fraction of 18F sample decays in 20 minutes ?
Answer:
Given: t1/2 = 110 min
t = 20 min
To find: Fraction of 18F simple that decays
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 20
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 21
∴ Fraction of 18F sample that decays = 1 – 0.882 = 0.118
Ans: Fraction of 18F sample that decays in 20 minutes is 0.118.

Question B.
Half life of 35S is 87.8 d. What percentage of 35S sample remains after 180 d ?
Answer:
Given: t1/2 = 87.8 d,
N0 = 100,
t = 180 d
To find: % of 35S that remains after 180 days
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 22

Question C.
Half life 67Ga is 78 h. How long will it take to decay 12% of sample of Ga ?
Answer:
Given: t1/2 = 78 h,
N0 = 100,
N = 100 – 12 = 88
To find: t
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 23
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 24

Question D.
0.5 g Sample of 201Tl decays to 0.0788 g in 8 days. What is its half life ?
Answer:
Given: N0 = 0.5 g,
N = 0.0788 g,
t = 8 days
To find: t1/2
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 25

Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

Question E.
65% of 111In sample decays in 4.2 d. What is its half life ?
Answer:
Given: N0 = 100,
N = 100 – 65 = 35,
t = 4.2d
To find: t1/2
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 26
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 27

Question F.
Calculate the binding energy per nucleon of \({ }_{36}^{84} \mathrm{Kr}\) whose atomic mass is 83.913 u. (Mass of neutron is 1.0087 u and that of H atom is 1.0078 u).
Answer:
Given: A = 84, Z = 36,
m = 83.913 u
mn = 1.0087 u
mH = 1.0078 u
To find: Binding energy per nucleon \((\bar{B})\)
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 28

Question G.
Calculate the energy in Mev released in the nuclear reaction
\({ }_{77}^{174} \mathrm{Ir} \longrightarrow{ }_{75}^{170} \mathrm{Re}+{ }_{2}^{4} \mathrm{He}\)
Atomic masses : Ir = 173.97 u,
Re = 169.96 u and
He = 4.0026 u
Answer:
Given: mIr= 173.97 u
mRe = 169.96 u
mHe = 4.0026 u
To find: Energy released
Formulae: i. Δm = (mass of 174Ir) – (mass of 170Re + mass of 4He)
ii. E = Δm × 931.4 MeV
Calculation:i. Δm = (mass of 174Ir) – (mass of 170Re + mass of 4He)
= 173.97 – (169.96 + 4.0026)
= 7.4 × 10-3 u
ii. E = Δm × 931.4
= 7.4 × 10-3 × 931.4
= 6.89236 MeV ≈ 6.892 MeV
Ans: The energy released in given nuclear reaction is 6.892 MeV.

Question H.
A 3/4 of the original amount of radioisotope decays in 60 minutes. What is its half life ?
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 29

Question I.
How many – particles are emitted by 0.1 g of 226Ra in one year?
Answer:
Given: t = 1 y,
Amount of sample = 0.1 g
To find: Number of particles emitted
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 30
Activity = \(\frac{-\mathrm{d} \mathrm{N}}{\mathrm{dt}}\) = λN
= 4.28 × 10-4 × 2.665 × 1020 atoms
= 1.141 × 1017 particles/year
Ans: Particles emitted by 0.1 g of 226Ra in one year = 1.141 × 1017 particles/year.
[Note: The half-life of radium is 1620 years. In order to apply appropriate textual concept, we have used this value in calculation.]

Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

Question J.
A sample of 32P initially shows activity of one Curie. After 303 days the activity falls to 1.5× 104 dps. What is the half life of 32P ?
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 31

Question K.
Half life of radon is 3.82 d. By what time would 99.9 % of radon will be decayed.
Answer:
Given: t1/2 = 3.82 d,
N0 = 100
N = 100 – 99.9 = 0.1
To find: t
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 32

Question L.
It has been found that the Sun’s mass loss is 4.34 × 109 kg per second. How much energy per second would be radiated into space by the Sun ?
Answer:
Given: Sun’s mass loss = 4.34 × 109 kg per second
To find: Energy radiated per second into space by Sun
calculation: Δm = 4.34 × 109 kg per second
Now, 1.66 × 10-27 kg = 1u
∴ Δm = \(\frac{4.34 \times 10^{9}}{1.66 \times 10^{-27}}\) u per second
= 2.614 × 1036 u per second
Now, 1 u = 931.4 MeV
2.614 × 1036 u per second = 2.614 × 1036 × 931.4
= 2.435 × 1039 MeV/s
Now, 1 MeV = 1.6022 × 10-19 J and 1 eV = 1 × 10-6 MeV
1 MeV = 1.6022 × 10-13 J
= 1.6022 × 10-16 LJ
E = 2.435 × 1039 MeV/s × 1.6022 × 10-16 kJ/MeV
= 3.901 × 1023 kJ/s
Ans: Energy radiated per second into space by Sun is 3.901 × 1023 kJ/s.

Question M.
A sample of old wood shows 7.0 dps/g. If the fresh sample of tree shows 16.0 dps/g, How old is the given sample of wood ? Half life of 14C 5730 y.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 33

Activity :

1. Discuss five applications of radioactivity for peaceful purpose.
Answer:

  • Development in earth sciences: Like to understand various geographical changes occurring on earth.
  • Development in space technology: To study nuclear reactions in stars which may lead to new discoveries.
  • Development in medical sciences: Diagnosis and treatment of various diseases.
  • Development in industries: As a potent source of electricity or a power generator.
  • Development in agriculture: To study or monitor changes in soil like uptake of nutrients from the soil etc.

[Note: Students can use above points are reference to discuss topic in class].

2. Organize a trip to Bhabha Atomic Reasearch Centre, Mumbai to learn about nuclear reactor. This will have to be organized through your college.
Answer:
Students are expected to visit the place to understand more about nuclear reactors.

Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

11th Chemistry Digest Chapter 13 Nuclear Chemistry and Radioactivity Intext Questions and Answers

Do you know? (Textbook Page no. 190)

Question 1.
How small is the nucleus in comparison to the rest of the atom?
Answer:
The radius of nucleus is of the order of 10-15 m whereas that of the outer sphere is of the order of 10-10 m. The size of outer sphere, is 105 times larger than the nucleus i.e., if we consider the atom of size of football stadium then its nucleus will be the size of a pea.

(Textbook Page no. 191)

Question 1.
Identify the following nuclides as: isotopes, isobars and isotones.
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 34
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 35

(Textbook Page No. 194)

Question 1.
i. What do you understand by the term rate of decay and give its mathematical expression.
ii. Why is minus sign required in the expression of decay rate?
Answer:
i. Rate of decay of a radioelement denotes the number of nuclei of its atoms which decay in unit time. It is also called activity of radioelement.
Rate of decay at any time t can be expressed as follows:
Rate of decay (activity) = \(-\frac{\mathrm{d} \mathrm{N}}{\mathrm{dt}}\)
where, dN is the number of nuclei that decay within time interval dt.
ii. Minus sign in the expression indicates that the number of nuclei decreases with time. Therefore, dN is a negative quantity. But, the rate of decay is a positive quantity. The negative sign is introduced in the rate expression to make the rate positive.

Try this. (Textbook Page No. 194)

Question 1.
Prepare a chart of comparative properties of the above three types of radiations.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 36

Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

Just think (Textbook Page No. 195)

Question 1.
Does half-life increase, decrease or remain constant? Explain.
Answer:
Half-life of a particular radioelement remains constant at a given instant. A radioactive half-life refers to the amount of time it takes for half of the original isotope to decay. It is related to decay constant by the expression: t1/2 = 0.693 / λ

From the expression, it is evident that half-life of a radio isotope is dependent only on the decay constant and is independent of the initial amount of the radio isotope. Each successive half-life in which the amount of radio isotope decreases to its half value is the same.
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 37
Thus, half-life remains constant.

Try this (Textbook Page No. 198)

Question 1.
24Mg and 27Al, both undergo (α, n) reactions and the products are radioactive. These emit β particles having positive charge (called positrons). Write balanced nuclear reactions in both.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity 38

Do you know? (Textbook Page No. 198)

Question 1.
What is the critical mass of 235U?
Answer:
i. The critical mass is the minimum mass of uranium-235 required to achieve a self-sustaining fission chain reaction under stated conditions.
ii. The chain reaction in fission of U-235 becomes self-sustaining when the critical mass of uranium-235 is about 50 kilograms.

Maharashtra Board Class 11 Chemistry Solutions Chapter 13 Nuclear Chemistry and Radioactivity

Activity (Textbook Page No. 200)

Question 1.
You have learnt in Std. 9th, medical, industrial and agricultural applications of radioisotopes. Write at least two applications each.
Answer:
i. The uses of radioactive isotopes in the field of medicine:
a. Polycythaemia: The red blood cell count increases in the disease polycythaemia. Phosphorus-32 is used in its treatment.
b. Bone cancer: Strontium-89, strontium-90, samarium-153 and radium-223 are used in the treatment of bone cancer.

ii. The uses of radioactive isotopes in the industrial field:
a. Luminescent paint and radioluminescence: The radioactive substances radium, promethium, tritium with some phosphorus are used to make certain objects visible in the dark.
e.g. Hands of a clock, krypton-85 is used in HID (High Intensity Discharge) lamps.
b. Use in ceramic articles:
1. Luminous colours are used to decorate ceramic tiles, utensils, plates, etc.
2. Uranium oxide was earlier used to colour ceramics.

iii. The uses of radioactive isotopes in the agriculture field:
a. The genes and chromosomes that give seeds its properties like fast growth, higher productivity, etc., can be modified by means of radiation.
b. Onions and potatoes are irradiated with gamma rays from cobalt-60 to prevent their sprouting.

Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

Balbharti Maharashtra State Board 11th Chemistry Textbook Solutions Chapter 2 Introduction to Analytical Chemistry Textbook Exercise Questions and Answers.

Maharashtra State Board 11th Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

1. Choose the correct option

Question A.
The branch of chemistry which deals with the study of separation, identification and quantitative determination of the composition of different substances is called………………..
a. Physical chemistry
b. Inorganic chemistry
c. Organic chemistry
d. Analytical chemistry
Answer:
d. Analytical chemistry

Question B.
Which one of the following properties of matter is Not quantitative in nature?
a. Mass
b. Length
c. Colour
d. Volume
Answer:
c. Colour

Question C.
SI unit of mass is ……..
a. kg
b. mol
c. pound
d. m3
Answer:
a. kg

Question D.
The number of significant figures in 1.50 × 104 g is ………..
a. 2
b. 3
c. 4
d. 6
Answer:
b. 3

Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

Question E.
In Avogadro’s constant 6.022 × 1023 mol-1, the number of significant figures is ……….
a. 3
b. 4
c. 5
d. 6
Answer:
b. 4

Question F.
By decomposition of 25 g of CaCO3, the amount of CaO produced will be ……………….
a. 2.8 g
b. 8.4 g
c. 14.0 g
d. 28.0 g
Answer:
c. 14.0 g

Question G.
How many grams of water will be produced by complete combustion of 12g of methane gas
a. 16
b. 27
c. 36
d. 56
Answer:
b. 27

Question H.
Two elements A (At. mass 75) and B (At. mass 16) combine to give a compound having 75.8 % of A. The formula of the compound is
a. AB
b. A2B
c. AB2
d. A2B3
Answer:
d. A2B3

Question I.
The hydrocarbon contains 79.87 % carbon and 20.13 % of hydrogen. What is its empirical formula ?
a. CH
b. CH2
c. CH3
d. C2H5
Answer:
c. CH3

Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

Question J.
How many grams of oxygen will be required to react completely with 27 g of Al? (Atomic mass : Al = 27, O = 16)
a. 8
b. 16
c. 24
d. 32
Answer:
c. 24

Question K.
In CuSO4.5H2O the percentage of water is ……
(Cu = 63.5, S = 32, O = 16, H = 1)
a. 10 %
b. 36 %
c. 60 %
d. 72 %
Answer:
b. 36 %

Question L.
When two properties of a system are mathematically related to each other, the relation can be deduced by
a. Working out mean deviation
b. Plotting a graph
c. Calculating relative error
d. all the above three
Answer:
b. Plotting a graph

2. Answer the following questions

Question A.
Define : Least count
Answer:
The smallest quantity that can be measured by the measuring equipment is called least count.

Question B.
What do you mean by significant figures? State the rules for deciding significant figures.
Answer:
i. The significant figures in a measurement or result are the number of digits known with certainty plus one uncertain digit.
ii. Rules for deciding significant figures:
a. All non-zero digits are significant.
e.g. 127.34 g contains five significant figures which are 1, 2, 7, 3 and 4.
b. All zeros between two non-zero digits are significant, e.g. 120.007 m contains six significant figures.
c. Zeros on the left of the first non-zero digit are not significant. Such a zero indicates the position of the decimal point.
e.g. 0.025 has two significant figures, 0.005 has one significant figure.
d. Zeros at the end of a number are significant if they are on the right side of the decimal point,
e. g. 0.400 g has three significant figures and 400 g has one significant figure.
e. In numbers written is scientific notation, all digits are significant.
e.g. 2.035 × 102 has four significant figures and 3.25 × 10-5 has three significant figures.

Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

Question C.
Distinguish between accuracy and precision.
Answer:
Accuracy:

  1. Accuracy refers to nearness of the measured value to the true value.
  2. Accuracy represents the correctness of the measurement.
  3. Accuracy is expressed in terms of absolute error and relative error.
  4. Accuracy takes into account the true or accepted value.
  5. Accuracy can be determined by a single measurement.
  6. High accuracy implies smaller error.

Precision:

  1. Precision refers to closeness of multiple readings of the same quantity.
  2. Precision represents the agreement between two or more measured values.
  3. Precision is expressed in terms of absolute deviation and relative deviation.
  4. Precision does not take into account the true or accepted value.
  5. Several measurements are required to determine precision.
  6. High precision implies reproducibility of the readings.

Question D.
Explain the terms percentage composition, empirical formula and molecular formula.
Answer:
Percentage Composition:

  • The percentage composition of a compound is the percentage by weight of each element present in the compound.
  • Quantitative determination of the constituent elements by suitable methods provides the percent elemental composition of a compound.
  • If the percent total is not 100, the difference is considered as percent oxygen.
  • From the percentage composition, the ratio of the atoms of the constituent elements in the molecule is calculated.

Empirical Formula:
The simplest ratio of atoms of the constituent elements in a molecule is called the empirical formula of that compound.
e.g. The empirical formula of benzene is CH.

Molecular Formula:
1. Molecular formula of a compound is the formula which indicates the actual number of atoms of the constituent elements in a molecule.
e.g. The molecular formula of benzene is C6H6.
2. It can be obtained from the experimentally determined values of percent elemental composition and molar mass of that compound.
3. Molecular formula can be obtained from the empirical formula if the molar mass is known.
Molecular formula = r × Empirical formula

Question E.
What is a limiting reagent ? Explain.
Answer:
Limiting reagent:

  • The reactant which gets consumed and limits the amount of product formed is called the limiting reagent.
  • When a chemist carries out a reaction, the reactants are not usually present in exact stoichiometric amounts, that is, in the proportions indicated by the balanced equation.
  • This is because the goal of a reaction is to produce the maximum quantity of a useful compound from the starting materials. Frequently, a large excess of one reactant is supplied to ensure that the more expensive reactant is completely converted into the desired product.
  • The reactant which is present in lesser amount gets consumed after some time and subsequently, no further reaction takes place, whatever be the amount left of the other reactant present.

Hence, limiting reagent is the reactant that gets consumed entirely and limits the reaction.

Question F.
What do you mean by SI units ? What is the SI unit of mass ?
Answer:
i. In 1960, the general conference of weights and measures proposed revised metric system, called International system of Units i.e. SI units, abbreviated from its French name.
ii. The SI unit of mass is kilogram (kg).

Question G.
Explain the following terms
(a) Mole fraction
(b) Molarity
(c) Molality
Answer:
(a) Mole fraction: Mole fraction is the ratio of number of moles of a particular component of a solution to the total number of moles of the solution.

If a substance ‘A’ dissolves in substance ‘B’ and their number of moles are nA and nB, respectively, then the mole fraction of A and B are given as:
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 1

(b) Molarity: Molarity is defined as the number of moles of the solute present in 1 litre of the solution. It is the most widely used unit and is denoted by M.
Molarity is expressed as follows:
Molarity (M) = \(\frac{\text { Number of moles of solute }}{\text { Volume of solution in litres }}\)

Molality: Molality is the number of moles of solute present in 1 kg of solvent. It is denoted by m. Molality is expressed as follows:
Molality (m) = \(\frac{\text { Number of moles of solute }}{\text { Mass of solvent in kilograms }}\)

Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

Question H.
Define : Stoichiometry
Answer:
The study of quantitative relations between the amount of reactants and/or products is called stoichiometry.

Question I.
Why there is a need of rounding off figures during calculation ?
Answer:

  • When performing calculations with measured quantities, the rule is that the accuracy of the final result is limited to the accuracy of the least accurate measurement.
  • In other words, the final result cannot be more accurate than the least accurate number involved in the calculation.
  • Sometimes, the final result of a calculation often contains figures that are not significant.
  • When this occurs, the final result is rounded off.

Question J.
Why does molarity of a solution depend upon temperature ?
Answer:

  • Molarity is the number of moles of the solute present in 1 litre of the solution. Therefore, molarity depends on the volume of the solution.
  • Volume of the solution varies with the change in temperature.

Hence, molarity of a solution depends upon temperature.

Question M.
Define Analytical chemistry. Why is accurate measurement crucial in science?
Answer:
The branch of chemistry which deals with the study of separation, identification, qualitative and quantitative determination of the compositions of different substances, is called analytical chemistry.

1. The accuracy of measurement is of great concern in analytical chemistry. This is because faulty equipment, poor data processing, or human error can lead to inaccurate measurements. Also, there can be intrinsic errors in analytical measurement.
2. When measurements are not accurate, this provides incorrect data that can lead to wrong conclusions. For example, if a laboratory experiment requires a specific amount of a chemical, then measuring the wrong amount may result in an unsafe or unexpected outcome.
3. Hence, the numerical data obtained experimentally are treated mathematically to reach some quantitative conclusion.
4. Also, an analytical chemist has to know how to report the quantitative analytical data, indicating the extent of the accuracy of measurement, perform the mathematical operation, and properly express the quantitative error in the result.

Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

3. Solve the following questions

Question A.
How many significant figures are in each of the following quantities ?
a. 45.26 ft
b. 0.109 in
c. 0.00025 kg
d. 2.3659 × 10-8 cm
e. 52.0 cm3
f. 0.00020 kg
g. 8.50 × 104 mm
h. 300.0 cg
Answer:
a. 4
b. 3
c. 2
d. 5
e. 3
f. 2
g. 3
h. 4

Question B.
Round off each of the following quantities to two significant figures :
a. 25.55 mL
b. 0.00254 m
c. 1.491 × 105 mg
d. 199 g
Answer:
a. 26 mL
b. 0.0025 m
c. 1.5 × 105 mg
d. 2.0 × 102 g

Question C.
Round off each of the following quantities to three significant figures :
a. 1.43 cm3
b. 458 × 102 cm
c. 643 cm2
d. 0.039 m
e. 6.398 × 10-3 km
f. 0.0179 g
g. 79,000 m
h. 42,150
i. 649.85
j. 23,642,000 mm
k. 0.0041962 kg
Answer:
a. 43 cm3
b. 4.58 × 104 cm
c. 643 cm2 (or 6.43 × 102 cm2)
d. 0.0390 m (or 3.90 × 10-2 m)
e. 6.40 × 10-3 km
f. 0.0179 g (or 1.79 × 10-2 m)
g. 7.90 × 104 m
h. 4.22 × 104 (or 42,200)
i. 6.50 × 102
j. 2.36 × 107 mm
k. 0.00420 kg (or 4.20 × 10-3 kg)

Question D.
Express the following sum to appropriate number of significant figures :
a. 2.3 × 103 mL + 4.22 × 104 mL + 9.04 × 103 mL + 8.71 × 105 mL;
b. 319.5 g – 20460 g – 0.0639 g – 45.642 g – 4.173 g
Answer:
To perform addition/subtraction operation, first the numbers are written in such a way that they have the same exponent. The coefficients are then added/subtracted.
a. (0.23 × 104 mL) + (4.22 × 104 mL) +(0.904 × 104 mL) + (87.1 × 104 mL)
= (0.23 + 4.22 + 0.904 + 87.1) × 104 mL
= 92.454 × 104 mL
= 9.2454 × 105
= 9.2 × 105 mL
b. 319.5 g – 20460 g – 0.0639 g – 45.642 g – 4.173 g
= – 20190.3789 g
= – 20190 g
Ans: Sum to appropriate number of significant figures = 9.2 × 105 mL
ii. Sum to appropriate number of significant figures = – 20190 g
[Note: In addition and subtraction, the final answer is rounded to the minimum number of decimal point of the number taking part in calculation. If there is no decimal point, then the final answer will have no decimal point.]

Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

4. Solve the following problems

Question A.
Express the following quantities in exponential terms.
a. 0.0003498
b. 235.4678
c. 70000.0
d. 1569.00
Answer:
a. 0.0003498 = 3.498 × 10-4
b. 235.4678 = 2.354678 × 102
c. 70000.0 = 7.00000 × 104
d. 1569.00 = 1.56900 × 103

Question B.
Give the number of significant figures in each of the following
a. 1.230 × 104
b. 0.002030
c. 1.23 × 104
d. 1.89 × 10-4
Answer:
a. 4
b. 4
c. 3
d. 3

Question C.
Express the quantities in above (B) with or without exponents as the case may be.
Answer:
a. 12300
b. 2.030 × 10-3
c. 12300
d. 0.000189

Question D.
Find out the molar masses of the following compounds :
a. Copper sulphate crystal (CuSO4.5H2O)
b. Sodium carbonate, decahydrate (Na2CO3.10H2O)
c. Mohr’s salt [FeSO4(NH4)2SO4.6H2O]
(At. mass : Cu = 63.5; S = 32; O = 16; H = 1; Na = 23; C = 12; Fe = 56; N = 14)
Answer:
a. Molar mass of CuSO4.5H2O
= (1 × At. mass Cu) + (1 × At. mass S) + (9 × At. mass O) + (10 × At. mass H)
= (1 × 63.5) + (1 × 32) + (9 × 16) + (10 × 1)
= 63.5 + 32 + 144 + 10
= 249.5 g mol-1
Molar mass of CuSO4.5H2O = 249.5 g mol-1

b. Molar mass of Na2CO3.10H2O
= (2 × At. mass Na) + (1 × At. mass C) + (13 × At. mass O) + (20 × At. mass H)
= (2 × 23) + (1 × 12) + (13 × 16) + (20 × 1)
= 46 + 12 + 208 + 20
= 286 g mol-1
Molar mass of Na2CO3.10H2O = 286 g mol-1

c. Molar mass of [FeSO4(NH4)2SO4.6H2O]
= (1 × At. mass Fe) + (2 × At. mass S) + (2 × At. mass N) + (14 × At. mass O) + (20 × At. mass H)
= (1 × 56) + (2 × 32) + (2 × 14) + (14 × 16) + (20 × 1)
= 56 + 64 + 28 + 224 + 20
= 392 g mol-1
Molar mass of [FeSO4(NH4)2SO4.6H2O] = 392 g mol-1

Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

Question E.
Work out the percentage composition of constituents elements in the following compounds :
a. Lead phosphate [Pb3(PO4)2],
b. Potassium dichromate (K2Cr2O7),
c. Macrocosmic salt – Sodium ammonium hydrogen phosphate, tetrahydrate (NaNH4HPO4.4H2O)
(At. mass : Pb = 207; P = 31; O = 16; K = 39; Cr = 52; Na = 23; N = 14)
Answer:
Given: Atomic mass: Pb = 207; P = 31; O = 16; K = 39; Cr = 52; Na = 23; N = 14
To find: The percentage composition of constituent elements
Formula:
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 2
Calculation:
i. Lead phosphate [Pb3(PO4)2]
Molar mass of Pb3(PO4)2 = 3 × (207) + 2 × (31) + 8 × (16) = 621 + 62 + 128 = 811 g mol-1
Percentage of Pb = \(\frac {621}{811}\) × 100 = 76.57%
Percentage of P = \(\frac {621}{811}\) × 100 = 7.64%
Percentage of O = \(\frac {128}{811}\) × 100 = 15.78%

ii. Potassium dichromate (K2Cr2O7)
Molar mass of K2Cr2O7 = 2 × (39) + 2 × (52) + 7 × (16) = 78 + 104 + 112 = 294 g mol-1
Percentage of K = \(\frac {78}{294}\) × 100 = 26.53%
Percentage of Cr = \(\frac {104}{294}\) × 100 = 35.37%
Percentage of O = \(\frac {112}{294}\) × 100 = 38.10%

iii. Microcosmic salt – Sodium ammonium hydrogen phosphate, tetrahydrate (NaNH4HPO4.4H2O)
Molar mass of NaNH4HPO4.4H2O = 1 × (23) + 1 × (14) + 1 × (31) + 13 × (1) + 8 × (16)
= 23 + 14 + 31 + 13 + 128 = 209 g mol-1
Percentage of Na = \(\frac {23}{209}\) × 100 = 11.00%
Percentage of N = \(\frac {14}{209}\) × 100 = 6.70%
Percentage of P = \(\frac {31}{209}\) × 100 = 14.83%
Percentage of H = \(\frac {13}{209}\) × 100 = 6.22%
Percentage of O = \(\frac {128}{209}\) × 100 = 61.24%
Ans: i. Mass percentage of Pb, P and O in lead phosphate [Pb3(PO4)2] are 76.57%, 7.64% and 15.78% respectively.
ii. Mass percentage of K, Cr and O in potassium dichromate (K2Cr2O7) are 26.53%, 35.37% and 38.10% respectively.
iii. Mass percentage of Na, N, P, H and O in NaNH4HPO4.4H2O are 11.00%, 6.70%, 14.83%, 6.22% and 61.24% respectively.

