Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Miscellaneous Exercise 6

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 6 Permutations and Combinations Miscellaneous Exercise 6 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Miscellaneous Exercise 6

Question 1.
Find the value of r if 56Cr+6 : 54Pr-1 = 30800 : 1
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Miscellaneous Exercise 6 Q1

Question 2.
How many words can be formed by writing letters in the word CROWN in a different order?
Solution:
Five Letters of the word CROWN are to be permuted.
Number of different words = 5! = 120

Question 3.
Find the number of words that can be formed by using all the letters in the word REMAIN. If these words are written in dictionary order, what will be the 40th word?
Solution:
There are 6 letters A, E, I, M, N, R
The number of words starting with A = 5!
The number of words starting with E = 5!
The number of words starting with I = 5!
The number of words starting with M = 5!
The number of words starting with N = 5!
The number of words starting with R = 5!
Total number of words = 6 × 5! = 720
Number of words starting with AE = 4! = 24
Number of words starting with AIE = 3! = 6
Number of words starting with AIM = 3! = 6
The number of words starting with AINE = 2!
Total words = 24 + 6 + 6 + 2 = 38
39th word is AINMER
40th word is AINMRE

Question 4.
Find the number of ways of distributing n balls in n cells. What will be the number of ways if each cell must be occupied?
Solution:
There are n balls and n cells
(i) Every ball can be put in any of the n cells.
Number of distributions = n × n × …… × n = (n)n
(ii) For filling the first cell, n balls are available.
The first cell is filled in n ways.
The second cell is filled in (n – 1) ways
The third cell is filled in (n – 2) ways and so on.
the nth cell is tilled in one way.
Required number = n(n – 1)(n – 2) …… 1 = n!

Question 5.
Thane is the 20th station from C.S.T. If a passenger can purchase a ticket from any station to any other station, how many different tickets must be available at the booking window?
Solution:
Taking CST as the first station and Thane as 20th,
Let us name CST as A0 next station as A1 and so on, Thane is A20
From station A0, 20 different journeys are possible
From station A1, 20 different journeys are possible.
From station A20, 20 different journeys are possible.
Total number of different tickets of different journeys = 21 × 20 = 420

Question 6.
English alphabet has 11 symmetric letters that appear the same when looked at in a mirror. These letters are A, H, I, M, O, T, U, V, W, X, and Y. How many symmetric three letters passwords can be formed using these letters?
Solution:
Number of 3 Letter passwords = 11P3
= 11 × 10 × 9
= 990

Question 7.
How many numbers formed using the digits 3, 2, 0, 4, 3, 2, 3 exceed one million?
Solution:
A number that exceeds one million is to be formed from the digits 3, 2, 0, 4, 3, 2, 3.
Then the numbers should be any number of 7 digits which can be formed from these digits.
Also among the given numbers 2 repeats twice and 3 repeats thrice.
∴ Required number of numbers = Total number of arrangements possible among these digits – number of arrangements of 7 digits which begin with 0.
= \(\frac{7 !}{2 ! 3 !}-\frac{6 !}{2 ! 3 !}\)
= \(\frac{7 \times 6 \times 5 \times 4 \times 3 !}{2 \times 3 !}-\frac{6 \times 5 \times 4 \times 3 !}{2 \times 3 !}\)
= 7 × 6 × 5 × 2 – 6 × 5 × 2
= 6 × 5 × 2(7 – 1)
= 60 × 6
= 360
∴ 360 numbers that exceed one million can be formed with the digits 3, 2, 0, 4, 3, 2, 3.

Question 8.
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Miscellaneous Exercise 6 Q8
Required number = 26C6 + 26C10

Question 9.
A student finds 7 books of his interest but can borrow only three books. He wants to borrow the Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Miscellaneous Exercise 6 Q9
Required Number = 5 + 10 = 15

Question 10.
30 objects are to be divided into three groups containing 7, 10, 13 objects. Find the number of distinct ways of doing so. Solution:
Required number = 30C7 × 23C10 × 13C13

Question 11.
A student passes an examination if he secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Solution:
Every subject a student may pass or fail.
∴ Total number of outcomes = 27 = 128
This number includes one case when the student passes in all subjects.
∴ Required number = 128 – 1 = 127

Question 12.
Nine friends decide to go for a picnic in two groups. One group decides to go by car and the other group decides to go by train. Find the number of different ways of doing so if there must be at least 3 friends in each group.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Miscellaneous Exercise 6 Q12

Question 13.
Five balls are to be placed in three boxes, where each box can contain upto five balls. Find the number of ways if no box is to remain empty.
Solution:
Let boxes be named as I, II, III
Let sets A, B, C represent cases in which boxes I, II, III remain empty
Then A ∪ B ∪ C represent the cases in which at least one box remains empty.
Then we use method of indirect counting
Required number = Total number of distributions – n(A ∪ B ∪ C) …..(i)
n(A ∪ B ∪ C) represent the number of undesirable cases
Total number of distributions = 3 × 3 × 3 × 3 × 3 = 35 = 243 …….(ii)
n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(C ∩ A) + n(A ∩ B ∩ C) …..(iii)
In box I is empty then every ball has two places (boxes) to go.
Similarly for box II and III.
∴ n(A) + n(B) + n(C) = 3 × 25 ……(iv)
If boxes I and II remain empty then all balls go to box III
Similarly we would have two more cases.
∴ n(A ∩ B) + n(B ∩ C) + n(C ∩ A) = 3 × 15 ……(v)
∴ n(A ∩ B ∩ C) = 0 …….(vi) [as all boxes cannot be empty]
Substitute from (iv), (v), (vi) to (iii) to get
n(A ∪ B ∪ C) = 3 × 25 – 3 × 15
= 96 – 3
= 93
Substitute n(A ∪ B ∪ C) and from (ii) to (i), we get
Required number = 243 – 93 = 150

Question 14.
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.
Solution:
Every lamp is either ON or OFF.
There are 12 lamps
Number of instances = 212
This number includes the case in which all 12 lamps are OFF.
∴ Required Number = 212 – 1 = 4095

Question 15.
How many quadratic equations can be formed using numbers from 0, 2, 4, 5 as coefficients if a coefficient can be repeated in an equation?
Solution:
Let the quadratic equation be ax2 + bx + c = 0, a ≠ 0
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Miscellaneous Exercise 6 Q15
∴ Required number = 3 × 4 × 4 = 48

Question 16.
How many six-digit telephone numbers can be formed if the first two digits are 45 and no digit can appear more than once?
Solution:
Let the telephone number be 45abcd
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Miscellaneous Exercise 6 Q16
∴ Required number = 8P4 = 1680

Question 17.
A question paper has 6 questions. How many ways does a student have if he wants to solve at least one question?
Solution:
Every question is ‘SOLVED’ or ‘NOT SOLVED’.
There are 6 question.
Number of outcomes = 26
This number includes the case when the student solves NONE of the question.
Required number = 26 – 1
= 64 – 1
= 63

Question 18.
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7 and 5.
Solution:
Select 8 objects out of 20 in 20C8 ways
Select 7 objects from the remaining 12 in 12C7 ways and 5 objects from the remaining 5 in 5C5 ways
Required number is = 20C8 × 12C7 × 5C5

Question 19.
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
Solution:
There are 8 doctors and 4 lawyers.
We need to select a team of 6 which contains at least one doctor.
Since there are only 4 lawyers any team of 6 will contain at least two doctors.
Required number = 12C6 = 924

Question 20.
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.
Solution:
We need 2 lines from each set.
Required number = 4C2 × 5C2
= 6 × 10
= 60

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 6 Permutations and Combinations Ex 6.7 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7

Question 1.
Find n if nC8 = nC12
Solution:
nC8 = nC12
If nCx = nCy, then either x = y or x = n – y
∴ 8 = 12 or 8 = n – 12
But 8 = 12 is not possible
∴ 8 = n – 12
∴ n = 20

Question 2.
Find n if 23C3n = 23C2n+3
Solution:
23C3n = 23C2n+3
If nCx = nCy, then either x = y or x = n – y
∴ 3n = 2n + 3 or 3n = 23 – 2n – 3
∴ n = 3 or n = 4

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7

Question 3.
Find n if 21C6n = \({ }^{21} C_{n^{2}+5}\)
Solution:
21C6n = \({ }^{21} C_{n^{2}+5}\)
If nCx = nCy, then either x = y or x = n – y
∴ 6n = n2 + 5 or 6n = 21 – (n2 + 5)
∴ n2 – 6n + 5 = 0 or 6n = 21 – n2 – 5
∴ n2 – 6n + 5 = 0 or n2 + 6n – 16 = 0
If n2 – 6n + 5 = 0 then (n – 1)(n – 5) = 0
∴ n = 1 or n = 5
If n = 5 then n2 + 5 = 30 > 21
∴ n ≠ 5
∴ n = 1
If n2 + 6n – 16 = 0 then (n + 8)(n – 2) = 0
n = -8 or n = 2
n ≠ -8
∴ n = 2

Question 4.
Find n if 2nCr-1 = 2nCr+1
Solution:
2nCr-1 = 2nCr+1
If nCx = nCy, then either x = y or x = n – y
∴ r – 1 = r + 1 or r – 1 = 2n – (r + 1)
But r – 1 = r + 1 is not possible
∴ r – 1 = 2n – (r + 1)
∴ r + r = 2n
∴ r = n

Question 5.
Find n if nCn-2 = 15
Solution:
nCn-2 = 15
nC2 = 15 …….[∵ nCr = nCn-r]
∴ \(\frac{n !}{(n-2) ! 2 !}\) = 15
∴ \(\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) !}{(\mathrm{n}-2) ! 2 \times 1}\) = 15
∴ n(n – 1) = 30
∴ n(n – 1) = 6 × 5
Comparing both sides, we get
∴ n = 6

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7

Question 6.
Find x if nPr = x nCr
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7 Q6

Question 7.
Find r if 11C4 + 11C5 + 12C6 + 13C7 = 14Cr
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7 Q7

Question 8.
Find the value of \(\sum_{r=1}^{4}{ }^{21-r} C_{4}+{ }^{17} C_{5}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7 Q8