Question F.
Find the percentage composition of constituent green vitriol crystals (FeSO4.7H2O). Also find out the mass of iron and the water of crystallisation in 4.54 kg of the crystals. (At. mass : Fe = 56; S = 32; O = 16)
Answer:
Given: i. Atomic mass: Fe = 56; S = 32; O = 16
ii. Mass of crystal = 4.54 kg
To find: i. Mass percentage of Fe, S, H and O
ii. Mass of iron and water of crystallisation in 4.54 kg of crystal
Formula:
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 3
i. Molar mass of FeSO4.7H2O = 1 × (56) + 1 × (32) + 14 × (1) + 11 × (16)
= 56 + 32 + 14+ 176
= 278 g mol-1
Percentage of Fe = \(\frac {56}{278}\) × 100 = 20.14%
Percentage of S = \(\frac {32}{278}\) × 100 = 11.51%
Percentage of H = \(\frac {14}{278}\) × 100 = 5.04%
Percentage of O = \(\frac {176}{278}\) × 100 = 63.31%

ii. 278 kg green vitriol = 56 kg iron
∴ 4.54 kg green vitriol = x
∴ x = \(\frac{56 \times 4.54}{278}\)
Mass of 7H2O in 278 kg green vitriol = 7 × 18 = 126 kg
∴ 4.54 kg green vitriol = y
∴ y = \(\frac{126 \times 4.54}{278}\)
Ans: i. Mass percentage of Fe, S, H and O in FeSO4.7H2O are 20.14%, 11.51%, 5.04% and 63.31% respectively.
ii. Mass of iron in 4.54 kg green vitriol = 0.915 kg
Mass of water of crystallisation in 4.54 kg green vitriol = 2.058 kg

Question G.
The red colour of blood is due to a compound called “haemoglobin”. It contains 0.335 % of iron. Four atoms of iron are present in one molecule of haemoglobin. What is its molecular weight ? (At. mass : Fe = 55.84)
Answer:
Given: Iron percentage in haemoglobin = 0.335%
To find: Molecular weight of haemoglobin
Calculation: There are four atoms of iron in a molecule of haemoglobin. Four atoms of iron contribute 0.335% mass to a molecule of haemoglobin.
Mass of one Fe atom = 55.84 u
∴ Mass of 4 Fe atoms = 55.84 × 4 = 223.36 u = 0.335%
Let molecular weight of haemoglobin be x.
Hence,
\(\frac{223.36}{x}\) × 100 = 0.335%
∴ x = \(\frac{223.36}{0.335}\) × 100 = 66674.6 g mol-1
Ans: Molecular weight of haemoglobin = 66674.6 g mol-1

Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

Question H.
A substance, on analysis, gave the following percent composition:
Na = 43.4 %, C = 11.3 % and O = 45.3 %. Calculate the empirical formula. (At. mass Na = 23 u, C = 12 u, O = 16 u).
Answer:
Given: Atomic mass of Na = 23 u, C = 12 u, and O = 16 u
Percentage of Na, C and O = 43.4%, 11.3% and 45.3% respectively.
To find: The empirical formula of the compound
Calculation:
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 4
Hence, empirical formula is Na2CO3.
Ans: Empirical formula of the compound = Na2CO3

Question I.
Assuming the atomic weight of a metal M to be 56, find the empirical formula of its oxide containing 70.0% of M.
Answer:
Given: Atomic mass of M = 56
Percentage of M = 70.0%
To find: The empirical formula of the compound
Calculation: % M = 70.0%
Hence, % O = 30.0%, Atomic mass of O = 16 u
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 5
Convert the ratio into whole number by multiplying by the suitable coefficient, i.e., 2.
Therefore, the ratio of number of moles of M : O is 2 : 3.
Hence, the empirical formula is M2O3.
Ans: Empirical formula of the compound = M2O3

Question J.
1.00 g of a hydrated salt contains 0.2014 g of iron, 0.1153 g of sulfur, 0.2301 g of oxygen and 0.4532 g of water of crystallisation. Find the empirical formula. (At. wt. : Fe = 56; S = 32; O = 16)
Answer:
Given: Atomic mass of Fe = 56, S = 32, and O = 16
Mass of iron, sulphur, oxygen and water = 0.2014 g, 0.1153 g, 0.2301 g and 0.4532 respectively.
To find: The empirical formula of the compound
Calculation: Since the mass of crystal is 1 g, the % iron, sulphur, oxygen and water = 20.14%, 11.53%, 23.01% and 4.32 % respectively.
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 6
Hence, empirical formula is FeSO4.7H2O.
Ans: Empirical formula of the compound = FeSO4.7H2O.

Question K.
An organic compound containing oxygen, carbon, hydrogen and nitrogen contains 20 % carbon, 6.7 % hydrogen and 46.67 % nitrogen. Its molecular mass was found to be 60. Find the molecular formula of the compound.
Answer:
Given: Percentage of carbon, hydrogen, nitrogen = 20%, 6.7%, 46.67% respectively.
Molar mass of the compound = 60 g mol-1
To find: The molecular formula of the compound
Calculation: % carbon + % hydrogen + % nitrogen = 20 + 6.7 + 46.67 = 73.37%
This is less than 100%. Hence, compound contains adequate oxygen so that the total percentage of elements is 100%.
Hence, % of oxygen = 100 – 73.37 = 26.63%
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 7
Hence, empirical formula is CH4N2O.
Empirical formula mass = 12 + 4 + 28 + 16 = 60 g mol-1
Hence,
Molar mass = Empirical formula mass
∴ Molecular formula = Empirical formula = CH4N2O
Ans: Molecular formula of the compound = CH4N2O

Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

Question L.
A compound on analysis gave the following percentage composition by mass : H = 9.09; O = 36.36; C = 54.55. Mol mass of compound is 88. Find its molecular formula.
Answer:
Given: Percentage of H, O, C = 9.09%, 36.36%, 54.55% respectively.
Molar mass of the compound = 88 g mol-1
To find: The molecular formula of the compound
Calculation:
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 8
Hence, empirical formula is C2H4O.
Empirical formula mass = 24 + 4 + 16 = 44 g mol-1
Hence,
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 9
Molecular formula = r × empirical formula
Molecular formula = 2 × C2H2O = C4H8O2
Ans: Molecular formula of the compound = C4H8O2

Question M.
Carbohydrates are compounds containing only carbon, hydrogen and oxygen. When heated in the absence of air, these compounds decompose to form carbon and water. If 310 g of a carbohydrate leave a residue of 124 g of carbon on heating in absence of air, what is the empirical formula of the carbohydrate ?
Answer:
Given: Mass of carbon residue = 124 g, mass of carbohydrate = 310 g
To find: Empirical formula of the carbohydrate
Calculation: Since the 310 g of compound decomposes to carbon and water and the mass of carbon produced is 124 g, the remaining mass would be of water.
∴ Molar mass of water = 310 – 124 = 186 g
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 10
The ratio of number of moles of C : water = C : H2O = 1 : 1
Hence, empirical formula = CH2O
Ans: Empirical formula of the carbohydrate = CH2O

Question N.
Write each of the following in exponential notation :
a. 3,672,199
b. 0.000098
c. 0.00461
d. 198.75
Answer:
a. 3,672,199 = 3.672199 × 106
b. 0.000098 = 9.8 × 10-5
c. 0.00461 = 4.61 × 10-3
d. 198.75 = 1.9875 × 102

Question O.
Write each of the following numbers in ordinary decimal form :
a. 3.49 × 10-11
b. 3.75 × 10-1
c. 5.16 × 104
d. 43.71 × 10-4
e. 0.011 × 10-3
f. 14.3 × 10-2
g. 0.00477 × 105
h. 5.00858585
Answer:
a. 3.49 × 10-11 = 0.0000000000349
b. 3.75 × 10-1 = 0.375
c. 5.16 × 104 = 51,600
d. 43.71 × 10-4 = 0.004371
e. 0.011 × 10-3 = 0.000011
f. 14.3 × 10-2 = 0.143
g. 0.00477 × 105 = 477
h. 5.00858585 = 5.00858585

Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

Question P.
Perform each of the following calculations. Round off your answers to two digits.
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 11
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 12

Question Q.
Perform each of the following calculations. Round off your answers to three digits.
a. (3.26 × 104) (1.54 × 106)
b. (8.39 × 107) (4.53 × 109)
c. \(\frac{8.94 \times 10^{6}}{4.35 \times 10^{4}}\)
d. \(\frac{\left(9.28 \times 10^{9}\right) \times\left(9.9 \times 10^{-7}\right)}{(511) \times\left(2.98 \times 10^{-6}\right)}\)
Answer:
i. (3.26 × 104) (1.54 × 106) = 5.0204 × 104+6 = 5.02 × 1010
ii. (8.39 × 107) (4.53 × 109) = 38.0067 × 107+9 = 38.0067 × 1016 = 3.80 x 1017
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 13

Question R.
Perform the following operations :
a. 3.971 × 107 + 1.98 × 104;
b. 1.05 × 10-4 – 9.7 × 10-5;
c. 4.11 × 10-3 + 8.1 × 10-4;
d. 2.12 × 106 – 3.5 × 105.
Answer:
Solution:
To perform addition/subtraction operation, first the numbers are written in such a way that they have the same exponent. The coefficients are then added/subtracted.
a. 3.971 × 107 + 1.98 × 104 = 3.971 × 107 + 0.00198 × 107 = (3.971 + 0.00198) × 107
= 3.97298 × 107
b. 1.05 × 10-4 – 9.7 × 10-5 = 10.5 × 10-5 – 9.7 × 10-5 = (10.5 – 9.7) × 10-5 = 0.80 × 10-5
= 8.0× 10-6
c. 4.11 × 10-3 + 8.1 × 10-4 = 41.1 × 10-4 + 8.1 × 10-4 = (41.1 + 8.1) × 10-4 = 49.2 × 10-4
= 4.92 × 10-3
d. 2.12 × 106 – 3.5 × 105 = 21.2 × 105 – 3.5 × 105 = (21.2 – 3.5) × 105 = 17.7 × 105
= 1.77 × 106

Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

Question S.
A 1.000 mL sample of acetone, a common solvent used as a paint remover, was placed in a small bottle whose mass was known to be 38.0015 g. The following values were obtained when the acetone – filled bottle was weighed : 38.7798 g, 38.7795 g and 38.7801 g. How would you characterise the precision and accuracy of these measurements if the actual mass of the acetone was 0.7791 g ?
Answer:
Precision:

Measurement Mass of acetone observed (g)
1 38.7798 – 38.0015 = 0.7783
2 38.7795 – 38.0015 = 0.7780
3 38.7801 – 38.0015 = 0.7786

Mean = \(\frac{0.7783+0.7780+0.7786}{3}\) = 0.7783 g

Measurement Mass of acetone observed (g)

Absolute deviation (g) =
| Observed value – Mean |

1 0.7783 0
2 0.7780 0.0003
3 0.7786 0.0003

Mean absolute deviation = \(\frac{0+0.0003+0.0003}{3}\) = 0.0002
∴ Mean absolute deviation = ±0.0002 g
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 14

ii. Accuracy:
Actual mass of acetone = 0.7791 g
Observed value (average) = 0.7783 g
a. Absolute error = Observed value – True value
= 0.7783 – 0.7791
= – 0.0008 g
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 15
Ans: These observed values are close to each other and are also close to the actual mass. Therefore, the results are precise and as well accurate.
i. Relative deviation = 0.0257%
ii. Relative error = 0.1027%
[Note: i. As per the method given in textbook, the calculated value of relative deviation is 0.0257%.
ii. The negative sign in -0.1027% indicates that the experimental result is lower than the true value.]

Question T.
Your laboratory partner was given the task of measuring the length of a box (approx 5 in) as accurately as possible, using a metre stick graduated in milimeters. He supplied you with the following measurements: 12.65 cm, 12.6 cm, 12.65 cm, 12.655 cm, 126.55 mm, 12 cm.
a. State which of the measurements you would accept, giving the reason.
b. Give your reason for rejecting each of the others.
Answer:
a. The metre stick is graduated in millimetres i.e. 1 mm to 1000 mm, and 1 mm = 0.1 cm. Therefore, if the length is measured in centimetres, the least count of metre stick is 0.1 cm. The results 12.6 cm has the least count of 0.1 cm and is an acceptable result.

b. Since, the least count of metre stick is 0.1 cm or 1mm, the results such as 12.65 cm, 12.655 cm, 126.55 mm cannot be measured using this stick, and hence, these results are rejected. The result, 12 cm doesn’t include the least count and is rejected.

Question U.
What weight of calcium oxide will be formed on heating 19.3 g of calcium carbonate?
(At. wt. : Ca = 40; C = 12; O = 16)
Answer:
Given: Mass of CaCO3 consumed in reaction = 19.3 g
To find: Mass of CaO formed
Calculation: Calcium carbonate decomposes according to the balanced equation,
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 16
So, 100 g of CaCO3 produce 56 g of CaO.
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 17
Ans: Mass of CaO formed = 10.81 g

[Calculation using log table:
56 × 0.193
= Antilog10 [log10 (56) + log10 (0.193)]
= Antilog10 [1.7482 + \(\overline{1} .2856\)]
= Antilog10 [1.0338] = 10.81]

Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry

Question V.
The hourly energy requirements of an astronaut can be satisfied by the energy released when 34 grams of sucrose are “burnt” in his body. How many grams of oxygen would be needed to be carried in a space capsule to meet his requirement for one day?
Answer:
34 g of sucrose provides energy for an hour.
Hence, for a day, the mass of sucrose needed = 34 × 24 = 816g
The balanced equation is,
Maharashtra Board Class 11 Chemistry Solutions Chapter 2 Introduction to Analytical Chemistry 18
Thus, 342 g of sucrose requires 384 g of oxygen.
∴ 816 g of sucrose will require = \(\frac{816}{342}\) × 384 = 916 g of O2
Ans: Astronaut needs to carry 916 g of O2.

Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound

Balbharti Maharashtra State Board 11th Physics Textbook Solutions Chapter 8 Sound Textbook Exercise Questions and Answers.

Maharashtra State Board 11th Physics Solutions Chapter 8 Sound

1. Choose the correct alternatives

Question 1.
A sound carried by the air from a sitar to a listener is a wave of the following type.
(A) Longitudinal stationary
(B)Transverse progressive
(C) Transverse stationery
(D) Longitudinal progressive
Answer:
(D) Longitudinal progressive

Question 2.
When sound waves travel from air to water, which of these remains constant?
(A) Velocity
(B) Frequency
(C) Wavelength
(D) All of above
Answer:
(B) Frequency

Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound

Question 3.
The Laplace’s correction in the expression for velocity of sound given by Newton is needed because sound waves
(A) are longitudinal
(B) propagate isothermally
(C) propagate adiabatically
(D) are of long wavelength
Answer:
(C) propagate adiabatically

Question 4.
Speed of sound is maximum in
(A) air
(B) water
(C) vacuum
(D) solid
Answer:
(D) solid

Question 5.
The walls of the hall built for music concerns should
(A) amplify sound
(B) Reflect sound
(C) transmit sound
(D) Absorb sound
Answer:
(D) Absorb sound

2. Answer briefly.

Question 1.
Wave motion is doubly periodic. Explain.
Answer:
i. A wave particle repeats its motion after a definite interval of time at every location, making it periodic in time.
ii. Similarly, at any given instant, the form of a wave repeats itself at equal distances making it periodic in space.
iii. Thus, wave motion is a doubly periodic phenomenon, i.e., periodic in time as well as periodic in space.

Question 2.
What is Doppler effect?
Answer:
The apparent change in the frequency of sound heard by a listener, due to relative motion between the source of sound and the listener is called Doppler effect in sound.

Question 3.
Describe a transverse wave.
Answer:
Transverse wave:
A wave in which particles of the medium vibrate in a direction perpendicular to the direction of propagation of the wave is called transverse wave.
Example: Ripples on the surface of water, light waves.

Characteristics of transverse waves:

  1. All the particles of medium in the path of wave vibrate in a direction perpendicular to the direction of propagation of wave with same period and amplitude.
  2. When transverse wave passes through the medium, the medium is divided into alternate crests i.e., regions of positive displacements and troughs i.e., regions of negative displacement, that are periodic in time.
  3. A crest and an adjacent trough form one cycle of a transverse wave. The distance between any two successive crests or troughs is called wavelength ‘λ’ of the wave.
  4. Crests and troughs advance in the medium and are responsible for transfer of energy.
  5. Transverse waves can travel only through solids and not through liquids and gases. Electromagnetic waves are transverse waves, but they do not require material medium for propagation.
  6. When transverse waves advance through a medium, there is no change of pressure and density at any point of the medium, but the shape changes periodically.
  7. Transverse wave can be polarised.
  8. Medium conveying a transverse wave must possess elasticity of shape, i.e., modulus of rigidity.

Question 4.
Define a longitudinal wave.
Answer:
A wave in which particles of medium vibrate in a direction parallel to the direction of propagation of the wave is called longitudinal wave. Example: Sound waves.

Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound

Question 5.
State Newton’s formula for velocity of sound.
Answer:
Newton’s formula for velocity of sound:
i. Sound wave travels through a medium in the form of compression and rarefaction. At compression, the density of medium is greater while at rarefaction density is smaller. This is possible only in elastic medium.

ii. Thus, the velocity of sound depends upon density and elasticity of medium. It is given by
v = \(\sqrt{\frac {E}{ρ}}\) ….(1)
Where, E is the modulus of elasticity of medium and ρ is density of medium.

Assumptions:
1. Newton assumed that during propagation of sound wave in air, average temperature of the medium remains constant. Hence, propagation of sound wave in air is an isothermal process and isothermal elasticity should be considered.

2. The volume elasticity of air determined under isothermal change is called isothermal bulk modulus.

Calculations:
1. For a gas or air, the isothermal elasticity E is equal to the atmospheric pressure P.
Substituting this value in equation (1), the velocity of sound in air or a gas is given by
v = \(\sqrt{\frac {P}{ρ}}\) ….(∵ E = P)
This is the Newton’s formula for velocity of sound in air.

2. But atmospheric pressure is given by,
P = hdg
∴ v = \(\sqrt{\frac {hdg}{ρ}\) ….(2)

3. At N.T.P., h = 0.76 m of mercury, density of mercury d = 13600 kg/m³ and acceleration due to gravity, g = 9.8 m/s², density of air ρ = 1.293 kg/m³

4. From equation (2) we have velocity of sound,
v = \(\sqrt{\frac {0.76×13600×9.8}{1.293}}\) = 279.9 m/s at N.T.P

Question 6.
What is the effect of pressure on velocity of sound?
Answer:
Effect of pressure:
i. Let v be the velocity of sound in air when the pressure is P and density is ρ.

ii. Using Laplace’s formula, we can write,
v = \(\sqrt{\frac {γP}{ρ}}\) ….(1)

iii. If V be the volume of a gas having mass M then, ρ = \(\frac {M}{V}\)

iv. Substituting ρ in equation (1), we get,
v = \(\sqrt{\frac {γPV}{M}}\) ….(2)

v. But according to Boyle’s law,
PV = constant (at constant temperature)
Also, M and γ are constant.
∴ v = constant

vi. Hence, the velocity of sound does not depend upon the change in pressure, as long as the temperature remains constant.

vii. For a gaseous medium, PV= nRT.
Substituting in equation (2), we get,
v = \(\sqrt{\frac {γnRT}{M}}\)

viii. Thus, even for a gaseous medium obeying ideal gas equation, the velocity of sound does not depend upon the change in pressure, as long as the temperature remains constant.

Question 7.
What is the effect of humidity of air on velocity of sound?
Answer:
Effect of humidity:
i. Let vm and vd be the velocities of sound in moist air and dry air respectively.
Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound 1

ii. Humid air contains a large proportion of water vapour. Density of water vapour at 0 °C is 0.81 kg/m³ while that of dry air at 0°C is 1.29 kg/m³. So, the density ρm of moist air is less than the density ρd of dry air i.e., ρm < ρd.

iii. Thus \(\frac {v_m}{v_d}\) > 1
∴ vm > vd

iv. Hence, sound travels faster in moist air than in dry air. It means that velocity of sound increases with increase in moistness (humidity) of air.

Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound

Question 8.
What do you mean by an echo?
Answer:
An echo is the repetition of the original sound because of reflection from some rigid surface at a distance from the source of sound.

Question 9.
State any two applications of acoustics.
Answer:
Application of acoustics in nature:
i. Bats apply the principle of acoustics to locate objects. They emit short ultrasonic pulses of frequency 30 kHz to 150 kHz. The resulting echoes give them information about location of the obstacle. This helps the bats to fly in even in total darkness of caves.

ii. Dolphins navigate underwater with the help of an analogous system. They emit subsonic frequencies which can be about 100 Hz. They can sense an object about 1.4 m or larger.

Medical applications of acoustics:
i. High pressure and high amplitude shock waves are used to split kidney stones into smaller pieces without invasive surgery. A reflector or acoustic lens is used to focus a produced shock wave so that as much of its energy as possible converges on the stone. The resulting stresses in the stone causes the stone to break into small pieces which can then be removed easily.

ii. Ultrasonic imaging uses reflection of ultrasonic waves from regions in the interior of body. It is used for prenatal (before the birth) examination, detection of anomalous conditions like tumour etc. and the study of heart valve action.

iii. Ultrasound at a very high-power level, destroys selective pathological tissues which is helpful in treatment of arthritis and certain type of cancer.

Underwater applications of acoustics:
i. SONAR (Sound Navigational Ranging) is a technique for locating objects underwater by transmitting a pulse of ultrasonic sound and detecting the reflected pulse.
ii. The time delay between transmission of a pulse and the reception of reflected pulse indicates the depth of the object.
iii. Motion and position of submerged objects like submarine can be measured with the help of this system.

Applications of acoustics in environmental and geological studies:
i. Acoustic principle has important application to environmental problems like noise control. The quiet mass transit vehicle is designed by studying the generation and propagation of sound in the motor’s wheels and supporting structures.

Reflected and refracted elastic waves passing through the Earth’s interior can be measured by applying the principles of acoustics. This is useful in studying the properties of the Earth.

Principles of acoustics are applied to detect local anomalies like oil deposits etc. making it useful for geological studies.

Question 10.
Define amplitude and wavelength of a wave.
Answer:
i. Amplitude (A): The largest displacement of a particle of a medium through which the wave is propagating, from its rest position, is called amplitude of that wave.
SI unit: (m)

ii. Wavelength (λ): The distance between two successive particles which are in the same state of vibration is called wavelength of the wave.
SI unit: (m)

Question 11.
Draw a wave and indicate points which are (i) in phase (ii) out of phase (iii) have a phase difference of π/2.
Answer:
Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound 2
i. In phase point: A and F; B and H; C and I; D and J
ii. Out of phase points: A and B, B and D, FI and J, E and F,
iii. Point having phase difference of π/2: A and B; B and C; D; D and F; F and H; H and I; J and I

Question 12.
Define the relation between velocity, wavelength and frequency of wave.
Answer:
i. A wave covers a distance equal to the wavelength (λ) during one period (T).
Therefore, the magnitude of the velocity (v) is given by,
Magnitude of velocity = \(\frac {Distance covered}{Corresponding time}\)

ii. v = \(\frac {22}{7}\) i.e., v = λ × (\(\frac {1}{T}\)) …………….. (1)

iii. But reciprocal of the period is equal to the frequency (n) of the waves.
∴ \(\frac {1}{T}\) = n …………… (2)

iv. From equations (1) and (2), we get
v = nλ
i.e., wave velocity = frequency × wavelength.

Question 13.
State and explain principle of superposition of waves.
Answer:
Principle:
As waves don’t repulse each other, they overlap in the same region of the space without affecting each other. When two waves overlap, their displacements add vectorially.

Explanation:
i. Consider two waves travelling through a medium arriving at a point simultaneously.

ii. Let each wave produce its own displacement at that point independent of the others. This displacement can be given as,
y1 = displacement due to first wave.
y2 = displacement due to second wave.

iii. Then according to superposition of waves, the resultant displacement at that point is equal to the vector sum of the displacements due to all the waves.
∴\(\vec{y}\) = \(\vec{y_1}\) + \(\vec{y_2}\)

Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound

Question 14.
State the expression for apparent frequency when source of sound and listener are
i) moving towards each other
ii) moving away from each other
Answer:
i. Let,
n = actual frequency of the source.
n0 = apparent frequency of the source,
v = velocity of sound in air.
vs = velocity of the source.
vl = velocity of the listener.

ii. Apparent frequency heard by the listener is given by,
n = n0(\(\frac {v±v_L}{v±v_s}\))
Where upper signs (+ ve in numerator and -ve in denominator) indicate that source and observer move towards each other. Lower signs (-ve in numerator and +ve in denominator) indicate that source and listener move away from each other.

iii. If source and listener are moving towards each other, then apparent frequency is given by,
n = n0(\(\frac {v+v_L}{v-v_s}\)) i.e., apparent frequency increases.

iv. If source and listener are moving away from each other, then apparent frequency is given by,
n = n0(\(\frac {v-v_L}{v+v_s}\)) i.e., apparent frequency decreases.

Question 15.
State the expression for apparent frequency when source is stationary and listener is
1) moving towards the source
2) moving away from the source
Answer:
Let,
n = actual frequency of the source.
n0 = apparent frequency of the source,
v = velocity of sound in air.
vs = velocity of the source.
vl = velocity of the listener.

i. If listener is moving towards source then apparent frequency is given by,
n = n0(\(\frac {v+v_L}{v}\)) i.e., apparent frequency increases.

ii. If listener is receding away from source then apparent frequency is given by,
n = n0(\(\frac {v-v_L}{v}\)) i.e., apparent frequency decreases.

Question 16.
State the expression for apparent frequency when listener is stationary and source is.

(i) moving towards the listener
(ii) moving away from the listener
Answer:
Let,
n = actual frequency of the source.
n0 = apparent frequency of the source,
v = velocity of sound in air.
vs = velocity of the source.
vl = velocity of the listener.

i. If source is moving towards observer then apparent frequency is given by,
n = n0(\(\frac {v}{v-v_s}\)) i.e., apparent frequency increases.

ii. If source is receding away from observer then apparent frequency is given by,
n = n0(\(\frac {v}{v+v_s}\)) i.e., apparent frequency decreases.