Question 9.
Find the differences between the largest values in the following:
(i) 14Cr12Cr
Solution:
Greatest value of 14Cr
Here n = 14, which is even
Greatest value of nCr occurs at r = \(\frac{n}{2}\) if n is even
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7 Q9 (i)
∴ Difference between the greatest values of 14Cr and 12Cr = 3432 – 924 = 2508

(ii) 13Cr8Cr
Solution:
Greatest value of 13Cr
Here n = 13, which is odd
Greatest value of nCr occurs at r = \(\frac{\mathrm{n}-1}{2}\) if n is odd
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7 Q9 (ii)
∴ Difference between the greatest values of 13Cr and 8Cr = 1716 – 70 = 1646

(iii) 15Cr11Cr
Solution:
Greatest value of 15Cr
Here n = 15, which is odd
Greatest value of nCr occurs at r = \(\frac{\mathrm{n}-1}{2}\) if n is odd
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7 Q9 (iii)
Difference between the greatest values of 15Cr and 11Cr = 6435 – 462 = 5973

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7

Question 10.
In how many ways can a boy invite his 5 friends to a party so that at least three join the party?
Solution:
Boy can invite = (3 or 4 or 5 friends)
Consider the following table:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7 Q10
∴ Number of ways a boy can invite his friends to a party so that three or more join the party = 10 + 5 + 1 = 16

Question 11.
A group consists of 9 men and 6 women. A team of 6 is to be selected. How many possible selections will have at least 3 women?
Solution:
There are 9 men and 6 women.
A team of 6 persons is to be formed such that it consists of at least 3 women.
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7 Q11
∴ Number of ways this can be done = 1680 + 540 + 54 + 1 = 2275
∴ 2275 teams can be formed if team consists of at least 3 women.

Question 12.
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in the majority?
Solution:
(i) A committee of 10 persons is to be formed from 10 women and 8 men such that the committee contains at least 5 women
Consider the following table:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7 Q12
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7 Q12.1
∴ Number of committees = 14112 + 14700 + 6720 + 1260 + 81 = 36873
∴ At least 5 women are there in 36873 committees.

(ii) Number of committees with men in majority = Total number of committees – (Number of committees with women in majority + women and men equal in number)
= 18C10 – 36873
= 18C8 – 36873
= 43758 – 36873
= 6885

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7

Question 13.
A question paper has two sections. Section I has 5 questions and section II has 6 questions. A student must answer at least two questions from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Solution:
There are 11 questions, out of which 5 questions are from section I and 6 questions are from section II.
The student has to select 6 questions taking at least 2 questions from each section.
Consider the following table:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7 Q13
∴ Number of choices = 150 + 200 + 75 = 425
∴ In 425 ways students can select 6 questions, taking at least 2 questions from each section.

Question 14.
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Solution:
There are 22 cricket players, of which 3 are wicketkeepers and 5 are bowlers.
A team of 11 players is to be chosen such that exactly one wicketkeeper and at least 4 bowlers are to be included in the team.
Consider the following table:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7 Q14
∴ Number of ways a team of 11 players can be selected = 45045 + 6006 = 51051

Question 15.
Five students are selected from 11. How many ways can these students be selected if
(i) two specified students are selected?
(ii) two specified students are not selected?
Solution:
5 students are to be selected from 11 students
(i) When 2 specified students are included
then remaining 3 students can be selected from (11 – 2) = 9 students.
∴ Number of ways of selecting 3 students from 9 students = 9C3
= \(\frac{9 !}{3 ! \times 6 !}\)
= \(\frac{9 \times 8 \times 7 \times 6 !}{3 \times 2 \times 1 \times 6 !}\)
= 84
∴ Selection of students is done in 126 ways when 2 specified students are not selected.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.7

(ii) When 2 specified students are not included then 5 students can be selected from the remaining (11 – 2) = 9 students
∴ Number of ways of selecting 5 students from 9 students = 9C5
= \(\frac{9 !}{5 ! 4 !}\)
= \(\frac{9 \times 8 \times 7 \times 6 \times 5 !}{5 ! \times 4 \times 3 \times 2 \times 1}\)
= 126
∴ Selection of students is done in 126 ways when 2 specified students are not selected.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 6 Permutations and Combinations Ex 6.6 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6

Question 1.
Find the value of
(i) 15C4
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q1 (i)

(ii) 80C2
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q1 (ii)

(iii) 15C4 + 15C5
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q1 (iii)

(iv) 20C1619C16
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q1 (iv)

Question 2.
Find n if
(i) 6P2 = n 6C2
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q2 (i)

(ii) 2nC3 : nC2 = 52 : 3
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q2 (ii)

(iii) nCn-3 = 84
Solution:
nCn-3 = 84
∴ \(\frac{n !}{(n-3) ![n-(n-3)] !}\) = 84
∴ \(\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3) !}{(\mathrm{n}-3) ! \times 3 !}\) = 84
∴ n(n – 1) (n – 2) = 84 × 6
∴ n(n – 1) (n – 2) = 9 × 8 × 7
Comparing on both sides, we get
∴ n = 9

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6

Question 3.
Find r if 14C2r : 10C2r-4 = 143 : 10
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q3
∴ \(\frac{14 \times 13 \times 12 \times 11}{2 \mathrm{r}(2 \mathrm{r}-1) \times(2 \mathrm{r}-2)(2 \mathrm{r}-3)}=\frac{143}{10}\)
∴ 2r(2r – 1)(2r – 2)(2r – 3) = 14 × 12 × 10
∴ 2r(2r – 1)(2r – 2)(2r – 3) = 8 × 7 × 6 × 5
Comparing on both sides, we get
∴ r = 4

Question 4.
Find n and r if.
(i) nPr = 720 and nCn-r = 120
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q4 (i)

(ii) nCr-1 : nCr : nCr+1 = 20 : 35 : 42
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q4 (ii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q4 (ii).1

Question 5.
If nPr = 1814400 and nCr = 45, find r.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q5
∴ r! = 40320
∴ r! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
∴ r! = 8!
∴ r = 8

Question 6.
If nCr-1 = 6435, nCr = 5005, nCr+1 = 3003, find rC5.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q6
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q6.1

Question 7.
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 5 green balls and 7 blue balls so that 3 balls of every colour are drawn.
Solution:
9 balls are to be selected from 6 red, 5 green, 7 blue balls such that the selection consists of 3 balls of each colour.
∴ 3 red balls can be selected from 6 red balls in 6C3 ways.
3 green balls can be selected from 5 green balls in 5C3 ways.
3 blue balls can be selected from 7 blue balls in 7C3 ways.
∴ Number of ways selection can be done if the selection consists of 3 balls of each colour
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q7

Question 8.
Find the number of ways of selecting a team of 3 boys and 2 girls from 6 boys and 4 girls.
Solution:
There are 6 boys and 4 girls.
A team of 3 boys and 2 girls is to be selected.
∴ 3 boys can be selected from 6 boys in 6C3 ways.
2 girls can be selected from 4 girls in 4C2 ways.
∴ Number of ways the team can be selected = 6C3 × 4C2
= \(\frac{6 !}{3 ! 3 !} \times \frac{4 !}{2 ! 2 !}\)
= \(\frac{6 \times 5 \times 4 \times 3 !}{3 \times 2 \times 1 \times 3 !} \times \frac{4 \times 3 \times 2 !}{2 \times 2 !}\)
= 20 × 6
= 120
∴ The team of 3 boys and 2 girls can be selected in 120 ways.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6

Question 9.
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
Solution:
Let there be n participants present in the meeting.
A handshake occurs between 2 persons.
∴ Number of handshakes = nC2
Given 66 handshakes were exchanged.
∴ 66 = nC2
∴ 66 = \(\frac{n !}{2 !(n-2) !}\)
∴ 66 × 2 = \(\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) !}{(\mathrm{n}-2) !}\)
∴ 132 = n(n – 1)
∴ n(n – 1) = 12 × 11
Comparing on both sides, we get n = 12
∴ 12 participants were present at the meeting.

Question 10.
If 20 points are marked on a circle, how many chords can be drawn?
Solution:
To draw a chord we need to join two points on the circle.
There are 20 points on a circle.
∴ Total number of chords possible from these points = 20C2
= \(\frac{20 !}{2 ! 18 !}\)
= \(\frac{20 \times 19 \times 18 !}{2 \times 1 \times 18 !}\)
= 190

Question 11.
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when
(i) n = 10
(ii) n = 15
(iii) n = 12
Solution:
In n-sided polygon, there are ‘n’ points and ‘n’ sides. .
∴ Through ‘n’ points we can draw nC2 lines including sides.
∴ Number of diagonals in n sided polygon = nC2 – n (∴ n = number of sides)
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6 Q11

Question 12.
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
Solution:
There are 20 lines such that no two of them are parallel and no three of them are concurrent.
Since no two lines are parallel
∴ they intersect at a point
∴ Number of points of intersection if no two lines are parallel and no three lines are concurrent = 20C2
= \(\frac{20 !}{2 ! 18 !}\)
= \(\frac{20 \times 19 \times 18 !}{2 \times 1 \times 18 !}\)
= 190

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6

Question 13.
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if
(i) no three points are collinear
(ii) four points are collinear
Solution:
There are 10 points on a plane.
(i) No three of them are collinear:
Since a line is obtained by joining 2 points,
number of lines passing through these points if no three points are collinear = 10C2
= \(\frac{10 !}{2 ! 8 !}\)
= \(\frac{10 \times 9 \times 8 !}{2 \times 1 \times 8 !}\)
= 5 × 9
= 45

(ii) When 4 of them arc collinear:
∴ Number of lines passing through these points if 4 points are collinear
= 10C24C2 + 1
= 45 – \(\frac{4 !}{2 ! 2 !}\) + 1
= 45 – \(\frac{4 \times 3 \times 2 !}{2 \times 2 !}\) + 1
= 45 – 6 + 1
= 40

Question 14.
Find the number of triangles formed by joining 12 points if
(i) no three points are collinear
(ii) four points are collinear
Solution:
There are 12 points on the plane
(i) When no three of them are collinear:
Since a triangle can be drawn by joining any three non-collinear points.
∴ Number of triangles that can be obtained from these points = 12C3
= \(\frac{12 !}{3 ! 9 !}\)
= \(\frac{12 \times 11 \times 10 \times 9 !}{3 \times 2 \times 1 \times 9 !}\)
= 220