Question 17.
Explain what is meant by phase of a wave.
Answer:
Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound 3
i. The state of oscillation of a particle is called the phase of the particle.

ii. The displacement, direction of velocity and oscillation number of the particle describe the phase of the particle at a place.

iii. Particles r and t (q and u or v and s) have same displacements but the directions of their velocities are opposite.

iv. Particles having same magnitude of displacements and same direction of velocity are said to be in phase during their respective oscillations. Example: particles v and p.

v. Separation between two particles which are in phase is wavelength (λ).

vi. The two successive particles differ by ‘1’ in their oscillation number i.e., if particle v is at its nth oscillation, particle p will be at its (n + 1)th oscillation as the wave is travelling along + X direction.

vii. In the given graph, if the disturbance (energy) has just reached the particle w, the phase angle corresponding to particle is 0°. At this instant, particle v has completed quarter oscillation and reached its positive maximum (sin θ = +1). The phase angle θ of this particle v is \(\frac {π^c}{2}\) = 90° at this instant.

viii. Phase angles of particles u and q are πc (180°) and 2rcc (360°) respectively.

ix. Particle p has completed one oscillation and is at its positive maximum during its second oscillation.
∴ phase angle = 2πc + \(\frac {π^c}{2}\)
= \(\frac {5π^c}{2}\)

x. v and p are the successive particles in the same state (same displacement and same direction of velocity) during their respective oscillations. Phase angle between these two differs by 2πc.

Question 18.
Define progressive wave. State any four properties.
Answer:
i. Waves in which a disturbance created at one place travels to distant points and keeps travelling unless stopped by an external force are known as travelling or progressive waves.
Properties of progressive waves are:
Amplitude, wavelength, period, double periodicity, frequency and velocity.

Question 19.
Distinguish between traverse waves and longitudinal waves.
Answer:

Longitudinal wave Transverse wave
1. The particles of the medium vibrate along the direction of propagation of the wave. 1. The particles of the medium vibrate perpendicular to the direction of propagation of the wave.
2. Alternate compressions and rarefactions are formed. 2. Alternate crests and troughs are formed.
3. Periodic compressions and rarefactions, in space and time, produce periodic pressure and density variations in the medium. There are no pressure and density, variations in the medium.
4. For propagation of a longitudinal wave, the medium must be able to resist changes in volume. For propagation of a transverse wave, the medium must be able to resist shear or change in shape.
5. It can propagate through any material medium (solid, liquid or gas). It can propagate only through solids.
6. These waves cannot be polarised. These waves can be polarised.
7. eg.: Sound waves eg.: Light waves

Question 20.
Explain Newtons formula for velocity of sound. What is its limitation?
Answer:
Newton’s formula for velocity of sound:
i. Sound wave travels through a medium in the form of compression and rarefaction. At compression, the density of medium is greater while at rarefaction density is smaller. This is possible only in elastic medium.

ii. Thus, the velocity of sound depends upon density and elasticity of medium. It is given by
v = \(\sqrt{\frac {E}{ρ}}\) ….(1)
Where, E is the modulus of elasticity of medium and ρ is density of medium.

Assumptions:
1. Newton assumed that during propagation of sound wave in air, average temperature of the medium remains constant. Hence, propagation of sound wave in air is an isothermal process and isothermal elasticity should be considered.

2. The volume elasticity of air determined under isothermal change is called isothermal bulk modulus.

Calculations:
1. For a gas or air, the isothermal elasticity E is equal to the atmospheric pressure P.
Substituting this value in equation (1), the velocity of sound in air or a gas is given by
v = \(\sqrt{\frac {P}{ρ}}\) ….(∵ E = P)
This is the Newton’s formula for velocity of sound in air.

2. But atmospheric pressure is given by,
P = hdg
∴ v = \(\sqrt{\frac {hdg}{ρ}}\) ….(2)

3. At N.T.P., h = 0.76 m of mercury, density of mercury d = 13600 kg/m³ and acceleration due to gravity, g = 9.8 m/s², density of air ρ = 1.293 kg/m³

4. From equation (2) we have velocity of sound,
v = \(\sqrt{\frac {0.76×13600×9.8}{1.293}}\) = 279.9 m/s at N.T.P

Limitations:
1. Experimentally, it is found that the velocity of sound in air at N. T. P is 332 m/s. Thus, there is considerable difference between the value predicted by Newton’s formula and the experimental value.

2. Experimental value is 16% greater than the value given by the formula. Newton failed to provide a satisfactory explanation for the difference.

Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound

3. Solve the following problems.

Question 1.
A certain sound wave in air has a speed 340 m/s and wavelength 1.7 m for this wave, calculate
(i) the frequency
(ii) the period.
Answer:
Given: v = 340 m/s, λ = 1.7 m
To find: frequency (n), period (T)
Formulae:
i. n = \(\frac {v}{λ}\)
ii. T = \(\frac {1}{n}\)
Calculation: From formula, (i)
n = \(\frac {340}{1.7}\)
∴ n = 200 Hz
From formula, (ii)
T = \(\frac {1}{n}\) = \(\frac {1}{2×10^2}\)
= 5 × 10-3
…….. (using reciprocal Table)
∴ T = 0.005 s

Question 2.
A tuning fork of frequency 170 Hz produces sound waves of wavelength 2m. Calculate speed of sound.
Answer:
Given: n = 170 Hz, λ = 2 m
To find: velocity of sound (v)
Formula: v = nλ
Calculation: From formula,
v = 170 × 2
∴ v = 340 m/s

Question 3.
An echo-sounder in a fishing boat receives an echo from a shoal of fish 0.45s after it was sent. If the speed of sound in water is 1500 m/s, how deep is the shoal?
Answer:
Given: t = 0.45 s, v = 1500 m/s,
To Find: depth (d)
Formula: speed (v) = \(\frac {distance}{time}\)
Calculation:
For an echo distance travelled by the sound wave = 2 × (distance between echo sounder and shoal) (d)
v = \(\frac {2 × d}{t}\)
∴ d = \(\frac {1500 × 0.45}{2}\) = 337.5 m

Question 4.
A girl stands 170 m away from a high wall and claps her hands at a steady rateso that each clap coincides with the echo of the one before.
a) If she makes 60 claps in 1 minute, what value should be the speed of sound in air?
b) Now, she moves to another location and finds that she should now make 45 claps in 1 minute to coincide with successive echoes. Calculate her distance for the new position from the wall.
Answer:
i. When the girl makes 60 claps in 1 minute, the value of speed of is 340 m/s.

ii. The girl is at a distance of 226.67 m from the wall when she produces 45 claps per minute.
[Note: The answer given above is calculated in accordance with textual method considering the given data]

Question 5.
Sound wave A has period 0.015 s, sound wave B has period 0.025. Which sound has greater frequency?
Answer:
Given: TA = 0.015 s, TB = 0.025 s
To find: greater frequency (n)
Formula: n = \(\frac {1}{T}\)
Calculation: From formula,
nA = \(\frac {1}{T_A}\) = \(\frac {1}{0.025}\) = \(\frac {1}{2.5 ×10^{-2}}\)
∴ nA = 66.67
…. (using reciprocal table)
nB = \(\frac {1}{T_B}\) = \(\frac {1}{0.025}\) = \(\frac {1}{2.5 ×10^{-2}}\)
∴ nB = 40 Hz
…. (using reciprocal table)
∴ nA > nB

Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound

Question 6.
At what temperature will the speed of sound in air be 1.75 times its speed at N.T.P?
Answer:
Given:
vair = 1.75 VS.T.P = \(\frac {7}{4}\) vS.T.P
TS.T.P = 273 K
To find: temperature Tair
Formula: v ∝ √T
Calculation: From formula,
Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound 4

Question 7.
A man standing between 2 parallel eliffs fires a gun. He hearns two echos one after 3 seconds and other after 5 seconds. The separation between the two cliffs is 1360 m, what is the speed of sound?
Answer:
distance (s) = 1360 m,
time for first echo = 3 s,
time for second echo = 5 s
To Find : speed of sound (v)
Formula : speed = \(\frac {distence}{time}\)
Calculation:
Time for first echo = 3 s
∴ time taken by sound to travel given distance t1
= \(\frac {3}{2}\) = 1.5 s
Time for second echo = 5 s
∴ time taken by sound to travel given distance t2
= \(\frac {5}{2}\) = 2.5 s
∴Total time taken by sound to travel given distance, T = 1.5 + 2.5 = 4 s
From formula,
v = \(\frac {1360}{4}\)
∴v = 340 m/s

Question 8.
If the velocity of sound in air at a given place on two different days of a given week are in the ratio of 1 : 1.1. Assuming the temperatures on the two days to be same what quantitative conclusion can your draw about the condition on the two days?
Answer:
Let v1 and v2 be the velocity of sound on day 1 and day 2 respectively.
\(\frac {v_1}{v_2}\) = \(\frac {1}{1.1}\)
We know, v ∝ \(\frac {1}{√ρ}\)
Let ρ1 and ρ2 be the density of air on day 1 and day 2 respectively.
∴ \(\sqrt{\frac {ρ_2}{ρ_1}}\) = \(\frac {1}{1.1}\)
∴ \(\frac {ρ_2}{ρ_1}\) = (\(\frac {1}{1.1}\))²
∴ ρ1 = 1.1² ρ2 = 1.21 ρ²
From above equation, we can conclude,
ρ1 > ρ2
∴ v2 > v1 i.e., the velocity of sound is greater on the second day than on the first day.
We know, speed of sound in moist air (vm) is greater than speed of sound in dry air (vd).
∴ We can conclude, air is moist on second day and dry on the first day.

Question 9.
A police car travels towards a stationary observer at a speed of 15 m/s. The siren on the car emits a sound of frequency 250 Hz. Calculate the recorded frequency. The speed of sound is 340 m/s.
Answer:
Given: vs = 15 m/s, n0 = 250 Hz, v = 340 m/s
To find: Frequency (n)
Formula: n = n0(\(\frac {v}{v-v_s}\))
Calculation: As the source approaches listener, apparent frequency is given by,
n = 250 (\(\frac {340}{340-15}\)) = \(\frac {3400}{13}\)
∴ n = 261.54 Hz

Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound

Question 10.
The sound emitted from the siren of an ambulance has frequency of 1500 Hz. The speed of sound is 340 m/s. Calculate the difference in frequencies heard by a stationary observer if the ambulance initially travels towards and then away from the observer at a speed of 30 m/s.
Answer:
Given: vs = 30 m/s, n0 = 1500 Hz, v = 340 m/s
To find: Difference in apparent frequencies (nA – n’A)
Formulae:
i. When the ambulance moves towards he stationary observer then nA = n0(\(\frac {v}{v-v_s}\))

ii. When the ambulance moves away from the stationary observer then, n’A = n0(\(\frac {v}{v+v_s}\))

Calculation:
From formula (i), icon’ 340
nA = 1500(\(\frac {340}{340-30}\))
∴ nA = 1645 Hz
From (ii)
n’A = 1500(\(\frac {340}{340+30}\))
∴ nA = 1378 Hz
Difference between nA and n’A
= nA – n’A = 1645 – 1378 = 267 Hz

11th Physics Digest Chapter 8 Sound Intext Questions and Answers

Can you recall? (Textbook page no. 142)

i. What type of wave is a sound wave?
ii. Can sound travel in vacuum?
iii. What are reverberation and echo?
iv. What is meant by pitch of a sound?
Answer:
i. Sound wave is a longitudinal wave.

ii. Sound cannot travel in vacuum.

iii. a. Reverberation is the phenomenon in which sound waves are reflected multiple times causing a single sound to be heard more than once.
b. An echo is the repetition of the original sound because of reflection by some surface.

iv. The characteristic of sound which is determined by the value of frequency is called as the pitch of the sound.

Activity (Textbook page no. 144)

i. Using axes of displacement and distance, sketch two waves A and B such that A has twice the wavelength and half the amplitude of B.
ii. Determine the wavelength and amplitude of each of the two waves P and Q shown in figure below.
Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound 5
Answer:
Maharashtra Board Class 11 Physics Solutions Chapter 8 Sound 6

Wave Wavelength (λ) Amplitude (A)
A 4 m 2 m
B 2 m 4 m
Wave Wavelength (λ) Amplitude (A)
P 6 units 3 units
Q 4 units 2 units

Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids

Balbharti Maharashtra State Board 11th Physics Textbook Solutions Chapter 6 Mechanical Properties of Solids Textbook Exercise Questions and Answers.

Maharashtra State Board 11th Physics Solutions Chapter 6 Mechanical Properties of Solids

1. Choose the correct answer:

Question 1.
Change in dimensions is known as …………..
(A) deformation
(B) formation
(C) contraction
(D) strain.
Answer:
(A) deformation

Question 2.
The point on stress-strain curve at which strain begins to increase even without increase in stress is called…………
(A) elastic point
(B) yield point
(C) breaking point
(D) neck point
Answer:
(B) yield point

Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids

Question 3.
Strain energy of a stretched wire is 18 × 10-3 J and strain energy per unit volume of the same wire and same cross section is 6 × 10-3 J/m3. Its volume will be………….
(A) 3cm3
(B) 3 m3
(C) 6 m3
(D) 6 cm3
Answer:
(B) 3 m3

Question 4.
……………. is the property of a material which enables it to resist plastic deformation.
(A) elasticity
(B) plasticity
(C) hardness
(D) ductility
Answer:
(C) hardness

Question 5.
The ability of a material to resist fracturing when a force is applied to it, is called……………
(A) toughness
(B) hardness
(C) elasticity
(D) plasticity.
Answer:
(A) toughness

2. Answer in one sentence:

Question 1.
Define elasticity.
Answer:
If a body regains its original shape and size after removal of the deforming force, it is called an elastic body and the property is called elasticity.

Question 2.
What do you mean by deformation?
Answer:
The change in shape or size or both of u body due to an external force is called deformation.

Question 3.
State the SI unit and dimensions of stress.
Answer:

  1. SI unit: N m-2 or pascal (Pa)
  2. Dimensions: [L-1M1T-2]

Question 4.
Define strain.
Answer:
Strain:

  1. Strain is defined as the ratio of change in dimensions of the body to its original dimensions.
    Strain = \(\frac{\text { change in dimensions }}{\text { original dimensions }}\)
  2. Types of strain:
    • Longitudinal strain,
    • Volume strain,
    • Shearing strain.

Question 5.
What is Young’s modulus of a rigid body?
Answer:
Young’s modulus (Y): It is the modulus of elasticity related to change in length of an object like a metal wire, rod, beam, etc., due to the applied deforming force.

Question 6.
Why bridges are unsafe after a very long use?
Answer:
A bridge during its use undergoes recurring stress depending upon the movement of vehicles on it. When bridge is used for long time, it loses its elastic strength and ultimately may collapse. Hence, the bridges are declared unsafe after long use.

Question 7.
How should be a force applied on a body to produce shearing stress?
Answer:
A tangential force which is parallel to the top and the bottom surface of the body should be applied to produce shearing stress.

Question 8.
State the conditions under which Hooke’s law holds good.
Answer:
Hooke’s Taw holds good only when a wire/body is loaded within its elastic limit.

Question 9.
Define Poisson’s ratio.
Answer:
Within elastic limit, the ratio of lateral strain to the linear strain is called the Poisson‘s ratio.

Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids

Question 10.
What is an elastomer?
Answer:
A material that can be elastically stretched to a larger value of strain is called an elastomer.

Question 11.
What do you mean by elastic hysteresis?
Answer:

  1. In case of some materials like vulcanized rubber, when the stress applied on a body decreases to zero, the strain does not return to zero immediately. The strain lags behind the stress. This lagging of strain behind the stress is called elastic hysteresis.
  2. Below figure shows the stress-strain curve for increasing and decreasing load. It encloses a loop. Area of loop gives the energy dissipated during deformation of a material.
    Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 9

Question 12.
State the names of the hardest material and the softest material.
Answer:
Hardest material: Diamond
Softest material: Aluminium
[Note: Material with highest strength is steel whereas material with lowest strength is plasticine clay.]

Question 13.
Define friction.
Answer:
The property which resists the relative motion between two surfaces in contact is called friction.

Question 14.
Why force of static friction is known as ‘self-adjusting force?
Answer:
The force of static friction varies in accordance with applied force. Hence, it is called as self adjusting force.

Question 15.
Name two factors on which the coefficient of friction depends.
Answer:
Coefficient of friction depends upon:

  1. the materials of the surfaces in contact.
  2. the nature of the surfaces.

3. Answer in short:

Question 1.
Distinguish between elasticity and plasticity.
Answer:

No. Elasticity Plasticity
i. Body regains its original shape or size after removal of deforming force. Body does not regain its original shape or size after removal of deforming force.
ii. Restoring forces are strong enough to bring the displaced molecules to their original positions. Restoring forces are not strong enough to bring the molecules back to their original positions.
Examples of elastic materials: metals, rubber, quartz, etc Examples of plastic materials: clay, putty, plasticine, thick mud, etc

Question 2.
State any four methods to reduce friction.
Answer:
Friction can be reduced by using polished surfaces, using lubricants, using grease and using ball bearings.

Question 3.
What is rolling friction? How does it arise?
Answer:

  1. Friction between two bodies in contact when one body is rolling over the other, is called rolling friction.
  2. Rolling friction arises as the point of contact of the body with the surface keep changing continuously.

Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids

Question 4.
Explain how lubricants help in reducing friction?
Answer:

  1. The friction between lubricant to surface is much less than the friction between two same surfaces. Hence using lubricants reduces the friction between the two surfaces.
  2. When lubricant is applied to machine parts, it fills the depression present on the surface in contact. Thus, less friction is occurred between machine parts.
  3. Application of lubricants also reduces wear and tear of machine parts which in turn reduces friction.
  4. Advantage: Reduction in function reduces dissipation of energy in machines due to which efficiency of machines increases.

Question 5.
State the laws of static friction.
Answer:
Laws of static friction:

  1. First law: The limiting force of static friction (FL) is directly proportional to the normal reaction (N) between the two surfaces in contact.
    FL ∝ N
    ∴ FL = µs N
    where, µs = constant called coefficient of static friction.
  2. Second law: The limiting force of friction is
    independent of the apparent area between the surfaces in contact, so long as the normal reaction remains the same.
  3. Third law: The limiting force of friction depends upon materials in contact and the nature of their surfaces.

Question 6.
State the laws of kinetic friction.
Answer:
Laws of kinetic friction:

  1. First law: The force of kinetic friction (Fk) is directly proportional to the normal reaction (N) between two surfaces in contact.
    Fk ∝ N
    ∴ Fk = µkN
    where, µk = constant called coefficient of kinetic friction.
  2. Second law: Force of kinetic friction is independent of shape and apparent area of the surfaces in contact.
  3. Third law: Force of kinetic friction depends upon the nature and material of the surfaces in contact.
  4. Fourth law: The magnitude of the force of kinetic friction is independent of the relative velocity between the object and the surface provided that the relative velocity is neither too large nor too small.

Question 7.
State advantages of friction.
Answer:
Advantages of friction:

  1. We can walk due to friction between ground and feet.
  2. We can hold object in hand due to static friction.
  3. Brakes of vehicles work due to friction; hence we can reduce speed or stop vehicles.
  4. Climbing on a tree is possible due to friction.

Question 8.
State disadvantages of friction.
Answer:
Disadvantages of friction:

  1. Friction opposes motion.
  2. Friction produces heat in different parts of machines. It also produces noise.
  3. Automobile engines consume more fuel due to friction.

Question 9.
What do you mean by a brittle substance? Give any two examples.
Answer:

  1. Substances which breaks within the elastic limit are called brittle substances.
  2. Examples: Glass, ceramics.

4. Long answer type questions:

Question 1.
Distinguish between Young’s modulus, bulk modulus and modulus of rigidity.
Answer:

No Young’s modulus Bulk modulus Modulus of rigidity
i. It is the ratio of longitudinal stress to longitudinal strain. It is the ratio of volume stress to volume strain. It is the ratio of shearing stress to shearing strain.
ii. It is given by, Y = \(\frac{\mathrm{MgL}}{\pi \mathrm{r}^{2} l}\) It is given by, K = \(\frac{V d P}{d V}\) It is given by, \(\eta=\frac{F}{A \theta}\)
iii. It exists in solids. It exists in solid, liquid and gases. It exists in solids.
iv. It relates to change in

length of a body.

It relates to change in volume of a body. It relates to change in shape of a body.

Question 2.
Define stress and strain. What are their different types?
Answer:
i) Stress:

  1. The internal restoring force per unit area of a both is called stress.
    Stress = \(\frac{\text { deforming force }}{\text { area }}=\frac{|\vec{F}|}{\mathrm{A}}\)
    where \(\vec{F}\) is internal restoring force or external applied deforming force.
  2. Types of stress:
    • Longitudinal stress,
    • Volume stress,
    • Shearing stress.

ii. Strain:

  1. Strain is defined as the ratio of change in dimensions of the body to its original dimensions.
    Strain = \(\frac{\text { change in dimensions }}{\text { original dimensions }}\)
  2. Types of strain:
    • Longitudinal strain,
    • Volume strain,
    • Shearing strain.

Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids

Question 3.
What is Young’s modulus? Describe an experiment to find out Young’s modulus of material in the form of a long straight wire.
Answer:
Definition: Young ‘s modulus is the ratio of longitudinal stress to longitudinal strain.
It is denoted by Y.
Unit: N/m2 or Pa in SI system.
Dimensions: [L-1M1T-2]

Experimental description to find Young’s modulus:

i. Consider a metal wire suspended from a rigid support. A load is attached to the free end of the wire. Due to this, deforming force gets applied to the free end of wire in downward direction and it produces a change in length.
Let,
L = original length of wire,
Mg = weight suspended to wire,
l = extension or elongation,
(L + l) = new length of wire.
r = radius of the cross section of wire

ii. In its equilibrium position,
Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 1

Question 4.
Derive an expression for strain energy per unit volume of the material of a wire.
Answer:
Expression for strain energy per unit volume;

i. Consider a wire of original length L and cross sectional area A stretched by a force F acting along its length. The wire gets stretched and elongation l is produced in it

ii. If the wire is perfectly elastic then,
Longitudinal stress = \(\frac{F}{A}\)
Longitudinal strain = \(\frac{l}{L}\)
Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 10

iii. The magnitude of stretching force increases from zero to F during elongation of wire.
Let ‘f’ be the restoring force and ‘x’ be its corresponding extension at certain instant during the process of extension.
∴ f = \(\frac{\text { YAx }}{\mathrm{L}}\) ……………. (2)

iv. Let ‘dW’ be the work done for the further small extension ‘dx’.
Work = force × displacement
∴ dW = fdx
∴ dW= \(\frac{\text { YAx }}{L}\) dx …………..(3) [From (2)]

v. The total amount of work done in stretching the wire from x = 0 to x = l can be found out by integrating equation (3).
Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 11
∴ Work done in stretching a wire,
W = \(\frac{1}{2}\) × load × extension

vi. Work done by stretching force is equal to strain energy gained by the wire.
∴ Strain energy = \(\frac{1}{2}\) × load × extension

vii. Work done per unit volume
Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 12
∴ Strain energy per unit volume = \(\frac{1}{2}\) × stress × strain

viii. Other forms:
Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 13

Question 5.
What is friction? Define coefficient of static friction and coefficient of kinetic friction. Give the necessary formula for each.
Answer:

  1. The property which resists the relative motion between two surfaces in contact is called friction.
  2. The coefficient of static friction is defined as the ratio of limiting force of friction to the normal reaction.
    Formula: \(\mu_{\mathrm{S}}=\frac{\mathrm{F}_{\mathrm{L}}}{\mathrm{N}}\)
  3. The coefficient of kinetic friction is defined as the ratio of force of kinetic friction to the normal reaction between the two surfaces in contact.
    Formula: \(\mu_{\mathrm{k}}=\frac{\mathrm{F}_{\mathrm{K}}}{\mathrm{N}}\)

Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids

Question 6.
State Hooke’s law. Draw a labelled graph of tensile stress against tensile strain for a metal wire up to the breaking point. In this graph show the region in which Hooke’s law is obeyed.
Answer:
i) Statement: Within elastic limit, stress is directly proportional to strain.
Explanation;

  1. According to Hooke’s law,
    Stress ∝ Strain
    Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 7
    This constant of proportionality is called modulus of elasticity.
  2. Modulus of elasticity of a material is the slope of stress-strain curve in elastic deformation region and depends on the nature of the material.
  3. The graph of strain (on X-axis) and stress (on Y-axis) within elastic limit is shown in the figure.Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 8

ii)
Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 6

iii) Hooke’s law is completely obeyed in the region OA.

5. Answer the following

Question 1.
Calculate the coefficient of static friction for an object of mass 50 kg placed on horizontal table pulled by attaching a spring balance. The force is increased gradually it is observed that the object just moves when spring balance shows 50N.
[Answer: µs = 0.102]
Solution:
Given: m = 50 kg, FL = 50 N, g = 9.8 m/s2
To find: Coefficient of static friction (µs)
Formula: µs = \(\frac{\mathrm{F}_{\mathrm{L}}}{\mathrm{N}}=\frac{\mathrm{F}_{\mathrm{L}}}{\mathrm{mg}}\)
µs = \(\frac{50}{50 \times 9.8}\) = 0.102
Answer:
The coefficient of static friction is 0.102.

Question 2.
A block of mass 37 kg rests on a rough horizontal plane having coefficient of static friction 0.3. Find out the least force required to just move the block horizontally.
[Answer: F= 108.8N]
Solution:
Given: m = 37 kg, µs = 0.3, g = 9.8 m /s2
To find: Limiting force (FL)
Formula: FL = µSN = µS mg
Calculation: From formula,
FL = 0.3 × 37 × 9.8 = 108.8 N
Answer:
The force required to move the block is 108.8 N.