(ii) When 4 of these points are collinear:
∴ Number of triangles that can be obtained from these points = 12C34C3
= 220 – \(\frac{4 !}{3 ! \times 1 !}\)
= 220 – \(\frac{4 \times 3 !}{3 !}\)
= 220 – 4
= 216

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.6

Question 15.
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 2 vowels are chosen?
Solution:
Out of 8 consonants, 4 can be selected in 8C4
= \(\frac{8 !}{4 ! 4 !}\)
= \(\frac{8 \times 7 \times 6 \times 5 \times 4 !}{4 \times 3 \times 2 \times 1 \times 4 !}\)
= 70 ways
From 3 vowels, 2 can be selected in 3C2
= \(\frac{3 !}{2 ! 1 !}\)
= \(\frac{3 \times 2 !}{2 !}\)
= 3 ways
Now, to form a word, these 6 letters (i.e., 4 consonants and 2 vowels) can be arranged in 6P6 i.e., 6! ways.
∴ Total number of words that can be formed = 70 × 3 × 6!
= 70 × 3 × 720
= 151200
∴ 151200 words of 4 consonants and 2 vowels can be formed.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Skewness Ex 3.1 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1

Question 1.
For a distribution, mean = 100, mode = 127 and S.D. = 60. Find the Pearson coefficient of skewness Skp.
Solution:
Given, Mean = 100, Mode = 127, S.D. = 60
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1 Q1

Question 2.
The mean and variance of a distribution are 60 and 100 respectively. Find the mode and the median of the distribution if Skp = -0.3.
Solution:
Given, Mean = 60, Variance = 100, Skp = -0.3
∴ S.D. = √Variance = √100 = 10
Skp = \(\frac{\text { Mean }-\text { Mode }}{\text { S.D. }}\)
∴ -0.3 = \(\frac{60-\text { Mode }}{10}\)
∴ -3 = 60 – Mode
∴ Mode = 60 + 3 = 63
Mean – Mode = 3 (Mean – Median)
∴ 60 – 63 = 3(60 – Median)
∴ -3 = 180 – 3Median
∴ 3Median = 180 + 3 = 183
∴ Median = \(\frac{183}{3}\)
∴ Median = 61

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1

Question 3.
For a data set, sum of upper and lower quartiles is 100, difference between upper and lower quartiles is 40 and the median is 30. Find the coefficient of skewness.
Solution:
Given, Q3 + Q1 = 100 ……(i)
Q3 – Q1 = 40 …..(ii)
Median = Q2 = 30
Adding (i) and (ii), we get
2Q3 = 140
∴ Q3 = 70
Substituting the value of Q3 in (i), we get
70 + Q1 = 100
∴ Q1 = 100 – 70 = 30
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1 Q3

Question 4.
For a data set with an upper quartile equal to 55 and median equal to 42, if the distribution is symmetric, find the value of the lower quartile.
Solution:
Upper quartile = Q3 = 55
Median = Q2 = 42
Since, the distribution is symmetric.
∴ Skb = 0
Skb = \(\frac{Q_{3}+Q_{1}-2 Q_{2}}{Q_{3}-Q_{1}}\)
∴ 0 = \(\frac{Q_{3}+Q_{1}-2 Q_{2}}{Q_{3}-Q_{1}}\)
∴ 0 = Q3 + Q1 – 2Q2
∴ Q1 = 2Q2 – Q3
∴ Q1 = 2(42) – 55
∴ Q1 = 84 – 55
∴ Q1 = 29

Question 5.
Obtain coefficient of skewness by formula and comment on the nature of the distribution.
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1 Q5
Solution:
We construct the less than cumulative frequency table as given below.
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1 Q5.1
Q1 class = class containing \(\left(\frac{\mathrm{N}}{4}\right)^{\mathrm{th}}\) observation
∴ \(\frac{\mathrm{N}}{4}=\frac{82}{4}\) = 20.5
Cumulative frequency which is just greater than (or equal) to 20.5 is 30.
∴ Q1 lies in the class 60 – 64.
∴ L = 60, h = 4, f = 20, c.f. = 10
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1 Q5.2
Q2 class = class containing \(\left(\frac{\mathrm{N}}{2}\right)^{\mathrm{th}}\) observation
∴ \(\frac{\mathrm{N}}{2}=\frac{82}{2}\) = 41
Cumulative frequency which is just greater than (or equal) to 41 is 70.
∴ Q2 lies in the class 64 – 68.
∴ L = 64, h = 4, f = 40, c.f. = 30
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1 Q5.3
Q3 class = class containing \(\left(\frac{3 \mathrm{~N}}{4}\right)^{\text {th }}\) observation
∴ \(\frac{3 \mathrm{~N}}{4}=\frac{3 \times 82}{4}\) = 61.5
Cumulative frequency which is just greater than (or equal) to 61.5 is 70.
∴ Q3 lies in the class 64 – 68.
∴ L = 64, h = 4, f = 40, c.f. = 30
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1 Q5.4
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1 Q5.5
∴ Skb = -0.1881
Since, Skb < 0, the distribution is negatively skewed.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1

Question 6.
Find Skp for the following set of observations.
17, 17, 21, 14, 15, 20, 19, 16, 13, 17, 18
Solution:
Σxi = 17 + 17 + 21 + 14 + 15 + 20 + 19 + 16 + 13 + 17 + 18 = 187
Mean = \(\frac{\sum x_{i}}{n}=\frac{187}{11}\) = 17
Mode = Observation that occurs most frequently in the data = 17
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1 Q6

Question 7.
Calculate Skb for the following set of observations of the yield of wheat in kg from 13 plots:
4.6, 3.5, 4.8, 5.1, 4.7, 5.5, 4.7, 3.6, 3.5, 4.2, 3.5, 3.6, 5.2
Solution:
The given data can be arranged in ascending order as follows:
3.5, 3.5, 3.5, 3.6, 3.6, 4.2, 4.6, 4.7, 4.7, 4.8, 5.1, 5.2, 5.5
Here, n = 13
Q1 = value of \(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of \(\left(\frac{13+1}{4}\right)^{\text {th }}\) observation
= value of (3.50)th observation
= value of 3rd observation + 0.50(value of 4th observation – value of 3rd observation)
= 3.5 + 0.50(3.6 – 3.5)
= 3.5 + 0.50(0.1)
= 3.5 + 0.05
∴ Q1 = 3.55
Q2 = value of 2\(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of 2\(\left(\frac{13+1}{4}\right)^{\text {th }}\) observation
= value of (2 × 3.50)th observation
= value of 7th observation
∴ Q2 = 4.6
Q3 = value of 3\(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of 3\(\left(\frac{13+1}{4}\right)^{\text {th }}\) observation
= value of (3 × 3.50)th observation
= value of (10.50)th observation
= value of 10th observation + 0.50 (value of 11th obseration – value of 10th observation)
= 4.8 + 0.50(5.1 – 4.8)
= 4.8 + 0.50(0.3)
∴ Q3 = 4.95
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1 Q7
∴ Skb = -0.5

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1

Question 8.
For a frequency distribution Q3 – Q2 = 90 and Q2 – Q1 = 120. Find Skb.
Solution:
Given, Q2 – Q1 = 90, Q2 – Q1 = 120
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Skewness Ex 3.1 Q8
∴ Skb = -0.1429

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 9 Differentiation Ex 9.1 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1

I. Find the derivatives of the following functions w.r.t. x.

Question 1.
x12
Solution:
Let y = x12
Differentiating w.r.t. x, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 I Q1

Question 2.
x-9
Solution:
Let y = x-9
Differentiating w.r.t. x, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 I Q2

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 3.
\(x^{\frac{3}{2}}\)
Solution:
Let y = \(x^{\frac{3}{2}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 I Q3

Question 4.
7x√x
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 I Q4

Question 5.
35
Solution:
Let y = 35
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}=\frac{d}{d x} 3^{5}=0\) …..[35 is a constant]

II. Differentiate the following w.r.t. x.

Question 1.
x5 + 3x4
Solution:
Let y = x5 + 3x4
Differentiating w.r.t. x, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 II Q1

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 2.
x√x + log x – ex
Solution:
Let y = x√x + log x – ex
= \(x^{\frac{3}{2}}+\log x-e^{x}\)
Differentiating w.r.t. x, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 II Q2

Question 3.
\(x^{\frac{5}{2}}+5 x^{\frac{7}{5}}\)
Solution:
Let y = \(x^{\frac{5}{2}}+5 x^{\frac{7}{5}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 II Q3

Question 4.
\(\frac{2}{7} x^{\frac{7}{2}}+\frac{5}{2} x^{\frac{2}{5}}\)
Solution:
Let y = \(\frac{2}{7} x^{\frac{7}{2}}+\frac{5}{2} x^{\frac{2}{5}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 II Q4

Question 5.
\(\sqrt{x}\left(x^{2}+1\right)^{2}\)
Solution:
Let y = \(\sqrt{x}\left(x^{2}+1\right)^{2}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 II Q5

III. Differentiate the following w.r.t. x.

Question 1.
x3 log x
Solution:
Let y = x3 log x
Differentiating w.r.t. x, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 III Q1

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 2.
\(x^{\frac{5}{2}} e^{x}\)
Solution:
Let y = \(x^{\frac{5}{2}} e^{x}\)
Differentiating w.r.t. x, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 III Q2

Question 3.
ex log x
Solution:
Let y = ex log x
Differentiating w.r.t. x, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 III Q3

Question 4.
x3 . 3x
Solution:
Let y = x3 . 3x
Differentiating w.r.t. x, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 III Q4

IV. Find the derivatives of the following w.r.t. x.

Question 1.
\(\frac{x^{2}+a^{2}}{x^{2}-a^{2}}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 IV Q1

Question 2.
\(\frac{3 x^{2}+5}{2 x^{2}-4}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 IV Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 IV Q2.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 3.
\(\frac{\log x}{x^{3}-5}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 IV Q3

Question 4.
\(\frac{3 e^{x}-2}{3 e^{x}+2}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 IV Q4
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 IV Q4.1

Question 5.
\(\frac{x \mathrm{e}^{x}}{x+\mathrm{e}^{x}}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 IV Q5