Question 3.
A body of mass 37 kg rests on a rough horizontal surface. The minimum horizontal force required to just start the motion is 68.5 N. In order to keep the body moving with constant velocity, a force of 43 N is needed. What is the value of
a) coefficient of static friction? and
b) coefficient of kinetic friction?
Asw:
a) µs = 0.188
b) µk = 0.118]
Solution:
Given:
FL = 68.5 N, Fk = 43 N,
m = 37 kg, g = 9.8 m/s2

To find:

i. Coefficient of static friction (µs)
ii. Coefficient of kinetic friction (µk)

Formulae:

i. µs = \(\frac{F_{L}}{N}\) = \(\frac{F_{L}}{m g}\)
ii. µk = \(\frac{F_{k}}{N}\) = \(\frac{\mathrm{F}_{\mathrm{k}}}{\mathrm{mg}}\)

Calculation:
From formula (i),
∴ µs = \(\frac{F_{S}}{N}=\frac{68.5}{37 \times 9.8}\) = 0.1889
From formula (ii),
∴ µk = \(\frac{F_{k}}{N}=\frac{43}{37 \times 9.8}\) = 0.1186
Answer:

  1. The coefficient of static friction is 0.1889.
  2. The coefficient of kinetic friction is 0.1186.

[Note: Answers calculated above are in accordance with textual methods of calculation.]

Question 4.
A wire gets stretched by 4mm due to a certain load. If the same load is applied to a wire of same material with half the length and double the diameter of the first wire. What will be the change in its length?
Solution:
Given. l1 = 4mm = 4 × 10-3 m
L2 = \(\frac{\mathrm{L}_{1}}{2}\), D2 = 2D, r2 = 2r1
To find: Change in length (l2)
Formula: Y = \(\frac{\mathrm{FL}}{\mathrm{Al}}=\frac{\mathrm{FL}}{\pi \mathrm{r}^{2} l}\)
Calculation: From formula,
Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 3
= 0.5 × 10-3 m
= 0.5 mm
The new change in length of the wire is 0.5 mm.

Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids

Question 5.
Calculate the work done in stretching a steel wire of length 2m and cross sectional area 0.0225mm2 when a load of 100 N is slowly applied to its free end. [Young’s modulus of steel= 2 × 1011 N/m2]
Solution:
Given. L = 2m, F = 100 N,
A = 0.0225 mm2 = 2.25 × 10-8 m2,
Y = 2 × 10-11 N/m2,
To find: Work (W)
Formula: W = \(\frac{1}{2}\) × F × l
Claculation:
Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 14
= antilog [log 10 – log 4.5]
= antilog [1.0000 – 0.6532 ]
= antilog [0.3468]
∴ W = 2.222 J
Answer:
The work done in stretching the steel wire is 2.222 J.

Question 6.
A solid metal sphere of volume 0.31m3 is dropped in an ocean where water pressure is 2 × 107 N/m2. Calculate change in volume of the sphere if bulk modulus of the metal is 6.1 × 1010 N/m2
Solution:
Given: V= 0.31 m3, dP = 2 × 107 N/m2,
K = 6.1 × 1010 N/m2
To find: Change in volume (dV)
Formula: K = V × \(\frac{\mathrm{dP}}{\mathrm{dV}}\)
Calculation: From formula,
dV = \(\frac{\mathrm{V} \times \mathrm{dP}}{\mathrm{K}}\)
∴ dV = \(\frac{0.31 \times 2 \times 10^{7}}{6.1 \times 10^{10}}\) ≈ 10-4 m3
The change in volume of the sphere is 10-4 m3.

Question 7.
A wire of mild steel has initial length 1.5 m and diameter 0.60 mm is extended by 6.3 mm when a certain force is applied to it. If Young’s modulus of mild steel is 2.1 × 1011 N/m2, calculate the force applied.
Solution:
Given:
L = 1.5m, d = 0.60 mm,
r = \(\frac{d}{2}\) = 0.30 mm = 3 × 10-4 m,
Y = 2.1 × 1011 N/m2,
l = 6.3 mm = 6.3 × 10-3 m
To find: Force (F)
Calculation:
From formula,
Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 2
= 2.1 × 3.142 × 6 × 6.3
= antilog [log 2.1 + log 3.142 + log 6 + log 6.3]
= antilog [0.3222 + 0.4972 + 0.7782 + 0.7993]
= antilog [2.3969]
= 2.494 × 102
≈ 250 N
The force applied on wire is 250 N.

Question 8.
A composite wire is prepared by joining a tungsten wire and steel wire end to end. Both the wires are of the same length and the same area of cross section. If this composite wire is suspended to a rigid support and a force is applied to its free end, it gets extended by 3.25mm. Calculate the increase in length of tungsten wire and steel wire separately.
[Given: Ysteel = 2 × 1011 Pa, YTungsten = 4.11 × 1011 Pa]
Solution:
Given: ls + lT = 3.25 mm,
YT = 4.11 × 1011 Pa
Ys = 2 × 1011 Pa
To find: Extension in tungsten wire (lT)
Extension in steel wire (ls)
Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 4
But ls + lT = 3.25
ls + 0.487 ls = 3.25
ls(1 + 0.487) = 3.25
ls = 2.186 mm
∴ lT = 3.25 – 2.186
= 1.064 mm
The extension in tungsten wire is 1.064 mm and the extension in steel wire is 2.186 mm.

[Note: Values of Young’s modulus of tungsten and steel considered above are standard values. Using them, calculation is carried out ¡n accordance with textual method.]

Question 9.
A steel wire having cross sectional area 1.2 mm2 is stretched by a force of 120 N. If a lateral strain of 1.455 mm is produced in the wire, calculate the Poisson’s ratio.
Solution:
Given: A = 1.2 mm2 = 1.2 × 10-6 m2,
F = 120 N, Ysteel = 2 × 1011 N/m2,
Lateral strain = 1.455 × 10-4
To find: Poisson’s ratio (σ)
Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids 5
The Poisson’s ratio of steel is 0.291.
[Note: Lateral strain being ratio of two same physical quantities, is unitless. hence, value given in question ¡s modified to 1.455 × 10-4 to reach the answer given in textbook.]

Question 10.
A telephone wire 125m long and 1mm in radius is stretched to a length 125.25m when a force of 800N is applied. What is the value of Young’s modulus for material of wire?
Solution:
Given: L = 125m,
r = 1 mm= 1 × 10-3 m
l = 125.25 – 125 = 0.25 m,
F = 800N
To find: Young’s modulus (Y)
Formula: Y \(\frac{\mathrm{FL}}{\mathrm{Al}}=\frac{\mathrm{FL}}{\pi \mathrm{r}^{2} l}\)
Calculation: From formula,
Y = \(\frac{800 \times 125}{3.142 \times 10^{-6} \times 0.25}\)
= {antilog [log 800 + log 125 – log 3.142 – log 0.25 ]} × 106
= {antilog [2.9031 + 2.0969 – 0.4972 – \(\overline{1}\) .3979]} × 106
= {antilog[5.1049]} × 106
= 1.274 × 105
= 1.274 × 1011 N/m2
The Young’s modulus of telephone wire is 1.274 × 1011 N/m2.

Question 11.
A rubber band originally 30cm long is stretched to a length of 32cm by certain load. What is the strain produced?
Solution:
Given: L = 30 cm = 30 × 10 -2 m,
∆l = 32 cm – 30 cm = 2cm = 2 × 10 -2 m
To find. Strain
Formula: Strain = \(\frac{\Delta l}{\mathrm{~L}}\)
Calculation: From formula,
Strain = \(\frac{2 \times 10^{-2}}{30 \times 10^{-2}}\) = 6.667 × 10 -2
The strain produced in the wire is 6.667 × 10 -2.

Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids

Question 12.
What is the stress in a wire which is 50m long and 0.01cm2 in cross section, if the wire bears a load of 100kg?
Solution:
Given: M = 100 kg, L 50 m, A = 0.01 × 10-4 m
To find: Stress
Formula: Stress = \(\frac{\mathrm{F}}{\mathrm{A}}=\frac{\mathrm{Mg}}{\mathrm{A}}\)
Calculation: From formula,
Stress = \(\frac{100 \times 9.8}{0.01 \times 10^{-4}}\) = 9.8 × 108 N/m2
The stress in the wire is 9.8 × 108 N/m2.

Question 13.
What is the strain in a cable of original length 50m whose length increases by 2.5cm when a load is lifted?
Solution:
Given: L = 50m, ∆l = 2.5cm = 2.5 × 10 -2 m
To find: Strain
Formula: Strain = \(\frac{\Delta l}{\mathrm{~L}}\)
Calculation: From formula,
Strain = \(\frac{2.5 \times 10^{-2}}{50}\) = 5 × 10-4
The Strain produced in wire is 5 × 10-4 .

11th Physics Digest Chapter 6 Mechanical Properties of Solids Intext Questions and Answers

Can you recall? (Textbook Page No. 100)

Question 1.

  1. Can you name a few objects which change their shape and size on application of a force and regain their original shape and size when the force is removed?
  2. Can you name objects which do not regain their original shape and size when the external force is removed?

Answer:

  1. Objects such as rubber, metals, quartz, etc. change their shape and size on application of a force (within specific limit) and regain their original shape and size when the force is removed.
  2. Objects such as putty, clay, thick mud. etc. do not regain their original shape and size when the external force is removed.

Maharashtra Board Class 11 Physics Solutions Chapter 6 Mechanical Properties of Solids

Can you tell? (Textbook Page No. 107)

Question 1.
Why does a rubber band become loose after repeated use?
Answer:

  1. After repeated use of rubber band, its stress-strain curve does not remain linear.
  2. In such case, since rubber crosses its elastic limit, there is a permanent set formed on the rubber due to which it becomes loose.

Can you tell? (Textbook Page No.111)

Question 1.
i. It is difficult to run fast on sand.
ii. It is easy to roll than pull a barrel along a road.
iii. An inflated tyre rolls easily than a flat tyre.
iv. Friction is a necessary evil.
Answer:
i.

  1. The intermolecular space between crystals of sand is very large as compared to that in a rigid surface.
  2. Thus, there are number of depressions at the points of contact of feet and sand surface.
  3. Projections and depressions between sand and feet are not completely interlocked.
  4. Thus, action and reaction force become unbalanced. The horizontal component of force helps to move forward and vertical component of the force resist to move.
    Hence, it becomes difficult to run fast on sand.

ii.

  1. When a barrel is pulled along a road, the friction between the tyres and road is kinetic friction, but when its rolls along the road it undergoes rolling friction.
  2. The force of kinetic friction is greater than force of rolling friction.
    Hence, it is easy to roll than pull a barrel along a road.

iii.

  1. When the tyre is inflated, the pressure inside the tyre is reducing the normal force between tyre and the ground, and thus reducing the friction between the tyre and the road.
  2. When the tyre gets deflated, it gets deformed during rolling, the supplied energy is used up in changing the shape and not overcoming the friction, and thus due to deformation, friction increases.
    Hence, an inflated tyre rolls easily than a flat tyre.

iv.

  1. Friction helps us to walk, hold objects in hand, lift objects and without friction we cannot walk, we cannot grip or hold objects with our hands,
  2. Friction is responsible for wear and tear of various part of machines, it produces heat in different parts of machine and also produces noise but it also helps in ball bearing or connecting screws.
    Hence, friction is said to be a necessary evil because it is useful as well as harmful.

Internet my friend (Textbook Page No. 111)

Question 1.
i. https ://opentextbc. ca/physicstestbook2/ chapter/friction/
ii. https://www.livescience.com/
iii. https://www.khanacademy.org/science/physics
iv. https://courses.lumenleaming.com/physics/ chapter/5-3-elasticity-stress-and-strain/
v. https://www.toppr.com/guides/physics/
Answer:
[Students are expected to visit the above mentioned websites and collect more information about mechanical properties of solid.]

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Balbharti Maharashtra State Board 11th Biology Textbook Solutions Chapter 9 Morphology of Flowering Plants Textbook Exercise Questions and Answers.

Maharashtra State Board 11th Biology Solutions Chapter 9 Morphology of Flowering Plants

1. Choose the correct option

Question (A)
Which one of the following will grow better in the moist and shady regions?
(a) Opuntia
(b) Orchid
(c) Mangrove
(d) Lotus
Answer:
(b) Orchid

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Question (B)
A particular plant had a pair of leaves at each node arranged in one plane. What is the arrangement called?
(a) Alternate phyllotaxy
(b) Decussate phyllotaxy
(c) Superposed phyllotaxy
(d) Whorled phyllotaxy
Answer:
(c) Superposed phyllotaxy

Question (C)
In a particular flower the insertion of floral whorls was in such a manner, so the ovary was below other three whorls, but its stigma was taller than other three whorls. What will you call such flower?
(a) Hypogynous
(b) Perigynous
(c) Inferior ovary
(d) Half superior – half inferior
Answer:
(c) Inferior ovary

Question (D)
Beet and Arum both store food for perennation.
Are the examples for two different types?
(a) Beet is a stem but Arum is a root
(b) Beet is a root but Arum is a stem
(c) Beet is a stem but Arum is a leaf
(d) Beet is a stem but Arum is an inflorescence
Answer:
(b) Beet is a root but Arum is a stem

2. Answer the following questions

Question (A)
Two of the vegetables we consume are nothing but leaf bases. Which are they?
Answer:
Onion, Garlic

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Question (B)
Opuntia has spines but Carissa has thorns. What is the difference?
Answer:

  1. In Opuntia, stem is modified into leaf like photosynthetic organ known as phylloclade.
  2. Spines growing on phylloclade of Opuntia are leaves, modified to reduce the loss of water through transpiration.
  3. Thoms in Carissa are modified apical buds. They provide protection against browsing animals.
  4. Thus, spines in Opuntia and thorns in Carissa have different origin and function.

Question (C)
Teacher described Hibiscus as solitary Cyme. What it means?
Answer:
1. In Cymose inflorescence, growth of peduncle is finite and it terminates into flower.
2. In Hibiscus, flower is borne singly at the tip of peduncle. Hence, teacher described Hibiscus as solitary cyme.

3. Write notes on

Question (A)
Fusiform root.
Answer:
Fusiform root:
1. Fusiform root is the modification of tap root for food storage.
2. Fusiform root:
The fusiform root is swollen in the middle and tapering towards both ends forming spindle shaped structure, e.g. Radish (Raphanus sativus)

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Question (B)
Racemose inflorescence.
Answer:
Racemose inflorescence

Question (C)
Fasciculated tuberous root.
Answer:
Fasciculated tuberous root:
1. Fasciculated tuberous roots are modification of adventitious roots for storage of food.
2. Fasciculated tuberous roots do not develop any definite shape like modified tap roots.
3. a. A cluster of roots arising from one point which becomes thick and fleshy due to storage of food is known as fasciculated tuberous root.
b. These clusters are seen at the base of the stem, e.g. Dahlia, Asparagus, etc.

Question (D)
Region of cell maturation.
Answer:
Region of maturation/region of differentiation:
a. It is the uppermost major part of the root.
b. The cells of this region are quite impermeable to water due to thick wall.
c. The cells show differentiation and form different types of tissues.
d. This region helps in fixation of plant and conduction of absorbed substances.
e. Development of lateral roots also takes place from this region.

Question (E)
Rhizome.
Answer:
Rhizome:

  1. Rhizome is a modification of underground stem for storage of food.
  2. It is prostrate, dorsiventrally thickened and brownish in colour.
  3. It grows either horizontally or obliquely beneath the soil.
  4. Rhizome shows nodes and intemodes. It bears terminal and axillary buds at nodes.
  5. Terminal bud under favourable conditions produces aerial shoot which degenerates at the end of favourable condition.
  6. Growth of rhizome takes place with lateral buds, such growth is known as sympodial growth, e.g. Ginger (Zingiber officinale), Turmeric {Curcuma domestica), Canna etc.
  7. In plants where rhizomes grow obliquely, terminal bud brings about growth of rhizomes. This is known as monopodial growth, e.g. Nymphea, Nelumbo (Lotus), Pteris (Fern) etc.
  8. Rhizomes perform functions like storage of food, vegetative propagation and perennation.

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Question (F)
Stolon.
Answer:
Stolons:
1. The slender lateral branch arising from the base of main axis is known as stolon.
2. In some plants it is above ground (wild strawberry).
3. Primarily stolon shows upward growth in the form of ordinary branch, but when it bends and touches the ground terminal bud grows into new shoot and develops adventitious roots.
e.g. Wild Strawberry, Jasmine, Mentha, etc. [Any one example]

Question (G)
Leaf venation.
Answer:
Leaf venation:

  1. Arrangement of veins and veinlets in leaf lamina is known as venation.
  2. Veins are responsible for conduction of water and minerals as well as food.
  3. The structural framework of the lamina is developed by veins.
  4. There are two types of leaf venation: parallel venation which is found in monocot leaves and reticulate venation which is found in dicot leaves.

Question (H)
Cymose inflorescence.
Answer:
Cymose inflorescence.

Question (I)
Perianth.
Answer:
Perianth (P):
a. Many times, calyx and corolla remain undifferentiated. Such member is known as tepal.
b. The whorl of tepals is known as Perianth.
c. It protects other floral whorls.
d. If all the tepals are free the condition is called as polyphyllous and if they are fused the condition is called as gamophyllous.
e. Sepaloid perianth shows green tepals, while petaloid perianth shows brightly coloured tepals. e.g. Lily, Amaranthus, Celosia, etc.
f. Petaloid tepal helps in pollination and sepaloid tepals can perform photosynthesis.

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Question (J)
Write a short note on vexillary aestivation.
Answer:
Vexillary: Corolla is butterfly shaped and consists of five petals. Outermost and largest is known as standard or vexillum, two lateral petals are wings and two smaller fused forming boat shaped structures keel. e.g. Pisum sativum

Question (K)
Write a short note on axile placentation.
Answer:
Axile placentation: Placentation: The mode of arrangement of ovules on the placenta within the ovary is called placentation.
Axile: Ovules are placed on the central axis of a multilocular ovary, e.g. China rose, Cotton, etc.

Question 4.
Identify the following figures and write down the types of leaves arrangement.
Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants 1
Answer:
1. The given figures represent phyllotaxy. It is the arrangement of leaves on the stem and branches in a specific manner.
2. Figure ‘a’ and ‘b’ represents, alternate phyllotaxy. In this type of phyllotaxy, single leaf arises from each node of a stem. e.g. Mango
3. Figure ‘c’ represents opposite decussate phyllotaxy. In this type of phyllotaxy, a pair of leaf arise from each node and the consecutive pair at right angle to the previous one. e.g. Calotropis.

5. Students were on the excursion to a botanical garden. They noted following observation. Will you be able to help them in understanding those conditions?

Question (A)
A wiry outgrowth was seen on a plant arising from in between the leaf and stem.
Answer:
A wiry outgrowth on a plant arising from in between the leaf and stem can be an axillary stem tendril. Stem tendrils:
a. Tendrils are thin, wiry, photosynthetic, leafless coiled structures.
b. They give additional support to developing plant.
c. Tendrils have adhesive glands for fixation.

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Question (B)
There was a green plant with flat stem, but no leaves. The entire plant was covered by soft spines.
Answer:
Student must have observed phylloclade, which is a modification of stem.
Phylloclade:
a. Modification of stem into leaf like photosynthetic organ is known as phylloclade.
b. Being stem it possesses nodes and internodes.
c. It is thick, fleshy and succulent, contains mucilage for retaining water e.g. Opuntia, Casuarina (Cylindrical shaped phylloclade) and Muehlenbeckia (ribbon like phylloclade).

Question (C)
Many oblique roots were given out from the lower nodes, apparently for extra support.
Answer:
a. Students must have observed adventitious roots in monocotyledonous plants like maize, sugarcane, wheat, etc.
b. Adventitious roots develop from any part of a plant other than radicle.
c. In such plants, adventitious roots arise from the lower node of a stem and provide extra support to the plant. These roots are also called as stilt roots.

Question (D)
Many plants in the marshy region had upwardly growing roots. They could be better seen during low tide.
Answer:
a. Plants growing in marshy region (halophytes) produce upwardly growing roots called as
pneumatophores or respiratory roots.
b. The main root system of these plants does not get sufficient air for respiration as soil is water logged.
c. Due to this, mineral absorption of plant also gets affected.
d. To overcome this problem underground roots, develop special roots which are negatively geotropic; growing vertically upward.
e. These roots are conical projections present around main trunk of plant.
f. Respiratory roots show presence of lenticels which helps in gaseous exchange.

Question (E)
A plant had leaves with long leaf apex, which was curling around a support.
Answer:
a. Students must have observed leaf tip tendril.
b. In some weak stems, leaf apex modifies into thin, green, wiry, coiled structure called as leaf tendril.
c. Such leaf tendrils, help in climbing by curling around a support.

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Question (F)
A plant was found growing on other plant. Teacher said it is not a parasite. It exhibited two types of roots.
Answer:
a. Student must have observed an epiphytic plants like Dendrobium, Vanda growing on other plant.
b. The two types of roots exhibited by this plant must be clinging roots and epiphytic roots.
c. Clinging roots:
1. Clinging roots are tiny roots develop along intemodes, show disc at tips.
2. It exudes sticky substance which enables plant to get attached to the substratum without damaging it.

d. Epiphytic roots:
1. Epiphytic plants like Vanda, Dendrobium grow on branches of trees in dense rain forests and are unable to obtain moisture from soil.
2. Such plants produce epiphytic roots which hang in the air.
3. The roots are provided with a spongy membranous absorbent covering of the velamen tissue.
4. The cells of velamen tissue are hygroscopic and have porous walls, thus they can absorb moisture from air.
5. Epiphytic roots can be silvery white or green and are without root cap.

Question (G)
While having lunch onion slices were served to them. Teacher asked which part of the plant are you eating?
Answer:
a. The edible part of an onion is fleshy leaves.
b. Onion is a bulb, in which stem is highly reduced, discoid and possesses adventitious roots at the base.
c. This stem bears a whorl of fleshy leaves which store food material.
d. The scale leaves or fleshy leaves are arranged in concentric manner over the stem. Some outer scale leaves become thin and dry. Thus, it is also called as tunicated or layered bulb.

Question (H)
Students observed large leaves of coconut and small leaves of Mimosa. Teacher asked it what way they are similar?
Answer:
a. Both large leaves of coconut and small leaves of Mimosa show pinnately compound leaves.
b. In both plants, leaf lamina is divided into number of leaflets.
c. Leaflets are present laterally on a common axis called rachis, which represents the midrib of the leaf.

Question (I)
Teacher showed them Marigold flower and said it is not one flower. What the teacher meant?
Answer:
a. Marigold flower is an inflorescence in which flowers are produced in a definite manner on a peduncle.
b. In Marigold, racemose type of inflorescence can be observed.
c. In this, peduncle condenses to form a flat rounded structure called receptacle.
d. Opening of flower centripetal i.e. younger flowers are towards the centre and open later, while older flowers towards the periphery and open first.

Question (J)
Students cut open a Papaya fruit and found all the seeds attached to the sides. Teacher inquired about the possible placentation of Papaya ovary.
Answer:
a. In Papaya, seeds are attached to the sides of a fruit. Thus, parietal placentation is possible in papaya ovary,
b. In parietal placentation, ovules are placed on the inner wall of unil unilocular ovary of multicarpellary, syncarpus gynoecium.

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Question 6.
Match the following.
Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants 2
Answer:
(i-c-1), (ii-e-3), (iii-a-4), (iv-b-5), (v-d-2)
[Note: Another example of palmately compound leaf (Bifoliate) is Balanites roxburghii.]

Question 7.
Observe the following figures and label the different parts.
Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants 3
Answer:
Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants 4

8. Differentiate with diagrammatic representation.

Question (A)
Differentiate with diagrammatic representation: Racemose and cymose inflorescence.
Answer:
Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants 5

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Question (B)
Differentiate with diagrammatic representation: Reticulate and parallel venation
Answer:
Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants 6

Question (C)
Differentiate with diagrammatic representation: Taproot and Adventitious roots
Answer:
Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants 7

Practical / Project:

Question 1.
Collect different leaves from nearby region and observe variation in margin, leaf base, apex etc.
[Note: Students can scan the given Q.R code to study the different le
af margin, leaf base and apex.]

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Question 2.
Find out and make a note of economically important plant from family Fabaceae, Solanaceae and Liliaceae.
Answer:
1. Economically important plant from family Fabaceae:
Family Fabaceae includes many pulses like gram, arhar, moong, soybean; edible oil seeds like soybean, groundnut; dye (lndigofera); fibres which can be obtained from Sun hemp, Sesbania trifolium which can be used as fodder; some plants are ornamental like lupin, sweet pea; some medicinal plants like muliathi.

2. Economically important plant from family Solanaceae:
Family Solanaceae includes many plants which are good source of food e.g. tomato, brinjal, potato; Spice e.g. chilli; Medicine e.g. belladonna, ashwagandha; Ornamental plants like Petunia.

3. Economically important plant from family Liliaceae:
Family Liliaceae includes many ornamental plants like tulip, Gloriosa, Medicinal plants like Aloe vera. Asparagus and source of colchicine, e.g. Colchicum autumnale.

Question 3.
Collect different leaves from garden and observe their veins and classify it.

11th Biology Digest Chapter 9 Morphology of Flowering Plants Intext Questions and Answers

Use your brainpower. (Textbook Page No. 102)

Why underground stem is different from roots?
Answer:
Underground stems are modified to perform different functions like storage of food, perennation and vegetative propagation. However, they differ from root in having nodes and intemodes.

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Use your brainpower. (Textbook Page No. 104)

Why the stem has to perform photosynthesis in xerophytes?
Answer:
1. Xerophytes are the plants which grow in regions with scanty or no rainfall like desert.
2. In Xerophytes, leaves get modified into spines or get reduced in size to check the loss of water due to transpiration.
3. As the leaves are modified into spines, the stem becomes green in colour to do the function of photosynthesis.

Internet My Friend. (Textbook Page No. 106)

Collect information of types of leaf venation.
Answer:
1. Figure ‘R’ shows types of reticulate venation. WTien the veins and veinlets form a network, it is called
reticulate venation.
On the basis of number of mid-veins, reticulate venation is of two types:
a. Pinnate or unicostate: It is with single midrib e.g. Peepal, Mango.
b. Palmate or multicostate: It is with two or more prominent veins. It is further divided into convergent or divergent.
1. Multicostate convergent reticulate: Many prominent veins appear from the base of leaf lamina and converged in a curved manner towards the leaf apex. e.g. Zizyphus
2. Multicostate divergent reticulate: Prominent veins arise from the single point at the base of leaf lamina
and then diverge from one another towards the leaf margin, e.g. Cucurbita

2. Figure ‘P’ shows types of parallel venation. When veins run almost parallel to one another it is called parallel venation. It is of two types:
a. Unicostate: In this, lamina has single prominent mid vein from which many lateral parallel veins arise at regular intervals, e.g. Banana
b. Multicostate: In this, two or more mid veins run parallel to each other. It is further divided into convergent or divergent.

1. Multicostate convergent parallel:
Many prominent veins arise from the leaf base and then converge at leaf apex. e.g. Grasses
2. Multicostate divergent parallel:
Many prominent veins arise from the leaf base and then diverge towards margin, e.g. Borassus flabellifer (Toddy palm)

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Observe and Discuss. (Textbook Page No. 112)

Observe and Discuss.
Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants 8Answer:
1. Figure ‘a’ shows fruit of tomato.

  • It is a simple fruit as it develops from a single flower with bicarpellary syncarpous gynoecium.
  • It is a berry, because it has fleshy endocarp and many seeds.

2. Figure ‘b’ shows fruit of Custard apple.

  • It is an aggregate fruit, because it develops from a single flower with polycarpellary, apocarpous gynoecium.
  • Here, the ovary of each carpel gives rise to a part of the fruit called fruitlet. Hence, it is called an aggregation of fruitlets.
  • Custard apple can be further described as Etaerio of berries.

3. Figure ‘c’ shows fruit of pineapple.

  • It is a composite fruit, because it develops from a complete inflorescence.
  • Pineapple can be further described as Sorosis, as it develops from catkin type of inflorescence.

4. Figure ‘d’ shows fruit of milkweed.

  • It is a simple dehiscent dry fruit.
  • It has many seeds. When pericarp becomes dry and thin, it breaks open by one ventral suture.

Maharashtra Board Class 11 Biology Solutions Chapter 9 Morphology of Flowering Plants

Activity. (Textbook Page No. 113)

Study the family Liliaceae, prepare a table of following characteristics.
Answer:

Symmetry of flower Actinomorphic
Bisexual/ Unisexual Bisexual
Calyx Absent
Corolla Absent
Androecium Stamens six, arranged in two whorls of 3 each, epiphyllous
Gynoecium Tricarpellary, syncarpous, trilocular ovary with many ovules
Aestivation Valvate
a. Calyx Absent
b. Corolla Absent
Placentation Axile
Position of ovary Superior ovary
Types of fruit Capsule, rarely berry

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids

Balbharti Maharashtra State Board 11th Chemistry Textbook Solutions Chapter 11 Adsorption and Colloids Textbook Exercise Questions and Answers.

Maharashtra State Board 11th Chemistry Solutions Chapter 11 Adsorption and Colloids

1. Choose the correct option.

Question A.
The size of colloidal particles lies between
a. 10-10 m and 10-9 m
b. 10-9 m and 10-6 m
c. 10-6 m and 10-4 m
d. 10-5 m and 10-2 m
Answer:
b. 10-9 m and 10-6 m

Question B.
Gum in water is an example of
a. true solution
b. suspension
c. lyophilic sol
d. lyophobic sol
Answer:
c. lyophilic sol

Question C.
In Haber process of production of ammonia K2O is used as
a. catalyst
b. inhibitor
c. promotor
d. adsorbate
Answer:
c. promotor

Question D.
Fruit Jam is an example of-
a. sol
b. gel
c. emulsion
d. true solution
Answer:
b. gel

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids

2. Answer in one sentence :

Question A.
Name type of adsorption in which van der Waals focres are present.
Answer:
Physical adsorption or physisorption.

Question B.
Name type of adsorption in which compound is formed.
Answer:
Chemical adsoiption or chemisorption.

Question C.
Write an equation for Freundlich adsorption isotherm.
Answer:
Freundlich proposed the following empirical equation for adsorption of a gas on solid.
\(\frac{x}{\mathrm{~m}}\) = k P1/n (n > 1) ……(i)
where,
x = Mass of the gas adsorbed
m = Mass of the adsorbent
\(\frac{x}{\mathrm{~m}}\) = Mass of gas adsorbed per unit mass of adsorbent
P = Equilibrium pressure
k and n are constants which depend on the nature of adsorbate, adsorbent and temperature.

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids

3. Answer the following questions:

Question A.
Define the terms:
a. Inhibition
b. Electrophoresis
c. Catalysis.
Answer:
a. Inhibition:
The phenomenon in which the rate of chemical reaction is reduced by an inhibitor is called inhibition.

b. Electrophoresis:
The movement of colloidal particles under an applied electric potential is called electrophoresis.

c. Catalysis:
The phenomenon of increasing the rate of a chemical reaction with the help of a catalyst is known as catalysis.

Question B.
Define adsorption. Why students can read blackboard written by chalks?
Answer:

  • Adsorption is the phenomenon of accumulation of higher concentration of ‘one substance on the surface of another (in bulk) due to unbalanced/unsatisfied attractive forces on the surface.
  • When we write on blackboard using chalk, the chalk particles get adsorbed on the surface of the blackboard.

Hence, students can read blackboard written by chalks.

Question C.
Write characteristics of adsorption.
Answer:
Following are the characteristics of adsorption:

  • Adsorption is a surface phenomenon.
  • It depends upon the surface area of the adsorbent.
  • It involves physical forces (van der Waals forces) or chemical forces (chemical or covalent bonds).
  • Adsorbate is always present in higher concentration on the surface of an adsorbent than in the bulk.
  • Adsorption is dependent on temperature (of the surface) and pressure (of adsorbate gas).
  • It takes place with the evolution of heat (with some exceptions).

Question D.
Distinguish between Lyophobic and Lyophilic sols.
Answer:
Lyophobic sols (colloids):

  1. Lyophobic sols are formed only by special methods.
  2. They are irreversible.
  3. These are unstable and hence, require traces of stabilizers.
  4. Addition of small amount of electrolytes causes precipitation or coagulation of lyophobic sols.
  5. Viscosity of lyophobic sol is nearly the same as the dispersion medium.
  6. Surface tension of lyophobic sol is nearly the same as the dispersion medium.

Lyophilic sols (colloids):

  1. Lyophilic sols are formed easily by direct mixing.
  2. They are reversible.
  3. These are self-stabilized.
  4. Addition of large amount of electrolytes causes precipitation or coagulation of lyophilic sols.
  5. Viscosity of lyophilic sol is much higher than that of the dispersion medium.
  6. Surface tension of lyophilic sol is lower than that of dispersion medium.

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids

Question E.
Identify dispersed phase and dispersion medium in the following colloidal dispersions.
a. milk
b. blood
c. printing ink
d. fog
Answer:

Colloidal dispersion Dispersed phase Dispersion medium
Milk Liquid Liquid
Blood Solid Liquid
Printing ink Solid Liquid
Fog Liquid Gas

Question F.
Write notes on :
a. Tyndall effect
b. Brownian motion
c. Types of emulsion
d. Hardy-Schulze rule
Answer:
a. Tyndall effect:
i. Tyndall observed that when light passes through true solution, the path of light through it cannot be detected.
ii. However, if the light passes through a colloidal dispersion, the particles scatter some light in all directions and the path of the light through colloidal dispersion becomes visible to observer standing at right angles to its path.
iii. The phenomenon of scattering of light by colloidal particles and making path of light visible through the dispersion is referred as Tyndall effect and the bright cone of the light is called Tyndall cone.
iv. Tyndall effect is observed only when the following conditions are satisfied.

  • The diameter of the dispersed particles is not much smaller than the wavelength of light used.
  • The refractive indices of dispersed phase and dispersion medium differ largely.

v. Significance of Tyndall effect:

  • It is useful in determining number of particles in colloidal system and their particle size.
  • It is used to distinguish between colloidal dispersion and true solution.

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 1

b. Brownian motion:
i. The colloidal or microscopic particles undergo ceaseless random zig-zag motion in all directions in a fluid. This motion of dispersed phase particles is called Brownian motion.
ii. Cause of Brownian motion:

  • Particles of the dispersed phase constantly collide with the fast-moving molecules of dispersion medium (fluid).
  • Due to this, the dispersed phase particles acquire kinetic energy from the molecules of the dispersion medium.
  • This kinetic energy brings about Brownian motion.

c. Types of emulsion:
iii. There are two types of emulsions:
a. Emulsion of oil in water (o/w type): An emulsion in which dispersed phase is oil and dispersion medium is water is called emulsion of oil in water.
e.g. 1. Milk consists of particles of fat dispersed in water.
2. Other examples include vanishing cream, paint, etc.
b. Emulsion of water in oil (w/o type): An emulsion in which dispersed phase is water and dispersion medium is oil is called emulsion of water in oil.
e.g. 1. Cod liver oil consists of particles of water dispersed in oil.
2. Some other examples of this type include butter, cream, etc.

d. Hardy-Schulze rule:
i. Generally, greater the valency of the flocculating ion added, greater is its power to cause precipitation. This is known as Hardy-Schulze rule.
ii. In the coagulation of negative sol, the flocculating power follows the following order:
Al3+ > Ba2+ > Na+
iii. Similarly, in the coagulation of positive sol, the flocculating power is in the following order:
[Fe (CN)6]4- > PO43- > SO42- > Cl

Question G.
Explain Electrophoresis in brief with the help of diagram. What are its applications ?
Answer:
i. Electrophoresis: Electrophoresis set up is shown in the diagram below.
Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 2

  • The diagram shows U tube set up in which two platinum electrodes are dipped in a colloidal solution.
  • When electric potential is applied across two electrodes, colloidal particles move towards one or other electrode.
  • The movement of colloidal particles under an applied electric potential is called electrophoresis.
  • Positively charged particles move towards cathode while negatively charged particles migrate towards anode and get deposited on the respective electrode.

ii. Applications of electrophoresis:

  • On the basis of direction of movement of the colloidal particles under the influence of electric field, it is possible to know the sign of charge on the particles.
  • It is also used to measure the rate of migration of sol particles.
  • Mixture of colloidal particles can be separated by electrophoresis, since different colloidal particles in mixture migrate with different rates.

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids

Question H.
Explain why finely divided substance is more effective as adsorbent?
Answer:

  • Adsorption is a surface phenomenon and hence, the extent of adsorption depends upon surface area of the adsorbent.
  • Adsorption increases with increase in surface area of the adsorbent.
  • Finely divided powdered substances provide larger surface area for a given mass.

Hence, finely divided substance is more effective as adsorbent.

Question I.
What is the adsorption Isotherm?
Answer:
The relationship between the amount of a substance adsorbed per unit mass of adsorbent and the equilibrium pressure (in case of gas) or concentration (in case of solution) at a given constant temperature is called an adsorption isotherm.

Question J.
Aqueous solution of raw sugar, when passed over beds of animal charcoal, becomes colourless. Explain.
Answer:

  • When aqueous solution of raw sugar is passed over beds of animal charcoal, charcoal adsorbs the coloured particles from the raw sugar.
  • Thus, due to the adsorption of coloured particles, raw sugar becomes colourless when passed over beds of animal charcoal.

Question K.
What happens when a beam of light is passed through a colloidal sol?
Answer:
i. When a beam of light is passed through colloidal sol, it is observed that the colloidal particles scatter some of the incident light in all directions.
ii. Because of this scattering of light, the path of light through the colloidal dispersion becomes visible to observer standing at right angles to its path and the phenomenon is known as Tyndall effect.
iii.
Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 3

Question L.
Mention factors affecting adsorption of gas on solids.
Answer:
Adsorption of gases on solids depends upon the following factors:

  • Nature of adsorbate (gas)
  • Nature of solid adsorbent
  • Surface area of adsorbent
  • Temperature of the surface
  • Pressure of the gas

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids

Question M.
Give four uses of adsorption.
Answer:
i. Catalysis (Heterogeneous catalysis):

  • The solid catalysts are used in many industrial manufacturing processes.
  • For example, iron is used as a catalyst in manufacturing of ammonia, platinum in manufacturing of sulphuric acid, H2SO4 (by contact process) while finely divided nickel is employed as a catalyst in hydrogenation of oils.

ii. Gas masks:

  • It is a device which consists of activated charcoal or mixture of adsorbents.
  • It is used for breathing in coal mines to avoid inhaling of the poisonous gases.

iii. Control of humidity: Silica and alumina gels are good adsorbents of moisture.
iv. Production of high vacuum:

  • Lowering of temperature at a given pressure, increases the rate of adsorption of gases on charcoal powder. By using this principle, high vacuum can be attained by adsorption.
  • A vessel evacuated by vacuum pump is connected to another vessel containing coconut charcoal cooled by liquid air. The charcoal adsorbs the remaining traces of air or moisture to create a high vacuum.

Question N.
Explain Bredig’s arc method.
Answer:

  • Colloidal sols can be prepared by electrical disintegration using Bredig’s arc method.
  • This process involves vaporization as well as condensation.
  • Colloidal sols of metals such as gold, silver, platinum can be prepared by this method.
  • In this method, electric arc is struck between electrodes of metal immersed in the dispersion medium.
  • The intense heat produced vapourizes the metal which then condenses to form particles of colloidal sol.

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 4

Question O.
Explain the term emulsions and types of emulsions.
Answer:
i. A colloidal system in which one liquid is dispersed in another immiscible liquid is called an emulsion.
ii. There are liquid-liquid colloidal systems in which both liquids are either completely or partially immiscible.
iii. There are two types of emulsions:
a. Emulsion of oil in water (o/w type): An emulsion in which dispersed phase is oil and dispersion medium is water is called emulsion of oil in water.
e.g. 1. Milk consists of particles of fat dispersed in water.
2. Other examples include vanishing cream, paint, etc.
b. Emulsion of water in oil (w/o type): An emulsion in which dispersed phase is water and dispersion medium is oil is called emulsion of water in oil.
e.g. 1. Cod liver oil consists of particles of water dispersed in oil.
2. Some other examples of this type include butter, cream, etc.

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids

4. Explain the following :

Question A.
A finely divided substance is more effective as adsorbent.
Answer:

  • Adsorption is a surface phenomenon and hence, the extent of adsorption depends upon the surface area of the adsorbent.
  • Adsorption increases with an increase in surface area of the adsorbent.
  • Finely divided powdered substances provide a larger surface area for a given mass. Hence, a finely divided substance is more effective as an adsorbent.

Question B.
Freundlich adsorption isotherm, with the help of a graph.
Answer:
Graphical representation of the Freundlich adsorption isotherm:
Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 5
i. Freundlich proposed the following empirical equation for adsorption of a gas on solid.
\(\frac{x}{\mathrm{~m}}\) = k P1/n (n > 1) ………(i)
where,
x = Mass of the gas adsorbed
m = Mass of the adsorbent
\(\frac{x}{\mathrm{~m}}\) = Mass of gas adsorbed per unit mass of adsorbent
P = Equilibrium pressure
k and n are constants which depend on the nature of adsorbate, adsorbent and temperature.
ii. The graphical representation of Freundlich equation is as shown in the adjacent plot of x/m vs ‘P’.
iii. In case of solution, P in the equation (i) is replaced by the concentration (C) and thus,
\(\frac{x}{\mathrm{~m}}\) = k C1/n ………(ii)
iv. By taking logarithm on both sides of the equation (ii),
we get
log \(\frac{x}{\mathrm{~m}}\) = log k + \(\frac{1}{n}\) log C ……..(iii)
v. On plotting a graph of log \(\frac{x}{\mathrm{~m}}\) against log C or log P, a straight line is obtained as shown in the adjacent plot. The slope of the straight line is and intercept on Y-axis is log k.
vi. The factor \(\frac{1}{n}\) ranges from 0 to 1. Equation (iii) holds good over limited range of pressures.
a. When \(\frac{1}{n}\) → 0, \(\frac{x}{\mathrm{~m}}\) → constant, the adsorption is independent of pressure.
b. When \(\frac{1}{n}\) = 1, \(\frac{x}{\mathrm{~m}}\) = k P, i.e., \(\frac{x}{\mathrm{~m}}\) ∝ P, the adsorption varies directly with pressure.
c. The experimental isotherms tend to saturate at high pressure.
Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 13

5. Distinguish between the following :

Question A.
Adsorption and absorption. Give one example.
Answer:
Adsorption:

  • Adsorption is a surface phenomenon as adsorbed matter is concentrated only at the surface and does not penetrate through the surface to the bulk of adsorbent.
  • Concentration of the adsorbate is high only at the surface of the adsorbent.
  • It is dependent on temperature and pressure.
  • It is accompanied by evolution of heat known as heat of adsorption.
  • It depends on surface area.
    e.g. Adsoiption of a gas or liquid like acetic acid by activated charcoal.

Absorption:

  • Absorption is a bulk phenomenon as absorbed matter is uniformly distributed inside as well as at the surface of the bulk of substance.
  • Concentration of the absorbate is uniform throughout the bulk of the absorbent.
  • It is independent of temperature and pressure.
  • It may or may not be accompanied by any evolution or absorption of heat.
  • It is independent of surface area.
    e.g. Absorption of water by cotton, absorption of ink by blotting paper.

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids

Question B.
Physisorption and chemisorption. Give one example.
Answer:
Physisorption:

  1. In physisorption, the forces operating are weak van der Waals forces.
  2. It is not specific in nature as all gases adsorb on all solids. For example, all gases adsorb on charcoal.
  3. The heat of adsorption is low and lies in the range 20-40 kJ mol-1.
  4. It occurs at low temperature and decreases with an increase of temperature.
  5. It is reversible.
  6. Physisorbed layer may be multimolecular layer of adsorbed particles under high pressure.
    e.g. At low temperature N2 gas is physically adsorbed on iron.

Chemisorption:

  1. In chemisorption, the forces operating are of chemical nature (covalent or ionic bonds).
  2. It is highly specific and occurs only when chemical bond formation is possible between adsorbent and adsorbate. For example, adsorption of oxygen on tungsten, hydrogen on nickel, etc.
  3. The heat of adsorption is high and lies in the range 40-200 kJ mol-1.
  4. It is favoured at high temperature, however, the extent of chemical adsorption is lowered at very high temperature due to bond breaking.
  5. It is irreversible.
  6. Chemisorption forms monomolecular layer of adsorbed particles.
    e.g. N2 gas chemically adsorbed on iron at high temperature forms a layer of iron nitride, which desorbs at very high temperature.

6. Adsorption is surface phenomenon. Explain.
Answer:
Consider a surface of a liquid or a solid.

  • The molecular forces at the surface of a liquid are unbalanced or in unsaturation state.
  • In solids, the ions or molecules at the surface of a crystal do not have their forces satisfied by the close contact with other particles.
  • Because of the unsaturation, solid and liquid surfaces tend to attract gases or dissolved substances with which they come in close contact. Thus, the substance accumulates on the surface of solid or liquid i.e., the substance gets adsorbed on the surface.

Hence, adsorption is a surface phenomenon.
Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 6

7. Explain how the adsorption of gas on solid varies with
a. nature of adsorbate and adsorbent
b. surface area of adsorbent
Answer:
i. a. Nature of adsorbate:
1. All solids adsorb gases to some extent. It is observed that gases having high critical temperature liquify easily and can be readily adsorbed.
2. The gases such as SO2, Cl2, NH3 which are easily liquefiable are adsorbed to a larger extent as compared to gases such as N2, O2, H2, etc. which are difficult to liquify.
3. Thus, the amount of gas adsorbed by a solid depends on the nature of the adsorbate gas i.e., whether it is easily liquefiable or not.

b. Nature of adsorbent: Substances which provide large surface area for a given mass are effective as adsorbents and adsorb appreciable volumes of gases.
e.g. Silica gel and charcoal are effective adsorbents due to their porous nature.

ii. Surface area of the adsorbent:

  • Adsorption is a surface phenomenon. Hence, the extent of adsorption increases with increase in surface area of the adsorbent.
  • Finely divided substances, rough surfaces, colloidal substances are good adsorbents as they provide larger surface area for a given mass.

Note: Critical temperature of some gases and volume adsorbed.
Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 7

8. Explain two applications of adsorption.
Answer:
i. Catalysis (Heterogeneous catalysis):

  • The solid catalysts are used in many industrial manufacturing processes.
  • For example, iron is used as a catalyst in manufacturing of ammonia, platinum in manufacturing of sulphuric acid, H2SO4 (by contact process) while finely divided nickel is employed as a catalyst in hydrogenation of oils.

ii. Gas masks:

  • It is a device which consists of activated charcoal or mixture of adsorbents.
  • It is used for breathing in coal mines to avoid inhaling of the poisonous gases.

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids

9. Explain micelle formation in soap solution.
Answer:

  • Soap molecule has a long hydrophobic hydrocarbon chain called tail which is attached to hydrophilic ionic carboxylate group, called head.
  • In water, the soap molecules arrange themselves to form spherical particles that are called micelles.
  • In each micelle, the hydrophobic tails of soap molecules point to the centre and the hydrophilic heads lie on the surface of the sphere.
  • As a result of this, soap dispersion in water is stable.

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 8

10. Draw labelled diagrams of the following :
a. Tyndall effect
b. Dialysis
c. Bredig’s arc method
d. Soap micelle
Answer:
a. Tyndall effect:
Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 9

b. Dialysis:
Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 10

c. Bredig’s arc method:
Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 11

d. Soap micelle:
Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 12

Activity :
Collect the information about methods to study surface chemistry.
Answer:
Following are the few methods that are employed to study surface chemistry.
i. X-ray photoelectron spectroscopy:
It is a surface-sensitive spectroscopic technique which is used to measure elemental composition of the surface, to determine elements that are present as contaminants on the surface, etc.

ii. Auger electron spectroscopy:
It is a common analytical technique which is used to study surfaces of materials.

iii. Temperature programmed desorption (TPD):
Adsorbed molecules get desorbed when the surface temperature is increased. TPD technique is used to observe these desorbed molecules and helps in providing information about binding energy between the adsorbate and adsorbent.

iv. Scanning Electron Microscopy:
In this technique, a scanning electron microscope is used to focus electron beam over the surface of the sample to be examined. The electron beam interacts with the sample and an image is obtained. This image provides information about surface structure and composition of the sample.

[Note: Students are expected to collect additional information about surface chemistry on their own.]

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids

11th Chemistry Digest Chapter 11 Adsorption and Colloids Intext Questions and Answers

Can you tell? (Textbook Page No. 160)

Question 1.
What is adsorption?
Answer:
Adsorption is the phenomenon of accumulation of higher concentration of one substance on the surface of another (in bulk) due to unbalanced/unsatisfied attractive forces on the surface.

Try this. (Textbook Page No. 161)

Question 1.
Dip a chalk in ink. What do you observe?
Answer:
When a chalk is dipped in ink, it is observed that the ink molecules are adsorbed at the surface of chalk and the surface becomes coloured, while the solvent of the ink goes deeper into the chalk due to absorption.

Internet my friend. (Textbook Page No. 172)

Question i.
Brownian motion
Answer:
Students can search relevant videos on YouTube to visualize Brownian motion.

Question ii.
Collect information about Brownian motion.
Answer:
i. The colloidal or microscopic particles undergo ceaseless random zig-zag motion in all directions in a fluid. This motion of dispersed phase particles is called Brownian motion.
ii. Cause of Brownian motion:

  • Particles of the dispersed phase constantly collide with the fast-moving molecules of dispersion medium (fluid).
  • Due to this, the dispersed phase particles acquire kinetic energy from the molecules of the dispersion medium.
  • This kinetic energy brings about Brownian motion.

Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids

Internet my friend. (Textbook Page No. 172)

Question 1.
Collect information about surface chemistry.
Answer:

  • Surface or interface represents the boundary which separates two bulk phases.
    e.g. Boundary between water and its vapour is a liquid-gas interface.
  • Certain properties of substances, particularly of solids and liquids, depend upon the nature of the surface.
  • An interface usually has a thickness of a few molecules. However, its area depends on the size of the bulk phase particles.
  • Commonly considered bulk phases may be pure compounds or solutions.
  • A number of important phenomena, namely, dissolution, crystallization, heterogeneous catalysis, electrode processes and corrosion take place at an interface.
  • Thus, study of chemistry of surfaces is critical to many applications in industry, analytical investigations and day-to-day activities such as cleaning and softening of water.
  • The branch of chemistry which deals with the nature of surfaces and changes occurring on the surfaces is called surface chemistry.
  • Study of surfaces requires a rigorously clean surface. An ultra-clean metal surface can be obtained under very high vacuum, of the order of 10-8 to 10-9 pascal.
  • Adsorption, catalysis and colloids (such as emulsions and gels) are some of the important aspects of surface chemistry.

[Note: Students are expected to collect additional information about surface chemistry on their own.]

Activity. (Textbook Page No. 172)

Question 1.
Calculate surface area to volume ratio of spherical particle. See how the ratio increases with the reduction of radius of the particle. Plot the ratio against the radius.
Answer:
The graph below shows that as the radius of the spherical particle decreases, the surface-to-volume ratio increases steadily.
Maharashtra Board Class 11 Chemistry Solutions Chapter 11 Adsorption and Colloids 14

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

Balbharti Maharashtra State Board 11th Chemistry Textbook Solutions Chapter 10 States of Matter Textbook Exercise Questions and Answers.

Maharashtra State Board 11th Chemistry Solutions Chapter 10 States of Matter

1. Select and write the most appropriate alternatives from the given choices.

Question A.
The unit of viscosity is
a. dynes
b. newton
c. gram
d. poise
Answer:
d. poise

Question B.
Which of the following is true for 2 moles of an ideal gas?
a. PV = nRT
b. PV = RT
c. PV = 2RT
d. PV = T
Answer:
c. PV = 2RT

Question C.
Intermolecular forces in liquid are
a. greater than gases
b. less than solids
c. both a and b
d. greater than solids
Answer:
c. both a and b

Question D.
Interactive forces are ………. in ideal gas.
a. nil
b. small
c. large
d. same as that of real gases
Answer:
a. nil

Question E.
At constant temperature the pressure of 22.4 dm3 volume of an ideal gas was increased from 105 kPa to 210 kPa, New volume could be-
a. 44.8 dm3
b. 11.2 dm3
c. 22.4 dm3
d. 5.6 dm3
Answer:
b. 11.2 dm3

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

2. Answer in one sentence.

Question A.
Name the term used for mixing of different gases by random molecular motion and ferquent collision.
Answer:
The mixing of different gases by random molecular motion and frequent collision is called diffusion.