V. Find the derivatives of the following functions by the first principle:

Question 1.
3x2 + 4
Solution:
Let f(x) = 3x2 + 4
∴ f(x + h) = 3(x + h)2 + 4
= 3(x2 + 2xh + h2) + 4
= 3x2 + 6xh + 3h2 + 4
By first principle, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 V Q1
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 V Q1.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 2.
x√x
Solution:
Let f(x) = x√x
∴ f(x + h) = \((x+h)^{\frac{3}{2}}\)
By first principle, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 V Q2

Question 3.
\(\frac{1}{2 x+3}\)
Solution:
Let f(x) = \(\frac{1}{2 x+3}\)
∴ f(x + h) = \(\frac{1}{2(x+\mathrm{h})+3}=\frac{1}{2 x+2 \mathrm{~h}+3}\)
By first principle, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 V Q3
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 V Q3.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 4.
\(\frac{x-1}{2 x+7}\)
Solution:
Let f(x) = \(\frac{x-1}{2 x+7}\)
∴ f(x + h) = \(\frac{x+\mathrm{h}-1}{2(x+\mathrm{h})+7}=\frac{x+\mathrm{h}-1}{2 x+2 \mathrm{~h}+7}\)
By first principle, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.1 V Q4

Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 8 Continuity Miscellaneous Exercise 8 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

I. Discuss the continuity of the following functions at the point(s) or in the interval indicated against them.

Question 1.
If f(x) = 2x2 – 2x + 5 for 0 ≤ x < 2
= \(\frac{1-3 x-x^{2}}{1-x}\) for 2 ≤ x < 4
= \(\frac{7-x^{2}}{x-5}\) for 4 ≤ x ≤ 7 on its domain.
Solution:
The domain of f is [0, 5) ∪ (5, 7]
We observe that x = 5 is not included in the domain as f is not defined at x = 5
a. For 0 ≤ x < 2
f(x) = 2x2 – 2x + 5
It is a polynomial function and is continuous at all point in [0, 2)

b. For 2 < x < 4
f(x) = \(\frac{1-3 x-x^{2}}{1-x}\)
It is a rational function and is continuous everwhere except at points where its denominator becomes zero.
Denominator becomes zero at x = 1
But x = 1 does not lie in the interval.
f(x) is continuous at all points in (2, 4)

c. For 4 < x ≤ 7, x ≠ 5
i.e. for x ∈ [4, 5) ∪ (5, 7]
∴ f(x) = \(\frac{7-x^{2}}{x-5}\)
It is a rational function and is continuous everywhere except possibly at points where its denominator becomes zero.
Denominator becomes zero at x = 5
But x = 5 ∉ [4, 5) ∪ (5, 7]
∴ f is continuous at all points in (4, 7] – {5}.

Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

d. Since the definition of function changes around x = 2, x = 4 and x = 7
∴ there is disturbance in behaviour of the function.
So we examine continuity at x = 2, 4, 7 separately.
Continuity at x = 2:
\(\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(2 x^{2}-2 x+5\right)\)
= 2(2)2 – 2(2) + 5
= 8 – 4 + 5
= 9
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q1(i)
∴ f is continuous at x = 2

e. Continuity at x = 4:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q1(i).1
∴ f is continuous at x = 4

Question 2.
f(x) = \(\frac{3^{x}+3^{-x}-2}{x^{2}}\) for x ≠ 0
= (log 3)2 for x = 0 at x = 0
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q2.1
∴ \(\lim _{x \rightarrow 0} f(x)=f(0)\)
∴ f is continuous at x = 0

Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 3.
f(x) = \(\frac{5^{x}-e^{x}}{2 x}\) for x ≠ 0
= \(\frac{1}{2}\) (log 5 – 1) for x = 0 at x = 0
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q3
∴ \(\lim _{x \rightarrow 0} f(x)=f(0)\)
∴ f is continuous at x = 0

Question 4.
f(x) = \(\frac{\sqrt{x+3}-2}{x^{3}-1}\) for x ≠ 1
= 2 for x = 1, at x = 1
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q4
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q4.1
∴ \(\lim _{x \rightarrow 1} \mathrm{f}(x) \neq \mathrm{f}(1)\)
∴ f is discontinuous at x = 1

Question 5.
f(x) = \(\frac{\log x-\log 3}{x-3}\) for x ≠ 3
= 3 for x = 3, at x = 3
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q5

(II) Find k if following functions are continuous at the points indicated against them.

Question 1.
f(x) = \(\left(\frac{5 x-8}{8-3 x}\right)^{\frac{3}{2 x-4}}\) for x ≠ 2
= k for x = 2 at x = 2
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q1
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q1.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q1.2

Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 2.
f(x) = \(\frac{45^{x}-9^{x}-5^{x}+1}{\left(k^{x}-1\right)\left(3^{x}-1\right)}\) for x ≠ 0
= \(\frac{2}{3}\) for x = 0, at x = 0
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q2.1

Question 3.
f(x) = \((1+k x)^{\frac{1}{x}}\), for x ≠ 0
= \(e^{\frac{3}{2}}\), for x = 0, at x = 0
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q3
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q3.1

III. Find a and b if following functions are continuous at the point indicated against them.

Question 1.
f(x) = x2 + a, for x ≥ 0
= 2\(\sqrt{x^{2}+1}\) + b, for x < 0 and
f(1) = 2, is continuous at x = 0
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 III Q1