Question B.
The pressure that each individual gas would exert if it were alone in the container, what do we call it as ?
Answer:
The pressure that each individual gas would exert if it were alone in the container is called as partial pressure.

Question C.
When a gas is heated the particles move more quickly. What is the change in volume of a heated gas if the pressure is kept constant ?
Answer:
The volume of the gas increases on heating if pressure is kept constant.

Question D.
A bubble of methane gas rises from the bottom of the North sea. What will happen to the size of the bubble as it rises to the surface ?
Answer:
According to Boyle’s law, the size of the bubble of methane gas increases as it rises to the surface.

Question E.
Convert the following temperatures from degree celcius to kelvin.
a. -15° C
b. 25° C
c. -197° C
d. 273° C
Answer:
a. T(K) = t°C +273.15
∴ T(K) = -15 °C + 273.15 = 258.15 K
b. T(K) = t°C +273.15
∴ T(K) = 25 °C + 273.15 = 298.15 K
c. T(K) = t°C + 273.15
∴ T(K) = -197 °C + 273.15 = 76.15 K
d. T(K) = t°C + 273.15
∴ T(K) = 273 °C + 273.15 = 546.15 K

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

Question F.
Convert the following pressure values into Pascals.
a. 10 atmosphere
b. 1 kPa.
c. 107000 Nm-2
d. 1 atmosphere
Answer:
a. 10 atmosphere:
1 atm = 101325 Pa
∴ 10 atm = 1013250 Pa
= 1.01325 × 106 Pa

b. 1 kPa:
1 kPa = 1000 Pa

c. 107000 N m-2:
1 N m-2 = 1 Pa
∴ 107000 Nm-2 = 107000 Pa
= 1.07 × 105 Pa

d. 1 atmosphere:
1 atm = 101325 Pa
= 1.01325 × 105 Pa

Question G.
Convert:
a. Exactly 1.5 atm to pascals
b. 89 kPa to newton per square metre (N m-2)
c. 101.325 kPa to bar
d. -100 °C to Kelvin
e. 0.124 torr to standard atmosphere
Answer:
a. Exactly 1.5 atm to pascals:
1 atm = 101325 Pa
∴ 1.5 atm = 1.5 × 101325
= 151987.5 Pa

b. 89 kPa to newton per square metre (N m-2):
1 Pa = 1 N m-2 and 1 Pa = 10-3 kPa
∴ 10-3 kPa = 1 N m-2
∴ 89 kPa = \(\frac{1 \times 89}{10^{-3}}\) N m-2 = 89000 N m-2

c. 101.325 kPa to bar:
1 bar = 1.0 × 105 Pa
= 1.0 × 102 k Pa
∴ 100 kPa = 1 bar
∴ 101.325 kPa = \(\frac{1 \times 101.325}{100}\)
= 1.01325 bar

d. -100 °C to Kelvin:
T(K) = t °C + 273.15
∴ T(K) = (- 100 °C) + 273.15 = 173.15 K

e. 0.124 torr to standard atmosphere:
1 atm = 760 torr
∴ 1 torr = \(\frac {1}{760}\)atm
∴ 0.124 torr = 0.124 × \(\frac {1}{760}\)
= 1.632 × 10-4 atm

Question H.
If density of a gas is measured at constant temperature and pressure then which of the following statement is correct ?
a. Density is directly proportional to molar mass of the gas.
b. Greater the density greater is the molar mass of the gas.
c. If density, temperature and pressure is given ideal gas equation can be used to find molar mass.
d. All the above statements are correct.
Answer:
d. All the above statements are correct.

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

Question I.
Observe the following conversions.
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 1
Which of the above reactions is in accordance with the priciple of stoichiometry ?
Answer:
Both the reactions are in accordance with the principle of stoichiometry.
In the first reaction, both the reactants are completely consumed to form product according to reaction stoichiometry.
1 mol hydrogen + 1 mol chlorine → 2 mol hydrogen chloride
In the second reaction, chlorine is the limiting reagent and it is completely consumed to form hydrogen chloride. Excess hydrogen remains unreacted at the end of the reaction. This reaction also follows principle of stoichiometry.
2 mol hydrogen + 1 mol chlorine → 2 mol hydrogen chloride + 1 mol hydrogen

Question J.
Hot air balloons float in air because of the low density of the air inside the balloon. Explain this with the help of an appropriate gas law.
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 2
Answer:
The working of hot air balloon can be explained with the help of Charles’ law. According to Charles’ law, at constant pressure, the volume of a fixed amount of a gas varies directly with the temperature. This means that as the temperature increases, the air inside the balloon expands and occupies more volume. Thus, hot air inside the balloon is less dense than the surrounding cold air. This causes the hot air balloon to float in air.

3. Answer the following questions.

Question A.
Identify the gas laws from the following diagrams.
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 3
Answer:
a. Boyle’s law
b. Charles’ law
c. Avogadro’s law [Note: Assuming, T constant]

Question B.
Consider a sample of a gas in a cylinder with a movable piston.
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 4
Show digramatically the changes in the position of piston, if
a. Pressure is increased from 1.0 bar to 2.0 bar at constant temperature.
b. Temperature is decreased from 300 K to 150 K at constant pressure
c. Temperature is decreased from 400 K to 300 K and pressure is decreased from 4 bar to 3 bar.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 5
Thus, the volume of the gas remains the same.
Hence, there will be no change in the position of the piston.

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

Question D.
List the characteristic physical properties of the gases.
Answer:
Characteristic physical properties of the gases:

  • Gases are lighter than solids and liquids (i.e., possess lower density).
  • Gases do not possess a fixed volume and shape. They occupy entire space available and take the shape of the container.
  • Gas molecules are widely separated and are in continuous, random motion. Therefore, gases exert pressure equally in all directions due to collision of gas molecules, on the walls of the container.
  • In case of gases, intermolecular forces are weakest.
  • Gases possess the property of diffusion, which is a spontaneous homogeneous inter mixing of two or more gases.
  • Gases are highly compressible.

Question E.
Define the terms:
a. Polarizability
b. Hydrogen bond
c. Aqueous tension
d. Dipole moment
Answer:
a. Polarizability is defined as the ability of an atom or a molecule to form momentary dipoles, that means, the ability of the atom or molecule to become polar by redistributing its electrons.

b. The electrostatic force of attraction between positively polarised hydrogen atom of one molecule and a highly electronegative atom (which may be negatively charged) of other molecule is called as hydrogen bond.

c. The pressure exerted by saturated water vapour is called aqueous tension.

d. Dipole moment (p) is the product of the magnitude of the charge (Q) and the distance between the centres of positive and negative charge (r). It is designated by a Greek Letter (p) and its unit is Debye (D).

Question F.
Would it be easier to drink water with a straw on the top of the Mount Everest or at the base ? Explain.
Answer:
When you drink through a straw, the pressure inside the straw reduces (as the air is withdraw by mouth) and the liquid is pushed up to your mouth by atmospheric pressure. Thus, drinking with a straw makes use of pressure difference to force the liquid into your mouth. So, if the pressure difference is less it will be difficult to drink through a straw. On the top of the Mount Everest, atmospheric pressure is very low. Hence, it will be difficult to drink water with a straw on the top of Mount Everest as compared to at the base.

Question G.
Identify type of the intermolecular forces in the following compounds.
a. CH3 – OH
b. CH2 = CH2
c. CHCl3
d. CH2Cl2
Answer:
a. Hydrogen bonding (dipole-dipole attraction) and London dispersion forces
b. London dispersion forces
c. Dipole-dipole interactions and London dispersion forces
d. Dipole-dipole interactions and London dispersion forces

Question H.
Name the types of intermolecular forces present in Ar, Cl2, CCl4 and HNO3.
Answer:
a. Ar: London dispersion forces
b. Cl2: London dispersion forces
c. CCl4: London dispersion forces
d. HNO3: Flydrogen bonding (dipole-dipole attraction) and London dispersion forces.

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

Question I.
Match the pairs of the following :

A B
a. Boyle’s law i. At constant pressure and volume
b. Charles’ law ii. At constant temperature
iii. At constant pressure

Answer:
a – ii,
b – iii

Question J.
Write the statement for :
(a) Boyle’s law
(b) Charles’ law
Answer:
a. Statement of Boyle’s law: For a fixed mass (number of moles ‘n’) of a gas at constant temperature, the pressure (P) of the gas is inversely proportional to the volume (V) of the gas.
OR
At constant temperature, the pressure of fixed amount (number of moles) of a gas varies inversely with its volume.

b. Statement for Charles’ law:
‘At constant pressure, the volume of a fixed mass of a gas is directly proportional to its temperature in Kelvin.

Question K.
Differentiate between Real gas and Ideal gas.
Answer:
Ideal gas:

  1. Strictly obeys Boyle’s and Charles’ law.
    \(\frac{\mathrm{PV}}{\mathrm{nRT}}\) = 1
  2. Molecules are perfectly elastic.
  3. No attraction or repulsion between the gas molecules i.e. collision without loss of kinetic energy (K.E.)
  4. Actual volume of the gas molecules is negligible as compared to total volume of the gas.
  5. Ideal gases cannot be liquified even at low temperature but continues to obey Charles’ law and finally occupies zero volume at 0 K.
  6. Practically, ideal gas does not exist.

Real gas:

  1. Shows deviation from Boyle’s and Charles’ law at high pressure and temperature, i.e. obeys Boyle’s law and Charles’ law at low pressure and high temperature. \(\frac{\mathrm{PV}}{\mathrm{nRT}}\) ≠ 1
  2. Molecules are not perfectly elastic.
  3. Intermolecular attraction is present, hence collision takes place with loss of kinetic energy.
  4. Actual volume of individual gas molecule is significant at high pressure and low- temperature.
  5. Real gases undergo liquefaction at low’ temperature when cooled and compressed.
  6. Gases that exist in nature like H2, O2, CO2, N2, He, etc. are real gases.

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

4. Answer the following questions

Question A.
State and write mathematical expression for Dalton’s law of partial pressure and explain it with suitable example.
Answer:
i. Statement: The total pressure of a mixture of two or more non-reactive gases is the sum of the partial pressures of the individual gases in the mixture.
ii. Explanation:
Dalton’s law can be mathematically expressed as:
PTotal = P1 + P2 + P3 …(at constant T and V)
where, PTotal is the total pressure of the mixture and P1, P2, P3, … are the partial pressures of individual gases 1, 2, 3, … in the mixture.
For example, consider two non-reactive gases A and B. On mixing the two gases, pressure exerted by individual gas A in the mixture of both the gases is called partial pressure of gas A (say P1). Likewise, partial pressure of gas B is P2. According to Dalton’s law, total pressure of the mixture of gas A and B at constant T and V will be given as:
PTotal = P1 + P2

iii. Schematic illustration of Dalton’s law of partial pressures:
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 6

Question B.
Derive an Ideal gas equation. Mention the terms involved in it. Also write how it is utilised to obtain combined gas law.
Answer:
According to Boyle’s law,
V ∝ \(\frac{1}{\mathrm{P}}\) (at constant T and n) ……….(1)
According to Charles’ law,
V ∝ T (at constant P and n) ……(2)
According to Avogadro’s law,
V ∝ n (at constant P and T) ……(3)
Combining relations (1), (2) and (3), we get
V ∝ \(\frac{\mathrm{nT}}{\mathrm{P}}\)
Converting this proportionality into an equation by introducing a constant of proportionality (‘R’ known as gas constant), we get
∴ V = \(\frac{\mathrm{nRT}}{\mathrm{P}}\)
On rearranging the above equation, we get
PV = nRT
where,
P = Pressure of gas,
V = Volume of gas,
n = number of moles of gas,
R = Gas constant,
T = Absolute temperature of gas.
This is the ideal gas equation or equation of state.
[Note: In the ideal gas equation, R is called gas constant or universal gas constant, whose value is same for all the gases. In this equation, if three variables are known, fourth can be calculated. The equation describes the state of an ideal gas. Hence, it is also called as equation of state.]

The ideal gas equation is written as PV = nRT …(1)
On rearranging equation (1), we get,
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 7
The ideal gas equation used in this form is called combined gas law.

Question C.
With the help of graph answer the following –
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 8
At constant temperature,
a. Graph shows relation between pressure and volume. Represent the relation mathematically.
b. Identify the law.
c. Write the statement of law.
Answer:
a. P ∝ \(\frac{1}{\mathrm{~V}}\)
b. The graph represents Boyle’s law as it gives relation between pressure and volume at constant temperature.
c. Statement of Boyle’s law: For a fixed mass (number of moles ‘n’) of a gas at constant temperature, the pressure (P) of the gas is inversely proportional to the volume (V) of the gas.
OR
At constant temperature, the pressure of fixed amount (number of moles) of a gas varies inversely with its volume.

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

Question D.
Write Postulates of kinetic theory of gases.
Answer:
Postulates of kinetic theory of gases:

  • Gases consist of tiny particles (molecules or atoms).
  • On an average, gas molecules remain far apart from each other. Therefore, the actual volume of the gas molecules is negligible as compared to the volume of the container. Hence, gases are highly compressible.
  • The attractive forces between the gas molecules are negligible at ordinary temperature and pressure. As a result, gas expands to occupy entire volume of the container.
  • Gas molecules are in constant random motion and move in all possible directions in straight lines. They collide with each other and with the walls of the container.
  • Pressure of the gas is due to the collision of gas molecules with the walls of the container.
  • The collisions of the gas molecules are perfectly elastic in nature, which means that the total energy of the gaseous particle remains unchanged after collision.
  • The different gas molecules move with different velocities at any instant and hence have different kinetic energies. However, the average kinetic energy of the gas molecules is directly proportional to the absolute temperature.

Question E.
Write a short note on
a. Vapour pressure.
b. Surface tension
c. Viscosity.
Answer:
a. Vapour pressure:

  • Molecules of liquid have tendency to escape from its surface to form vapour above it. This called evaporation.
  • When a liquid is placed in a closed container, the liquid undergoes evaporation and vapours formed undergo condensation.
  • At equilibrium, the rate of evaporation and rate of condensation are equal.
  • The pressure exerted by the vapour in equilibrium with the liquid is known as saturated vapour pressure or simply vapour pressure.
  • Vapour pressure is measured by means of a manometer.
  • The most common unit for vapour pressure is torr. 1 torr = 1 mm Hg.

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 9
[Note: i. The vapour pressure of water is also called aqueous tension.
ii. Water has a vapour pressure of approximately 20 torr at room temperature.]

b. Surface tension:

  • The particles in the bulk of liquid are uniformly attracted in all directions and the net force acting on the molecules present inside the bulk is zero.
  • But the molecules at the surface experience a net attractive force towards the interior of the liquid, or the forces acting on the molecules on the surface are imbalanced.
  • Therefore, liquids have tendency to minimize their surface area and the surface acts as a stretched membrane.
  • The force acting per unit length perpendicular to the line drawn on the surface of liquid is called surface tension.
  • Unit: Surface tension is measured in SI unit, N m-1 and is denoted by Greek letter ‘γ’

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 10

c. Viscosity:
i. Liquids (fluids) have tendency to flow.
ii. Viscosity measures the magnitude of internal friction in a liquid or fluid to flow as measured by the force per unit area resisting uniform flow.
iii. Different layers of a liquid flow with different velocity. This called laminar flow. Here, the layers of molecules in the immediate contact of the fixed surface remains stationary. The subsequent layers slip over one another. Strong intermolecular forces obstruct the layers from slipping over one another, resulting in a friction between the layers.
iv. Viscosity is defined as the force of friction between the successive layers of a flowing liquid. It is also the resistance to the flow of a liquid.
v. When a liquid flow through a tube, the central layer has the highest velocity, whereas the layer along the inner wall in the tube remains stationary. This is a result of the viscosity of a liquid. Hence, a velocity gradient exists across the cross-section of the tube.
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 11
vi. Viscosity is expressed in terms of coefficient of viscosity, ‘η’ (Eta). The SI unit of viscosity coefficient is N s m-2 (newton second per square meter). In CGS system, the unit (η) is measured in poise.
1 poise = 1 g cm-1 s-1 = 10-1 kg m-1 s-1

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

5. Solve the following

Question A.
A balloon is inflated with helium gas at room temperature of 25 °C and at 1 bar pressure when its initial volume is 2.27L and allowed to rise in air. As it rises in the air external pressure decreases and the volume of the gas increases till finally it bursts when external pressure is 0.3bar. What is the limit at which volume of the balloon can stay inflated ?
Answer:
Given: P1 = Initial pressure = 1 bar
V1 = Initial volume = 2.27 L
P2 = Final pressure = 0.3 bar
To find: V2 = Final volume
Formula: P1V1 = P2V2 (at constant n and T)
Calculation: According to Boyle’s law,
P1V1 = P2V2 (at constant n and T)
∴ V2 = \(\frac{P_{1} V_{1}}{P_{2}}=\frac{1 \times 2.27}{0.3}\) = 7.566667 L ≈ 7.567 L
Ans: The balloon can stay inflated below the volume of 7.567 L.

Question B.
A syringe has a volume of 10.0 cm3 at pressure 1 atm. If you plug the end so that no gas can escape and push the plunger down, what must be the final volume to change the pressure to 3.5 atm?
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 12
Answer:
Given: P1 = Initial pressure = 1 atm
V1 = Initial volume = 10.0 cm3
P2 = Final pressure = 3.5 atm
To find: V2 = Final volume
Formula: P1V1 = P2V2 (at constant n and T)
Calculation: According to Boyle’s law,
P1V1 = P2V2 (at constant n and T)
∴ V2 = \(\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{P}_{2}}=\frac{1 \times 10.0}{3.5}\)
= 2.857 L
Ans: The final volume of the gas in the syringe is 2.857 L.

Question C.
The volume of a given mass of a gas at 0°C is 2 dm3. Calculate the new volume of the gas at constant pressure when
a. The temperature is increased by 10°C.
b.The temperature is decreased by 10°C.
Answer:
Given: T1 = Initial temperature = 0 °C = 0 + 273.15 = 273.15 K,
V1 = Initial volume = 2 dm3
a. T2 = Final temperature = 273.15 K + 10 = 283.15 K
b. T2 = Final temperature = 273.15 K – 10 = 263.15 K
To find: V2 = Final volume in both the cases
Formula: \(\frac{\mathrm{V}_{\mathrm{l}}}{\mathrm{T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}\) (at constant n and P)
Calculation: According to Charles’ law,
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 13
Ans: The new volume of a given mass of gas is:
a. 2.073 dm3
b. 1.927 dm3

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

Question D.
A hot air balloon has a volume of 2800 m3 at 99 °C. What is the volume if the air cools to 80 °C?
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 14
Answer:
Given: V1 = Initial volume = 2800 m3, T1 = Initial temperature = 99 °C = 99 + 273.15 = 372.15 K,
T2 = Final temperature = 80 °C = 80 + 273.15 K = 353.15 K
To find: V2 = Final volume
Formula: = \(\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}\) (at constant n and P)
Calculation: According to Charles’ law,
\(\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}\) (at constant n and P)
∴ \(\mathrm{V}_{2}=\frac{\mathrm{V}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\frac{2800 \times 353.15}{372.15}=\mathbf{2 6 5 7 \mathrm { m } ^ { 3 }}\)
Ans: The volume of the balloon when the air cools to 80 °C is 2657 m3.

Question E.
At 0 °C, a gas occupies 22.4 liters. How nuch hot must be the gas in celsius and in kelvin to reach volume of 25.0 literes?
Answer:
V1 = Initial volume of the gas = 22.4 L,
T1 = Initial temperature = 0 + 273.15 = 273.15 K,
V2 = Final volume = 25.0 L
To find: T2 = Final temperature in Celsius and in Kelvin
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 15
Ans: The temperature of the gas must be 31.7 °C or 304.9 K.

Question F.
A 20 L container holds 0.650 mol of He gas at 37 °C at a pressure of 628.3 bar. What will be new pressure inside the container if the volume is reduced to 12 L. The temperature is increased to 177 °C and 1.25 mol of additional He gas was added to it?
Answer:
Given: V1 = Initial volume = 20 L, n1 = Initial number of moles = 0.650 mol
P1 = Initial pressure = 628.3 bar
T1 = Initial temperature = 37 °C = 37 + 273.15 K = 310.15 K
n2 = Final number of moles = 0.650 + 1.25 = 1.90 mol, V2 = Final volume = 12 L
T2 = Final temperature = 177 °C = 177 + 273.15 K = 450.15 K, R = 0.0821 L atm K-1 mol-1
To find: P2 = Final pressure
Formula: PV = nRT
Calculation: According to ideal gas equation,
P2V2 = n2RT2.
∴ \(\mathrm{P}_{2}=\frac{\mathrm{n}_{2} \mathrm{RT}_{2}}{\mathrm{~V}_{2}}=\frac{1.90 \times 0.0821 \times 450.15}{12}=\mathbf{5 . 8 5 2} \mathrm{atm}\)
Ans: The final pressure of the gas is 5.852 atm.
[Note: In the above numerical, converting the pressure value to different units, we get: 5.852 atm = 4447.52 torr = 5.928 bar]

Question G.
Nitrogen gas is filled in a container of volume 2.32 L at 32 °C and 4.7 atm pressure. Calculate the number of moles of the gas.
Answer:
Given: V = 2.32 L, P = 4.7 atm, T = 32 °C = 32 + 273.15 K = 305.15 K
R = 0.0821 L atm K-1 mol-1
To find: n = number of moles of gas
Formula: PV = nRT
Calculation: According to ideal gas equation,
PV = nRT
∴ \(\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{4.7 \times 2.32}{0.0821 \times 305.15}=\mathbf{0 . 4 3 5} \mathrm{moles}\)
Ans: Number of moles of N2 gas in the given volume is 0.435 moles.

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

Question H.
At 25 °C and 760 mm of Hg pressure a gas occupies 600 mL volume. What will be its pressure at the height where temperature is 10 °C and volume of the gas 640 mL ?
Answer:
Given: V1 = Initial volume = 600 mL, V2 = Final volume = 640 mL
P1 = Initial pressure = 760 mm Hg
T1 = Initial temperature = 25 °C = 25 + 273.15 K = 298.15 K
T2 = Final temperature = 10 °C = 10 + 273.15 K = 283.15 K
P2 = Final pressure
Formula: \(\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}\)
Calculation: According to combined gas law.
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 16
Ans: The final pressure of a gas is 676.654 mm Hg.

Question I.
A neon-dioxygen mixture contains 70.6 g dioxygen and 167.5g neon. If pressure of the mixture of the gases in the cylinder is 25 bar. What is the partial pressure of dioxygen and neon in the mixture?
Answer:
Given: mO2 = 70.6 g, mNe = 167.5 g,
PTotal = 25 bar
To find: Partial pressure of each gas
Formula: P1 = x1 × PTotal
Calculation: Determine number of moles (n) of each gas using formula: n = \(\frac{\mathrm{m}}{\mathrm{M}}\)
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 17
Ans: The partial pressure of dioxygen and neon are 5.2 bar and 19.8 bar respectively.

Question J.
Calculate the pressure in atm of 1.0 mole of helium in a 2.0 dm3 container at 20.0 °C.
Answer:
Given: n = number of moles = 1.0 mol, V = volume = 2.0 dm3
T = Temperature = 20.0 °C = 20.0 + 273.15 K = 293.15 K
R = 0.0821 L atm K-1 mol-1
To find: Pressure (P)
Formula: PV = nRT
Calculation: According to ideal gas equation,
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 18
Ans: The pressure of the given helium gas is 12.03 atm.

Question K.
Calculate the volume of 1 mole of a gas at exactly 20 °C at a pressure of 101.35 kPa.
Answer:
Given: n = number of moles = 1 mol, P = pressure = 101.35 kPa = 1.00025 atm ≈ 1 atm
T = Temperature = 20 °C = 20 + 273.15 K = 293.15 K
R = 0.0821 dm3 atm K-1 mol-1
To find: Volume (V)
Formula: PV = nRT
Calculation: According to ideal gas equation,
PV = nRT
Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter 19
Ans: The volume of the given gas is 24.07 dm3.

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

Question L.
Calculate the number of molecules of methane in 0.50 m3 of the gas at a pressure of 2.0 × 102 kPa and a temperature of exactly 300 K.
Answer:
V = 0.5 m3, P = 2.0 × 102 kPa = 2.0 × 105 Pa
T = 300 K, R = 8.314 J K-1 mol-1
To find: Number of molecules of methane gas
Formula: PV = nRT
Calculation: According to ideal gas equation,
n = \(\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{2.0 \times 10^{5} \times 0.5}{8.314 \times 300}=40 \mathrm{~mol}\)
Number of molecules = n × NA = 40 × 6.022 × 1023 = 2.4088 × 1023 ≈ 2.409 × 1025
Ans: The number of molecules of methane gas present is 2.409 × 1025 molecules.

11th Chemistry Digest Chapter 10 States of Matter Intext Questions and Answers

Do you know? (Textbook Page No. 140)

Question 1.
Consider three compounds: H2S, H2Se and H2O. Identify which has the highest boiling point. Justify.
Answer:
Among the three compounds H2O, H2S and H2Se, the first one, H2O has the smallest molecular mass. But it has the highest B.P. of 100 °C. B.P. of H2S is -60 °C and of H2Se is -41.25 °C. The extraordinary high B.P. of H2O is due to very strong hydrogen bonding even though it has the lowest molecular mass.

Can you tell? (Textbook Page No. 140)

Question i.
What are the various components present in the atmosphere?
Answer:
Various components present in the atmosphere are as follows:
a. Nitrogen (78%)
b. Oxygen (21%)
c. Carbon dioxide and other gases (0.03%)
d. Inert gases (mainly argon) (0.97%)
e. Traces of water vapour

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

Question ii.
Name five elements and five compounds those exist as gases at room temperature.
Answer:
Five elements and five compounds that exist as gases at room temperature are as follows:

No. Elements
a. Nitrogen
b. Oxygen
c. Hydrogen
d. Chlorine
e. Argon
No. Compounds
a. Carbon dioxide
b. Carbon monoxide
c. Nitrogen dioxide
d. Sulphur dioxide
e. Methane

Just think. (Textbook Page No. 140)

Question 1.
What is air?
Answer:

  • Air is a mixture of various gases.
  • One cannot see air but can feel the cool breeze.
  • The composition of air by volume is around 78 percent N2, 21 percent O2 and 1 percent other gases including CO2.

Use your brainpower. (Textbook Page No. 141)

Question 1.
Find the unit in which car-tyre pressure is measured.
Answer:
Car-tyre pressure is measured in the units of pounds per square inch (psi) or Newton per metre square (N m-2).

Do you know? (Textbook Page No. 142)

Question 1.
How does a bicycle pump work?
Answer:
A bicycle pump works on Boyle’s law. Pushing a bicycle pump squashes the same number of particles into a smaller volume. This squashing means particles hit the walls of the pump more often, increasing the pressure. The increased pressure of a gas can be felt on palm by pushing in the piston of a bicycle pump.

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

Internet my friend (Textbook Page No. 143)

Question 1.
i. Watch Boyle’s law experiment.
ii. Find applications of Boyle’s law.
iii. Try to study how Boyle’s law helps in ‘scuba-diving’ i.e., importance of Boyle’s law in scuba diving an exhilarating sport.
Answer:
i. Students can refer to ‘Boyle’s law experiment’ on YouTube channel of ‘Socratica’.
ii. a. Syringes: When the plunger of a syringe is pulled back out, it causes the volume of the gas inside it to increase due to the reduction of pressure. This creates a vacuum in the syringe, which is constantly trying to adjust the pressure back to normal. However, since the only substance available, such as the blood or medication, is on the other side of the needle, this liquid is sucked into the vacuum, increasing the pressure and decreasing the volume of the gas. When we push the plunger back down, the pressure again increases, lowering the volume inside the syringe, and pushing the fluid out.

b. Respiration: Boyle’s law is essential for the human breathing process. When person breathes in, his/her lung volume increases and the pressure within decreases. Since air always moves from areas of high pressure to areas of low pressure, air is drawn into the lungs. The opposite happens when person exhales. Since the lung volume decreases, the pressure within increases, forcing the air out of the lungs

c. Storage of Gases: Many industries store gases under high pressure. This allows the gas to be stored at a low volume, saving plenty of storage space.
[Note: Students are expected to search more on the internet about various other applications of Boyle’s law on their own.]

iii. Importance of Boyle’s law in scuba diving:
a. Boyle’s law affects scuba diving in many ways.
b. It explains the role of pressure in the aquatic environment.
c. As divers descend, the water pressure surrounding them increases, causing air in their body and equipment to have a smaller volume. As the divers ascend, water pressure decreases, causing their body and equipment to expand to acquire a greater volume.
d. Furthermore, it is crucial that scuba divers never attempt to hold their breath when immersed in water.
e. According to Boyle’s law, if divers attempt this when they ascend to a body of water of less pressure, then the air that is trapped in their lungs will over-expand and rupture. This is known as Pulmonary Barotrauma. Thus, it is important for scuba divers to exhale as they ascend because the external pressure increases.
f. Also, if a diver returns to the surface too quickly, dissolved gases in the blood expand and form bubbles, which can get stuck in capillaries and organs (causing the ‘bends’).
[Note: Students are expected to collect additional information their own.]

Just think. (Textbook Page No. 144)

Question i.
Why does bicycle tyre burst during summer?
Answer:

  • According to Charles’ law, at constant pressure, the volume of a fixed amount of a gas varies directly with the temperature. This means that as the temperature increases, the volume also increases.
  • During summer, the temperature of the surrounding air is high. Due to the high temperature, the air inside the tyre gets heated. This will increase the volume of the tyres and it will burst.

Question ii.
Why do the hot air balloons fly high?
Answer:

  • According to Charles’ law, at constant pressure, gases expand on heating and become less dense. Thus, hot air is less dense than cold air.
  • In a hot air balloon, the air inside it is heated by a burner. Upon heating, the air inside the balloon expands and becomes lighter (less dense) than the cooler air on the outside. This causes the hot air balloon to fly high in air.

Just think. (Textbook Page No. 145)

Question 1.
i. List out various real-life examples of Charles’ law.
ii. Refer and watch Charles’ law experiments.
Answer:
i. Few real-life examples of Charles’ law:
a. Helium balloon: If we fill a helium balloon in a warm or hot room, and then take it into a cold room, it shrinks up and will look like it has lost some of the air inside it. This shows that gases expand on heating and contract on cooling.
b. A bottle of deodorant: If we expose a bottle of deodorant to sunlight and high temperatures, the air molecules inside the bottle will expand which can lead to the bursting of the deodorant bottle. This is another example of Charles’ law.
c. Basketball: You may have noticed that a basketball has less responsive bounce during winter than in summer. This yet another example of Charles’ law. When a basketball is inflated, the air pressure inside it is set to a fixed value. As the temperature falls, the volume of the gas inside the ball also decreases proportionally.
[Note: Students are expected to collect additional real-life examples on their own,]

ii. pi [Note: Students can scan the adjacent QR code to visualize Charles’ law with the aid of a relevant video.]

Maharashtra Board Class 11 Chemistry Solutions Chapter 10 States of Matter

Use your brainpower. (Textbook Page No. 146)

Question 1.
Why does the pressure in the automobile tyres change during hot summer or winter season?
Answer:

  • According to Gay-Lussac’s law, at constant volume, pressure of a fixed amount of a gas is directly proportional to its absolute temperature.
  • During hot summer, the temperature of automobile tyre increases faster. Consequently, the air inside the tyre gets heated and the gas molecules starts moving faster.
  • As the volume of the tyre remains constant, the pressure inside it increases.
  • During winter, the temperature of automobile tyre decreases. Consequently, the air inside the tyre gets cooled and the gas molecules starts moving much slower and the pressure inside the tyre decreases.

Just think. (Textbook Page No. 149)

Question 1.
Do all pure gases and mixtures of gases obey the gas laws?
Answer:
Yes, the gas laws are also applicable to the mixtures of gases. The measurable properties of a mixture of the gases such as pressure, temperature, volume, and amount of gaseous mixture are all related by an ideal gas law.

Just think. (Textbook Page No. 150)

Question 1.
Where is Dalton’s law applicable?
Answer:
Air is a gaseous mixture of different gases. Dalton’s law is useful for the study of various phenomena in air, for example, air pollution.

Just think. (Textbook Page No. 155)

Question 1.
What makes the oil rise through the wick in an oil lamp?
Answer:
In an oil lamp, oil rises through the wick due to the capillary action. Such a capillary rise of oil is due to the surface tension of oil. The wick acts as a capillary tube. When the wick is placed in oil, the attractive forces between the oil and the inner wall of the capillary (wick) pull the oil up through the wick.

Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15

Balbharti Maharashtra State Board 11th Chemistry Textbook Solutions Chapter 9 Elements of Group 13, 14 and 15 Textbook Exercise Questions and Answers.

Maharashtra State Board 11th Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15

1. Choose the correct option.

Question A.
Which of the following is not an allotrope of carbon?
a. buckyball
b. diamond
c. graphite
d. emerald
Answer:
d. emerald

Question B.
………… is inorganic graphite.
a. borax
b. diborane
c. boron nitride
d. colemanite
Answer:
c. boron nitride

Question C.
Haber’s process is used for the preparation of ………….
a. HNO3
b. NH3
c. NH2CONH2
d. NH4OH
Answer:
b. NH3

Question D.
Thallium shows a different oxidation state because ……………
a. of inert pair effect
b. it is an inner transition element
c. it is metal
d. of its high electronegativity
Answer:
a. of inert pair effect

Question E.
Which of the following shows the most prominent inert pair effect?
a. C
b. Si
c. Ge
d. Pb
Answer:
d. Pb

Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15

2. Identify the group 14 element that best fits each of the following description.

A. Non-metallic element
B. Form the most acidic oxide
C. They prefer +2 oxidation state.
D. Forms strong π bonds.
Answer:
i. Carbon (C)
ii. Carbon
iii. Tin (Sn) and lead (Pb)
iv. Carbon

3. Give reasons.

A. Ga3+ salts are better reducing agent while Tl3+ salts are better oxidising agent.
B. PbCl4 is less stable than PbCl2
Answer:
A. i. Both gallium (Ga) and thallium (Tl) belong to group 13.
ii. Ga is lighter element compared to thallium Tl. Therefore, its +3 oxidation state is stable. Thus, Ga+ loses two electrons and get oxidized to Ga3+. Hence, Ga+ salts are better reducing agent.
iii. Thallium is a heavy element. Therefore, due to the inert pair effect, Tl forms stable compounds in +1 oxidation state. Thus, Tl3+ salts get easily reduced to Tl1+ by accepting two electrons. Hence, Tl3+ salts are better oxidizing agent.
[Note: This question is modified so as to apply the appropriate textual concept.]

B. i. Pb has electronic configuration [Xe] 4f14 5d10 6s2 6p2.
ii. Due to poor shielding of 6s2 electrons by inner d and f electrons, it is difficult to remove 6s2 electrons (inert pair).
iii. Thus, due to inert pair effect, +2 oxidation state is more stable than +4 oxidation state.
Hence, PbCl4 is less stable than PbCl2.

Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15

4. Give the formula of a compound in which carbon exhibit an oxidation state of

A. +4
B. +2
C. -4
Answer:
A. CCl4
B. CO
C. CH4

5. Explain the trend of the following in group 13 elements :

A. atomic radii
B. ionization enthalpy
C. electron affinity
Answer:
A. Atomic radii:

  • In group 13, on moving down the group, the atomic radii increases from B to Al.
  • However, there is an anomaly observed in the atomic radius of gallium due to the presence of 3d electrons. These inner 3d electrons offer poor shielding effect and thus, valence shell electrons of Ga experience greater nuclear attraction. As a result, atomic radius of gallium is less than that of aluminium.
  • However, the atomic radii again increases from Ga to Tl.
  • Therefore, the atomic radii of the group 13 elements varies in the following order:
    B < Al > Ga < In < Tl

B. Ionization enthalpy:

  • Ionization enthalpies show irregular trend in the group 13 elements.
  • As we move down the group, effective nuclear charge decreases due to addition of new shells in the atom of the elements which leads to increased screening effect. Thus, it becomes easier to remove valence shell electrons and hence, ionization enthalpy decreases from B to Al as expected.
  • However, there is a marginal difference in the ionization enthalpy from Al to Tl.
  • The ionization enthalpy increases slightly for Ga but decreases from Ga to In.
    In case of Ga, there are 10 d-electrons in its inner electronic configuration which shield the nuclear charge less effectively than the s and p-electrons and therefore, the outer electron is held fairly strongly by the nucleus. As a result, the ionization enthalpy increases slightly.
  • Number of d electrons and extent of screening effect in indium is same as that in gallium. However, the atomic size increases from Ga to In. Due to this, the first ionization enthalpy of In decreases.
  • The last element Tl has 10 d-electrons and 14 f-electrons in its inner electronic configuration which exert still smaller shielding effect on the outer electrons. Consequently, its first ionization enthalpy increases considerably.

C. Electron affinity:
a. Electron affinity shows irregular trend. It first increases from B to A1 and then decreases. The less electron affinity of boron is due to its smaller size. Adding an electron to the 2p orbital in boron leads to a greater repulsion than adding an electron to the larger 3p orbital of aluminium.

b. From Al to Tl, electron affinity decreases. This is because, nuclear charge increases but simultaneously the number of shells in the atoms also increases. As a result, the effective nuclear charge decreases down the group resulting in increased atomic size and thus, it becomes difficult to add an electron to a larger atom. The electron affinity of Ga and In is same.
Note: Electron affinity of group 13 elements:
Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15, 1

6. Answer the following

Question A.
What is hybridization of Al in AlCl3?
Answer:
Al is sp2 hybridized in AlCl3.

Question B.
Name a molecule having banana bond.
Answer:
Diborane (B2H6)

Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15

7. Draw the structure of the following

Question A.
Orthophosphoric acid
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15, 2

Question B.
Resonance structure of nitric acid
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15, 3

8. Find out the difference between

Question A.
Diamond and Graphite
Answer:
Diamond:

  1. It has a three-dimensional network structure.
  2. In diamond, each carbon atom is sp3 hybridized.
  3. Each carbon atom in diamond is linked to four other carbon atoms.
  4. Diamond is poor conductor of electricity due to absence of free electrons.
  5. Diamond is the hardest known natural substance.

Graphite:

  1. It has a two-dimensional hexagonal layered structure.
  2. In graphite, each carbon atom is sp2 hybridized.
  3. Each carbon atom in graphite is linked to three other carbon atoms.
  4. Graphite is good conductor of electricity due to presence of free electrons in its structure.
  5. Graphite is soft and slippery.

Question B.
White phosphorus and Red phosphorus
Answer:
White phosphorus:

  1. It consists of discrete tetrahedral P4 molecules.
  2. It is less stable and more reactive.
  3. It exhibits chemiluminescence.
  4. It is poisonous.

Red phosphorus:

  1. It consists chains of P4 molecules linked together by covalent bonds.
  2. It is stable and less reactive.
  3. It does not exhibit chemiluminescence.
  4. It is nonpoisonous.

Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15

9. What are silicones? Where are they used?
Answer:
i. a. Silicones are organosilicon polymers having R2SiO (where, R = CH3 or C6H5 group) as a repeating unit held together by
Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15, 4
b. Since the empirical formula R2SiO (where R = CH3 or C6H5 group) is similar to that of ketones (R2CO), these compounds are named as silicones.

ii. Applications: They are used as

  • insulating material for electrical appliances.
  • water proofing of fabrics.
  • sealant.
  • high temperature lubricants.
  • for mixing in paints and enamels to make them resistant to high temperature, sunlight and chemicals.

10. Explain the trend in oxidation state of elements from nitrogen to bismuth.
Answer:

  • Group 15 elements have five valence electrons (ns2 np3). Common oxidation states are -3, +3 and +5. The range of oxidation state is from -3 to +5.
  • Group 15 elements exhibit positive oxidation states such as +3 and +5. Due to inert pair effect, the stability of +5 oxidation state decreases and +3 oxidation state increases on moving down the group.
  • Group 15 elements show tendency to donate electron pairs in -3 oxidation state. This tendency is maximum for nitrogen.
  • The group 15 elements achieve +5 oxidation state only through covalent bonding.
    e. g. NH3, PH3, ASH3, SbH3, and BiH3 contain 3 covalent bonds. PCl5 and PF5 contain 5 covalent bonds.

11. Give the test that is used to detect borate radical is qualitative analysis.
Answer:
i. Borax when heated with ethyl alcohol and concentrated H2SO4, produces volatile vapours of triethyl borate, which bum with green edged flame.
Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15, 5
ii. The above reaction is Used as a test for the detection and removal of borate radical \(\left(\mathrm{BO}_{3}^{3-}\right)\) in qualitative analysis.

Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15

12. Explain structure and bonding of diborane.
Answer:

  • Electronic configuration of boron is 1s2 2s2 2p1. Thus, it has only three valence electrons.
  • In diborane, each boron atom is sp3 hybridized. Three of such hybrid orbitals are half filled while the fourth sp3 hybrid orbital remains vacant.
  • The two half-filled sp3 hybrid orbitals of each B atom overlap with 1s orbitals of two terminal H atoms and form four B – H covalent bonds. These bonds are also known as two-centred-two-electron (2c-2e) bonds.
  • When ‘1s’ orbital of each of the remaining two H atoms simultaneously overlap with half-filled hybrid orbital of one B atom and the vacant hybrid orbital of the other B atom, it produces two three-centred-two- electron bonds (3c-2e) or banana bonds.
  • Hydrogen atoms involved in (3c-2e) bonds are the bridging H atoms i.e., H atoms in two B – H – B bonds.
  • In diborane, two B atoms and four terminal H atoms lie in one plane, while the two bridging H atoms lie symmetrically above and below this plane.

Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15, 6

13. A compound is prepared from the mineral colemanite by boiling it with a solution of sodium carbonate. It is white crystalline solid and used for inorganic qualitative analysis.

a. Name the compound produced.
b. Write the reaction that explains its formation.
Answer:
a. Borax
b. Borax is obtained from its mineral colemanite by boiling it with a solution of sodium carbonate.
Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15, 7

14. Ammonia is a good complexing agent. Explain.
Answer:
i. The lone pair of electrons on nitrogen atom facilitates complexation of ammonia with transition metal ions. Thus, ammonia is a good complexing agent as it forms complex by donating its lone pair of electrons.
Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15, 8
ii. This reaction is used for the detection of metal ions such as Cu2+ and Ag+.

15. State true or false. Correct the false statement.

A. The acidic nature of oxides of group 13 increases down the graph.
B. The tendency for catenation is much higher for C than for Si.
Answer:
A. False
The acidic nature of oxides of group 13 decreases down the group. It changes from acidic through amphoteric to basic.
B. True

Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15

16. Match the pairs from column A and B.

Column A Column B
i. BCl3 a. Angular molecule
ii. SiO2 b. Linear covalent molecule
iii. CO2 c. Tetrahedral molecule
d. Planar trigonal molecule

Answer:
i – d,
ii – c,
iii – b

17. Give the reactions supporting basic nature of ammonia.
Answer:
In the following reactions ammonia reacts with acids to form the corresponding ammonium salts which indicates basic nature of ammonia.
Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15, 9

18. Shravani was performing inorganic qualitative analysis of a salt. To an aqueous solution of that salt, she added silver nitrate. When a white precipitate was formed. On adding ammonium hydroxide to this, she obtained a clear solution. Comment on her observations and write the chemical reactions involved.
Answer:
i. When silver nitrate (AgNO3) is added to an aqueous solution of salt sodium chloride (NaCl), a white precipitate of silver chloride (AgCl) is formed.
Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15, 10

ii. On adding ammonium hydroxide (NH4OH) to this, the white precipitate of silver chloride gets dissolved and thus, a clear solution is obtained.
Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15, 11

Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15

11th Chemistry Digest Chapter 9 Elements of Group 13, 14 and 15 Intext Questions and Answers

Can you recall? (Textbook Page No. 123)

Question 1.
If the valence shell electronic configuration of an element is 3s2 3p1, in which block of the periodic table is it placed?
Answer:
The element having valence shell electronic configuration 3s2 3p1 must be placed in the p-block of the periodic table as its last electron enters in p-subshell (3p).

Can you recall? (Textbook Page No. 127)

Question 1.
What is common between diamond and graphite?
Answer:
Both diamond and graphite are made up of carbon atoms as they are two allotropes of carbon.

Can you recall? (Textbook Page No. 129)

Question i.
Which element from the following pairs has higher ionization enthalpy?
B and TI, N and Bi
Answer:
Among B and Tl, boron has higher ionization enthalpy while, among N and Bi, nitrogen has higher ionization enthalpy.

Question ii.
Does boron form covalent compound or ionic?
Answer:
Yes, boron forms covalent compound.

Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15

Try this. (Textbook Page No. 131)

Question 1.
Find out the structural formulae of various oxyacids of phosphorus.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15, 12
Maharashtra Board Class 11 Chemistry Solutions Chapter 9 Elements of Group 13, 14 and 15, 13

Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2

Balbharti Maharashtra State Board 11th Chemistry Textbook Solutions Chapter 8 Elements of Group 1 and 2 Textbook Exercise Questions and Answers.

Maharashtra State Board 11th Chemistry Solutions Chapter 8 Elements of Group 1 and 2

1. Explain the following

Question A.
Hydrogen shows similarity with alkali metals as well as halogens.
Answer:

  • The electronic configuration of hydrogen is 1s1 which is similar to the outer electronic configuration of alkali metals of group 1 i.e., ns1.
  • However, 1s1 also resembles the outer electronic configuration of group 17 elements i.e., ns2 np5.
  • By adding one electron to H, it will attain the electronic configuration of the inert gas He which is 1s2, and by adding one electron to ns2 np5 we get ns2 np6 which is the outer electronic configuration of the remaining inert gases.
  • Therefore, some chemical properties of hydrogen are similar to those of alkali metals while some resemble halogens.

Hence, hydrogen shows similarity with alkali metals as well as halogens.

Question B.
Standard reduction potential of alkali metals have high negative values.
Answer:

  • The general outer electronic configuration of alkali metals is ns1.
  • They readily lose one valence shell electron to achieve stable noble gas configuration and hence, they are highly electropositive and are good reducing agents.

Hence, standard reduction potentials of alkali metals have high negative values.

Question C.
Alkaline earth metals have low values of electronegativity; which decrease down the group.
Answer:

  • Electronegativity represents attractive force exerted by the nucleus on shared electrons.
  • The general outer electronic configuration of alkaline earth metals is ns2. They readily lose their two valence shell electrons to achieve stable noble gas configuration. They are electropositive and hence, they have low values of electronegativity.

Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2

Question D.
Sodium dissolves in liquid ammonia to form a solution which shows electrical conductivity.
Answer:
i. Sodium dissolves in liquid ammonia giving deep blue coloured solutions which is electrically conducting in nature.
Na + (x + y) NH3 → [Na(NH3)x]+ + [e(NH3)y]
ii. Due to formation of ions, the solution shows electrical conductivity.

Question E.
BeCl2 is covalent while MgCl2 is ionic.
Answer:

  • Be2+ ion has very small ionic size and therefore, it has very high charge density.
  • Due to this, it has high tendency to distort the electron cloud around the negatively charged chloride ion (Cl) which is larger in size.
  • This results in partial covalent character of the bond in BeCl2.
  • Mg2+ ion has very less tendency to distort the electron cloud of Cl due to the bigger size of Mg2+ as compared to Be2+.

Hence, BeCl2 is covalent while MgCl2 is ionic.

Question F.
Lithium floats an water while sodium floats and catches fire when put in water.
Answer:

  • When lithium and sodium react with water, hydrogen gas is released. Due to these hydrogen gas bubbles, lithium and sodium floats on water.
    eg. 2Na + 2H2O → 2Na+ + 2OH + H2
  • The reactivity of group 1 metals increases with increasing atomic radius and lowering of ionization enthalpy down the group.
  • Thus, sodium having lower ionization enthalpy, is more reactive than lithium.
  • Hence, lithium reacts slowly while sodium reacts vigorously with water.
  • Since the reaction of sodium with water is highly exothermic, it catches fire when put in water.

Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2

2. Write balanced chemical equations for the following.

Question A.
CO2 is passed into concentrated solution of NaCl, which is saturated with NH3.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2, 1

Question B.
A 50% solution of sulphuric acid is subjected to electrolyte oxidation and the product is hydrolysed.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2, 2

Question C.
Magnesium is heated in air.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2, 3

Question D.
Beryllium oxide is treated separately with aqueous HCl and aqueous NaOH solutions.
Answer:
Beryllium oxide (BeO) is an amphoteric oxide and thus, it reacts with both acid (HCl) as well as base (NaOH) to give the corresponding products.
i. \(\mathrm{BeO}+\underset{(\text { Acid })}{2 \mathrm{HCl}} \longrightarrow \mathrm{BeCl}_{2}+\mathrm{H}_{2} \mathrm{O}\)
ii. \(\mathrm{BeO}+\underset{(\text { Base })}{2 \mathrm{NaOH}} \longrightarrow \mathrm{Na}_{2} \mathrm{BeO}_{2}+\mathrm{H}_{2} \mathrm{O}\)

Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2

3. Answer the following questions

Question A.
Describe the diagonal relationship between Li and Mg with the help of two illustrative properties.
Answer:
a. The relative placement of these elements with similar properties in the periodic table is across a diagonal and is called diagonal relationship.
b. Lithium is placed in the group 1 and period 2 of the modem periodic table. It resembles with magnesium which is placed in the group 2 and period 3.
Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2, 4

ii. Li and Mg show similarities in many of their properties.
e. g.
a. Reaction with oxygen:
1. Group 1 elements except lithium, react with oxygen present in the air to form oxides (M2O) as well as peroxides (M2O2) and superoxides (MO2) on further reaction with excess of oxygen.
2. This anomalous behaviour of lithium is due to its resemblance with magnesium as a result of diagonal relationship.
3. As group 2 elements form monoxides i.e., oxides, lithium also form monoxides.
Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2, 5

b. Reaction with nitrogen:
1. All the group 1 elements react only with oxygen present in the air to form oxides while group 2 elements react with both nitrogen and oxygen present in the air forming corresponding oxides and nitrides.
2. However, lithium reacts with oxygen as well as nitrogen present in the air due to its resemblance with magnesium.
Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2, 6

Question B.
Describe the industrial production of dihydrogen from steam. Also write the chemical reaction involved.
Answer:
Three stages are involved in the industrial production of dihydrogen from steam.
i. Stage 1:
a. Reaction of steam on hydrocarbon or coke (C) at 1270 K temperature in presence of nickel catalyst gives water-gas which is a mixture of carbon monoxide and hydrogen.
1. Reaction of steam with hydrocarbon:
Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2, 7
2. Reaction of steam with coke or carbon (C):
Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2, 8
b. Sawdust, scrapwood, etc. can also be used in place of carbon.

ii. Stage 2:
Water-gas shift reaction: When carbon monoxide in the water-gas reacts with steam in the presence of iron chromate (FeCrO4) as catalyst, it gets transformed into carbon dioxide. This is called water-gas shift reaction.
Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2, 9

iii. Stage 3: In the last stage, carbon dioxide is removed by scrubbing with sodium arsenite solution.

Question C.
A water sample, which did not give lather with soap, was found to contain Ca(HCO3)2 and Mg(HCO3)2. Which chemical will make this water give lather with soap? Explain with the help of chemical reactions.
Answer:

  • Soap does not lather in hard water due to presence of the soluble salts of calcium and magnesium in it. So, the given water sample is hard water.
  • Hardness of hard water can be removed by removal of these calcium and magnesium salts.
  • Sodium carbonate is used to make hard water soft as it precipitates out the soluble calcium and magnesium salts in hard water as carbonates. Thus, it will make water give lather with soap.
    e.g. Ca(HCO3)2(aq) + Na2CO3(aq) → CaCO3(s) + 2NaHCO3(aq)

Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2

Question D.
Name the isotopes of hydrogen. Write their atomic composition schematically and explain which of these is radioactive ?
Answer:
i. Hydrogen has three isotopes i.e., hydrogen \(\left({ }_{1}^{1} \mathrm{H}\right)\), deuterium \(\left({ }_{1}^{2} \mathrm{H}\right)\) and tritium \(\left({ }_{1}^{3} \mathrm{H}\right)\) with mass numbers 1, 2 and 3 respectively.
ii. They all contain one proton and one electron but different number of neutrons in the nucleus.
iii. Atomic composition of isotopes of hydrogen:
Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2, 10
iv. Tritium is a radioactive nuclide with half-life period 12.4 years and emits low energy β particles.
v. Schematic representation of isotopes of hydrogen is as follows:
Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2, 11

4. Name the following

Question A.
Alkali metal with smallest atom.
Answer:
Lithium (Li)

Question B.
The most abundant element in the universe.
Answer:
Hydrogen (H)

Question C.
Radioactive alkali metal.
Answer:
Francium (Fr)

Question D.
Ions having high concentration in cell sap.
Answer:
Potassium ions (K+)

Question E.
A compound having hydrogen, aluminium and lithium as its constituent elements.
Answer:
Lithium aluminium hydride (LiAlH4)

Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2

5. Choose the correct option.

Question A.
The unstable isotope of hydrogen is …..
a. H-1
b. H-2
c. H-3
d. H-4
Answer:
c. H-3

Question B.
Identify the odd one.
a. Rb
b. Ra
c. Sr
d. Be
Answer:
a. Rb

Question C.
Which of the following is Lewis acid ?
a. BaCl2
b. KCl
c. BeCl2
d. LiCl
Answer:
c. BeCl2

Question D.
What happens when crystalline Na2CO3 is heated ?
a. releases CO2
b. loses H2O
c. decomposes into NaHCO3
d. colour changes.
Answer:
b. loses H2O

Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2

Activity :

1. Collect the information of preparation of dihydrogen and make a chart.
2. Find out the s block elements compounds importance/uses.
Answer:
1.
Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2, 12

2. Uses of s-block elements:
Group 1 elements (alkali metals):
a. Lithium: Lithium is widely used in batteries.
b. Sodium:

  • Liquid sodium metal is used as a coolant in fast breeder nuclear reactors.
  • Sodium is also used as an important reagent in the Wurtz reaction.
  • It is used in the manufacture of sodium vapour lamp.

c. Potassium:

  • Potassium has a vital role in biological system.
  • Potassium chloride (KCl) is used as a fertilizer.
  • Potassium hydroxide (KOH) is used in the manufacture of soft soaps and also as an excellent absorbent of carbon dioxide.
  • Potassium superoxide (KO2) is used as a source of oxygen.

d. Caesium: Caesium is used in devising photoelectric cells.

Group 2 elements (alkaline earth metals):
a. Magnesium: Magnesium hydroxide [Mg(OH)2] in its suspension form is used as an antacid.
b. Calcium: Compounds of calcium such as limestone and gypsum are used as constituents of cement and mortar.
c. Barium: BaSO4 being insoluble in H2O and opaque to X-rays is used as ‘barium meal’ to scan the X-ray of human digestive system.
[Note: Students are expected to collect additional information about preparation of dihydrogen and uses of s-block elements on their own.]

Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2

11th Chemistry Digest Chapter 8 Elements of Group 1 and 2 Intext Questions and Answers

Can you recall? (Textbook Page No. 110)

Question 1.
Which is the first element in the periodic table?
Answer:
Hydrogen is the first element in the periodic table.

Question 2.
What are isotopes?
Answer:
Many elements exist naturally as a mixture of two or more types of atoms or nuclides. These individual nuclides are called isotopes of that element. Isotopes of an element have the same atomic number (number of protons) but different atomic mass numbers due to different number of neutrons in their nuclei.

Question 3.
Write the formulae of the compounds of hydrogen formed with sodium and chlorine.
Answer:
Hydrogen combines with sodium to form sodium hydride (NaH) while it reacts with chlorine to form hydrogen chloride (HCl).

Can you tell? (Textbook Page No. 110)

Question 1.
In which group should hydrogen be placed? In group 1 or group 17? Why?
Answer:

  • Hydrogen contains one valence electron in its valence shell and thus, its valency is one. Therefore, hydrogen resembles alkali metals (group 1 elements) as they also contain one electron in their valence shell (alkali metals tend to lose their valence electron).
  • However, hydrogen also shows similarity with halogens (group 17 elements) as their valency is also one because halogens tend to accept one electron in their valence shell.
  • Due to this unique behaviour, it is difficult to assign any definite position to hydrogen in the modem periodic table.

Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2

Just think! (Textbook Page No. 112)

Question 1.
\(2 \mathrm{Na}_{(\mathrm{s})}+\mathrm{H}_{2(\mathrm{~g})} \stackrel{\Delta}{\longrightarrow} 2 \mathrm{NaH}_{(\mathrm{s})}\)
In the above chemical reaction which element does undergo oxidation and which does undergo reduction?
Answer:
i. Redox reaction can be described as electron transfer as shown below:
2Na(s) + H2(g) → 2Na+ + 2H
ii. Charge development suggests that each sodium atom loses one electron to form Na+ and each hydrogen atom gains one electron to form H. This can be represented as follows:
Maharashtra Board Class 11 Chemistry Solutions Chapter 8 Elements of Group 1 and 2, 13
iii. Na is oxidised to NaH by loss of electrons while the elemental hydrogen is reduced to NaH by a gain of electrons.

Can you recall? (Textbook Page No. 113)

Question i.
What is the name of the family of reactive metals having valency one?
Answer:
The family of reactive metals having valency one is known as alkali metals (group 1).

Question ii.
What is the name of the family of reactive metals having valency two?
Answer:
The family of reactive metals having valency two is known as alkaline earth metals (group 2).

Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table

Balbharti Maharashtra State Board 11th Chemistry Textbook Solutions Chapter 7 Modern Periodic Table Textbook Exercise Questions and Answers.

Maharashtra State Board 11th Chemistry Solutions Chapter 7 Modern Periodic Table

1. Explain the following

Question A.
The elements Li, B, Be and N have the electronegativities 1.0, 2.0, 1.5, and 3.0, respectively on the Pauling scale.
Answer:

  • Li, B, Be and N belong to the same period.
  • As we move across a period from left to right in the periodic table, the effective nuclear charge increases steadily and therefore, electronegativity increases.

Hence, the elements Li, B, Be and N have the electronegativities 1.0, 2.0, 1.5, and 3.0, respectively on the Pauling scale.

Question B.
The atomic radii of Cl, I and Br are 99, 133 and 114 pm, respectively.
Answer:

  • Cl, I and Br belong to group 17 (halogen group) in the periodic table.
  • As we move down the group from top to bottom in the periodic table, a new shell gets added in the atom of the elements.
  • As a result, the effective nuclear charge decreases due to increase in the atomic size as well as increased shielding effect.
  • Therefore, the valence electrons experience less attractive force from the nucleus and are held less tightly resulting in the increased atomic radius.
  • Thus, their atomic radii increases in the following order down the group.
    Cl (99 pm) < Br (114 pm) < I (133 pm)

Hence, the atomic radii of Cl, I and Br are 99, 133 and 114 pm, respectively.

Question C.
The ionic radii of F and Na+ are 133 and 98 pm, respectively.
Answer:

  • F and Na+ are isoelectronic ions as they both have 10 electrons.
  • However, the nuclear charge on F is +9 while that of Na+ is +11.
  • In isoelectronic species, larger nuclear charge exerts greater attraction on the electrons and thus, the radius of that isoelectronic species becomes smaller.

Thus, F has larger ionic radii (133 pm) than Na+ (98 pm).

Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table

Question D.
13Al is a metal, 14Si is a metalloid and 15P is a nonmetal.
Answer:

  • Electronic configuration of Al is [Ne] 3s2 3p1, 14Si is [Ne] 3s2 3p2 and that of 15P is [Ne] 3s2 3p3.
  • Metals are characterized by the ability to form compounds by loss of valence electrons.
  • ‘Al’ has 3 valence electrons, thus shows tendency to lose 3 valence electrons to complete its octet. Hence, Al is a metal.
  • Nonmetals are characterized by the ability to form compounds by gain of valence electrons in valence shell.
  • ‘P’ has 5 valence electrons thus, shows tendency to gain 3 electrons to complete its octet. Hence, ‘P’ is a nonmetal.
  • Si has four valence electrons, thus it can either lose/gain electrons to complete its octet. Hence, behaves as a metalloid.

Question E.
Cu forms coloured salts while Zn forms colourless salts.
Answer:

  • Electronic configuration of 29CU is [Ar] 3d104s1 while that of Zn is [Ar] 3d104s2.
  • Electronic configuration of Cu in its +1 oxidation state is [Ar] 3d10 while that in +2 oxidation state is [Ar] 3d9.
  • Therefore, Cu contains partially filled d orbitals in +2 oxidation state and thus, Cu2+ salts are coloured.
  • However, Zn has completely filled d orbital which is highly stable and hence, it does not form coloured ions.

Hence, Cu forms coloured salts while Zn forms colourless salts.

2. Write the outer electronic configuration of the following using orbital notation method. Justify.
A. Ge (belongs to period 4 and group 14)
B. Po (belongs to period 6 and group 16)
C. Cu (belongs to period 4 and group 11)
Answer:
A. a. Ge belongs to period 4. Therefore, n = 4.
b. Group 14 indicates that the element belongs to the p-block of the modem periodic table.
c. The general outer electronic configuration of group 14 elements is ns2 np2.
d. Thus, the outer electronic configuration of Ge is 4s2 4p2.

B. a. Po belongs to period 6. Therefore, n = 6.
b. Group 16 indicates that the element belongs to the p-block of the modem periodic table.
c. The general outer electronic configuration of group 16 elements is ns2 np4.
d. Thus, the outer electronic configuration of Po is 6s2 6p4.

C. a. Cu belongs to period 4. Therefore, n = 4.
b. Group 11 indicates that the element belongs to the d-block of the modem periodic table.
c. The general outer electronic configuration of the d-block elements is ns0-2(n-1)d1-10.
d. The expected configuration of Cu is 4s23d9. However, the observed configuration of Cu is 4s13d10. This is due to the extra stability associated with completely filled d-subshell. Thus, the outer electronic configuration of Cu is 4s13d10.

Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table

3. Answer the following

Question A.
La belongs to group 3 while Hg belongs to group 12 and both belong to period 6 of the periodic table. Write down the general outer electronic configuration of the ten elements from La to Hg together using orbital notation method.
Answer:
i. La and Hg both belongs to period 6. Therefore, n = 6.
ii. Elements of group 3 to group 12 belong to the d-block of the modem periodic table.
iii. The general outer electronic configuration of the d-block elements is ns0-2 (n -1 )1-10.
iv. Therefore, the outer electronic configuration of all ten elements from La to Hg is as given in the table below.
Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table 1
[Note: There are 14 elements between La and Hf which are called lanthanides. Therefore, after La, electrons are filled in 4f subshell of lanthanide elements. Once all the 14 elements of lanthanide series are filled, next electron enters 5d subshell of Hf. Hence, the outer electronic configurations of Hf to Hg often include completely filled 4f subshell. For example, the electronic configuration of Hf ‘5d26s2’ can also be written as ‘4f145d26s2’.]

Question B.
Ionization enthalpy of Li is 520 kJ mol-1 while that of F is 1681 kJ mol-1. Explain.
Answer:

  • Both Li and F belong to period 2.
  • Across a period, the screening effect is the same while the effective nuclear charge increases.
  • As a result, the outer electron is held more tightly and therefore, the ionization enthalpy increases across a period.
  • Hence, F will have higher ionization enthalpy than Li.

Thus, ionization enthalpy of Li is 520 kJ mol-1 while that of F is 1681 kJ mol-1.

Question C.
Explain the screening effect with a suitable example.
Answer:
i. In a multi-electron atom, the electrons in the inner shells tend to prevent the attractive influence of the nucleus from reaching the outermost electron.
ii. Thus, they act as a screen or shield between the nuclear attraction and outermost or valence electrons. This effect of the inner electrons on the outer electrons is known as screening effect or shielding effect.
iii. Across a period, screening effect due to inner electrons remains the same as electrons are added to the same shell.
iv. Down the group, screening effect due to inner electrons increases as a new valence shell is added.
e.g. Potassium (19K) has electronic configuration 1s22s22p63s23p64s1.
K has 4 shells and thus, the valence shell electrons are effectively shielded by the electrons present in the inner three shells. As a result of this, valence shell electron (4s1) in K experiences much less effective nuclear charge and can be easily removed.

Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table

Question D.
Why the second ionization enthalpy is greater than the first ionization enthalpy ?
Answer:
The second ionization enthalpy (ΔiH2) is greater than the first ionization enthalpy (ΔiH1) as it involves removal of electron from the positively charged species.

Question E.
Why the elements belonging to the same group do have similar chemical properties ?
Answer:

  • Chemical properties of elements depend upon their valency.
  • Elements belonging to the same group have the same valency.

Hence, the elements belonging to the same group show similar chemical properties.

Question F.
Explain : electronegativity and electron gain enthalpy. Which of the two can be measured experimentally?
Answer:
i. The ability of a covalently bonded atom to attract the shared electrons toward itself is called electronegativity (EN). Electronegativity cannot be measured experimentally. However, various numerical scales to express electronegativity were developed by many scientists. Pauling scale of electronegativity is the one used most widely.

ii. Electron gain enthalpy is a quantitative measure of the ease with which an atom adds an electron forming the anion and is expressed in kJ mol-1. Thus, it is an experimentally measurable quantity.

4. Choose the correct option

Question A.
Consider the elements B, Al, Mg and K predict the correct order of metallic character :
a. B > Al > Mg > K
b. Al > Mg > B > K
c. Mg > Al > K > B
d. K > Mg > Al > B
Answer:
d. K > Mg > Al > B

Question B.
In modern periodic table, the period number indicates the :
a. atomic number
b. atomic mass
c. principal quantum number
d. azimuthal quantum number
Answer:
c. principal quantum number

Question C.
The lanthanides are placed in the periodic table at
a. left hand side
b. right hand side
c. middle
d. bottom
Answer:
d. bottom

Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table

Question D.
If the valence shell electronic configuration is ns2np5, the element will belong to
a. alkali metals
b. halogens
c. alkaline earth metals
d. actinides
Answer:
b. halogens

Question E.
In which group of elements of the modern periodic table are halogen placed ?
a. 17
b. 6
c. 4
d. 2
Answer:
a. 17

Question F.
Which of the atomic number represent the s-block elements ?
a. 7, 15
b. 3, 12
c. 6, 14
d. 9, 17
Answer:
b. 3, 12

Question G.
Which of the following pairs is NOT isoelectronic ?
a. Na+ and Na
b. Mg2+ and Ne
c. Al3+ and B3+
d. P3 and N3-
Answer:
b. Mg2+ and Ne

Question H.
Which of the following pair of elements has similar properties ?
a. 13, 31
b. 11, 20
c. 12, 10
d. 21, 33
Answer:
a. 13, 31

Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table

5. Answer the following questions

Question A.
The electronic configuration of some elements are given below:
a. 1s2
b. 1s22s22p6
In which group and period of the periodic table they are placed ?
Answer:
a. 1s2
Here n = 1. Therefore, the element belongs to the 1st period.
The outer electronic configuration 1s2 corresponds to the maximum capacity of 1s, the complete duplet. Therefore, the element is placed at the end of the 1st period in the group 18 of inert gases in the modem periodic table,

b. 1s22s22p6
Here n = 2. Therefore, the element belongs to the 2nd period.
The outer electronic configuration 2s22p6 corresponds to complete octet. Therefore, the element is placed in the 2nd period of group 18 in the modem periodic table.

Question B.
For each of the following pairs, indicate which of the two species is of large size :
a. Fe2+ or Fe3+
b. Mg2+ or Ca2+
Answer:
a. Fe2+ has a larger size than Fe3+.
b. Ca2+ has a larger size than Mg2+.

Question C.
Select the smaller ion form each of the following pairs:
a. K+, Li+
b. N3-, F
Answer:
i. Li+ has smaller ionic radius than K+
ii. F has smaller ionic radius than N3-.

Question D.
With the help of diagram answer the questions given below:
Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table 2
a. Which atom should have smaller ionization enthalpy, oxygen or sulfur?
b. The lithium forms +1 ions while berylium forms +2 ions ?
Answer:
Sulfur should have smaller ionization energy than oxygen.
a. Lithium has electronic configuration 1s22s1 while that of beryllium is 1s22s2.
b. Li can achieve a noble gas configuration by losing one electron while Be can do so by losing two electrons. Hence, lithium forms +1 ions while beryllium forms +2 ions.

Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table

Question E.
Define : a. Ionic radius
b. Electronegativity
Answer:
a. Ionic radius: Ionic radius is defined as the distance of valence shell of electrons from the centre of the nucleus in an ion.

b. Electronegativity: The ability of a covalently bonded atom to attract the shared electrons toward itself is called electronegativity (EN).

Question F.
Compare chemical properties of metals and non-metals.
Answer:
i. Metals (like alkali metals) react vigorously with oxygen to form oxides which reacts with water to form strong bases.
e. g. Sodium (Na) reacts with oxygen to form Na2O which produces NaOH on reaction with water.

ii. Nonmetals (like halogens) react with oxygen to form oxides which on reaction with water form strong acids.
e.g. Chlorine reacts with oxygen to form Cl2O7 which produces HClO4 on reaction with water.

Question G.
What are the valence electrons ? For s-block and p-block elements show that number of valence electrons is equal to its group number.
Answer:

  • Electrons present in the outermost shell of the atom of an element are called valence electrons.
  • 3Li is an s-block element and its electronic configuration is 1s22s1. Since it has one valence electron, it is placed in group 1.
  • Therefore, for s-block elements, group number = number of valence electrons.
  • However, for p-block elements, group number = 18 – number of electrons required to attain complete octet.
  • 7N is a p-block element and its electronic configuration is 1s22s22p3. Since it has five electrons in its valence shell, it is short of three electrons to complete its octet.
  • Therefore, its group number = 18 – 3 = 15.

Question H.
Define ionization enthalpy. Name the factors on which ionisation enthalpy depends? How does it vary down the group and across a period?
Answer:
i. The energy required to remove an electron from the isolated gaseous atom in its ground state is called ionization enthalpy (ΔiH).
Ionization enthalpy is the quantitative measure of tendency of an element to lose electron and expressed in kJ mol-1.

ii. Ionization energy depends on the following factors

  • Size (radius) of an atom
  • Nuclear charge
  • The shielding or screening effect of inner electrons
  • Nature of electronic configuration

iii. Variation of ionization energy down the group: On moving down the group, the ionization enthalpy decreases. This is because electron is to be removed from the larger valence shell. Screening due to core electrons goes on increasing and the effective nuclear charge decreases down the group. As a result, the removal of the outer electron becomes easier down the group.

iv. Variation of ionization energy across a period: The screening effect is the same while the effective nuclear charge increases across a period. As a result, the outer electron is held more tightly and hence, the ionization enthalpy increases across a period. Therefore, the alkali metal shows the lowest first ionization enthalpy while the inert gas shows the highest first ionization enthalpy across a period.

Note: First ionization enthalpy values of elements of group 1.
Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table 3
Note: First ionization enthalpy values of elements of period 2.
Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table 4

Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table

Question I.
How the atomic size vary in a group and across a period? Explain with suitable example.
Answer:
i. Variation in atomic size down the group:
a. As we move down the group from top to bottom in the periodic table, the atomic size increases with the increase in atomic number.
b. This is because, as the atomic number increases, nuclear charge increases but simultaneously the number of shells in the atoms also increases.
c. Asa result, the effective nuclear charge decreases due to increase in the size of the atom and shielding effect increases down the group. Thus, the valence electrons experience less attractive force from nucleus and are held less tightly.
d. Hence, the atomic size increases in a group from top to bottom.

e. g.

  • In group 1, as we move from top to bottom i.e., from Li to Cs, a new shell gets added in the atom of the elements and the electrons are added in this new shell.
  • As a result of this, the effective nuclear charge goes on decreasing and screening effect goes on increasing down a group.
  • Therefore, the atomic size is the largest for Cs and is the smallest for Li in group 1.

[Note: Atomic radii of Li and Cs are 152 pm and 262 pm respectively.]

ii. Variation in atomic size across a period:
a. As we move across a period from left to right in the periodic table, the atomic size of an element decreases with the increase in atomic number.
b. This is because, as the atomic number increases, nuclear charge increases gradually but addition of electrons takes place in the same shell.
c. Therefore, as we move across a period, the effective nuclear charge increases but screening effect caused by the core electrons remains the same.
d. As a result of this, attraction between the nucleus and the valence electrons increases. Therefore, valence electrons are more tightly bound and hence, the atomic radius goes on decreasing along a period resulting in decrease in atomic size.

e. g.

  • In the second period, as we move from left towards right i.e., from Li to F, the electrons are added in the second shell of all the elements in second period (except noble gas Ne).
  • As a result of this, the effective nuclear charge goes on increasing from Li to F, however, screening effect remains the same.
  • Therefore, the atomic size is the largest for Li (alkali metal) and is the smallest for F (halogen).

[Note: Atomic radii of Li and F are 152 pm and 64 pm respectively.]

Question J.
Give reasons.
a. Alkali metals have low ionization energies.
b. Inert gases have exceptionally high ionization energies.
c. Fluorine has less electron affinity than chlorine.
d. Noble gases possess relatively large atomic size.
Answer:
a. i. Across a period, the screening effect is the same while the effective nuclear charge increases.
ii. As a result, the outer electron is held more tightly and hence, the ionization enthalpy increases across a period.
iii. Since the alkali metals are present in the group 1 of the modem periodic table, they have low ionization energies.

b. i. Across a period, the screening effect is the same and the effective nuclear charge increases.
ii. As a result, the outer electron is held more tightly and hence, the ionization enthalpy increases across a period.
iii. Inert gases are present on the extreme right of the periodic table i.e., in group 18. Also, inert gases have stable electronic configurations i.e., complete octet or duplet. Due to this, they are extremely stable and it is very difficult to remove electrons from their valence shell.
Hence, inert gases have exceptionally high ionization potential.

c. The less electron affinity of fluorine is due to its smaller size. Adding an electron to the 2p orbital in fluorine leads to a greater repulsion than adding an electron to the larger 3p orbital of chlorine.
Hence, fluorine has less electron affinity than chlorine.

d. i. Noble gases have completely filled valence shell i.e., complete octet (except He with complete duplet).
ii. Since their valence shell contains eight electrons, they experience greater electronic repulsion and this results in increased atomic size (atomic radii) of the noble gas elements.
Hence, noble gases possess

Question K.
Consider the oxides Li2O, CO2, B2O3.
a. Which oxide would you expect to be the most basic?
b. Which oxide would be the most acidic?
c. Give the formula of an amphoteric oxide.
Answer:
a. Li2O is the most basic oxide.
b. CO2 is the most acidic oxide.
c. Formula of an amphoteric oxide: Al2O3.
[Note: Both B2O3 and CO2 are acidic oxides. But CO2 is more acidic oxide as compared to B2O3. Hence, CO2 is most acidic oxide amongst the given.]

Activity :

Question 1.
Prepare a wall mounting chart of the modern periodic table.
Answer:
Students can scan the adjacent Q.R. Code to visualise the modern periodic table and are expected to prepare the chart on their own.
Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table 5

Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table

11th Chemistry Digest Chapter 7 Modern Periodic Table Intext Questions and Answers

Can you recall? (Textbook Page No. 93)

Question 1.
What was the basis of classification of elements before the knowledge of electronic structure of atom?
Answer:
Elements were classified on the basis of their physical properties before the knowledge of electronic structure of atom.

Question 2.
Name the scientists who made the classification of elements in the nineteenth century.
Answer:
Dmitri Mendeleev, John Newlands and Johann Doberiener were the scientists who made the classification of elements based on their atomic mass in the nineteenth century.

Question 3.
What is Mendeleev’s periodic law?
Answer:
Mendeleev’s periodic law: “The physical and chemical properties of elements are the periodic function of their atomic masses

Question 4.
How many elements are discovered until now?
Answer:
Including manmade elements, total 118 elements are discovered until now.

Question 5.
How many horizontal rows and vertical columns are present in the modern periodic table?
Answer:
The modem periodic table consists of seven horizontal rows called periods numbered from 1 to 7 and eighteen vertical columns called groups numbered from 1 to 18.

Just think. (Textbook Page No. 93)

Question 1.
How many days pass between two successive full moon nights?
Answer:
29.5 days i.e., approximately 30 days pass between two successive full moon nights.

Question 2.
What type of motion does a pendulum exhibit?
Answer:
A pendulum exhibits periodic motion since it traces the same path after regular interval of time.

Question 3.
Give some other examples of periodic events.
Answer:
Following are some other examples of periodic events:

  • Motion of earth around the sun.
  • Rotation of earth around its own axis.
  • Day and night.

Maharashtra Board Class 11 Chemistry Solutions Chapter 7 Modern Periodic Table

Can you recall? (Textbook Page No. 95)

Question i.
What does the principal quantum number ‘n’ and azimuthal quantum number ‘l’ of an electron belonging to an atom represent?
Answer:
The principal quantum number ‘n’ represents the outermost or valence shell of an element (which corresponds to period number) while azimuthal quantum number ‘l’ constitutes a subshell belonging to the shell for the given ‘n’.

Question ii.
Which principle is followed in the distribution of electrons in an atom?
Answer:
The distribution of electrons in an atom is according to the following three principles:

  1. Aufbau principle
  2. Pauli’s exclusion principle
  3. Hund’s rule of maximum multiplicity

[Note: According to aufbau principle, electrons are filled in the subshells in the increasing order of their energies which follows the following order: s < p < d < f.]