Question 2.
f(x) = \(\frac{x^{2}-9}{x-3}\) + a, for x > 3
= 5, for x = 3
= 2x2 + 3x + b, for x < 3
is continuous at x = 3
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 III Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 III Q2.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 3.
f(x) = \(\frac{32^{x}-1}{8^{x}-1}\) + a, for x > 0
= 2, for x = 0
= x + 5 – 2b, for x < 0
is continuous at x = 0
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 III Q3
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 III Q3.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 6 Determinants Ex 6.1 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1

Question 1.
Evaluate the following determinants:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.1
Solution:
(i) \(\left|\begin{array}{cc}
4 & 7 \\
-7 & 0
\end{array}\right|\)
= 4(0) – (-7)(7)
= 0 + 49
= 49

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.2
= 3(0 – 63) – 5(0 – 27) + 2(7 – 24)
= 3(-63) + 5 (-27) + 2(-17)
= – 189 – 135 – 34
= -358

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.3
= 1(2 – 10) – i(-i – 15) + 3(-2i – 6)
= -8 + i2 + 15i – 6i – 18
= i2 – 26 + 9i
= -1 – 26 + 9i …[∵ i2 = -1]
= -27 + 9i

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.4
= 5(32 – 16) – 5(40 – 20) + 5(20 – 20)
= 5(16) – 5(20) + 5(0)
= 80 – 100
= -20

(v) \(\left|\begin{array}{cc}
2 \mathrm{i} & 3 \\
4 & -\mathrm{i}
\end{array}\right|\)
= 2i(-i) – 3(4)
= -2i2 – 12
= -2(-1) – 12 …[∵ i2 = -1]
= 2 – 12
= -10

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.5
= 3(1 + 6) + 4(1 + 4) + 5(3 – 2)
= 3(7)+ 4(5) + 5(1)
= 21 + 20 + 5
= 46

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.6
= a(bc – f2) – h(hc – gf) + g(hf – gb)
= abc – af2 – h2c + fgh + fgh – g2b
= abc + 2fgh – af2 – bg2 – ch2

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.7
= 0 – a(0 + bc) – b(-ac – 0)
= -a(bc) – b(-ac)
= -abc + abc
= 0

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1

Question 2.
Find the value(s) of x, if
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q2
Solution:
(i) \(\left|\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right|=\left|\begin{array}{cc}
x & 3 \\
2 x & 5
\end{array}\right|\)
∴ 10 – 12 = 5x – 6x
∴ -2 = -x
∴ x = 2

Check:
We can check if our answer is right or wrong.
In order to do so, substitute x = 2 in the given determinant.
For x = 2,
L.H.S. = \(\left|\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right|\)
= 10 – 12
= -2
R.H.S. =\(\left|\begin{array}{cc}
x & 3 \\
2 x & 5
\end{array}\right|\)
= \(\left|\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right|\)
= 10 – 12
= -2
Thus, our answer is correct.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q2.1
∴ 2(9 – 20) – 1 (-3 – 0) + (x + 1) (5 – 0) = 0
∴ 2(-11) – 1(-3) + (x + 1)(5) = 0
∴ -22 + 3 + 5x + 5 = 0
∴ 5x = 14
∴ x = \(\frac{14}{5}\)

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q2.2
∴ (x – 1)[(x – 2)(x – 3) – 0] – x(0 – 0) + (x – 2)(0 – 0) = 0
∴ (x – 1)(x – 2)(x – 3) = 0
∴ x – 1 = 0 or x – 2 = 0 or x – 3 = 0
∴ x = 1 or x = 2 or x = 3

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1

Question 3.
Solve the following equations.
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q3
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q3.1
∴ x(x2 – 4) – 2(2x – 4) + 2(4 – 2x) = 0
∴ x(x2 – 4) – 2(2x – 4) – 2(2x – 4) = 0
∴ x(x + 2)(x – 2) – 4(2x – 4) = 0
∴ x(x + 2)(x – 2) – 8(x – 2) = 0
∴ (x – 2)[x(x + 2) – 8] = 0
∴ (x – 2)(x2 + 2x – 8) = 0
∴ (x – 2)(x2 + 4x – 2x – 8) = 0
∴ (x – 2)(x + 4)(x – 2) = 0
∴ (x – 2)2 (x + 4) = 0
∴ (x – 2)2 = 0 or x + 4 = 0
∴ x – 2 = 0 or x = -4
∴ x = 2 or x = -4

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q3.2
∴ 1(-10x2 – 10x) – 4(5x2 – 5) + 20(2x + 2) = 0
∴ -10x2 – 10x – 20x2 + 20 + 40x + 40 = 0
∴ -30x2 + 30x + 60 = 0
∴ x2 – x – 2 = 0 …..[Dividing throughout by (-30)]
∴ x2 – 2x + x – 2 = 0
∴ (x – 2)(x + 1) = 0
∴ x – 2 = 0 or x + 1 = 0 x = 2 or x = -1

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1

Question 4.
Find the value of x, if
\(\left|\begin{array}{ccc}
x & -1 & 2 \\
2 x & 1 & -3 \\
3 & -4 & 5
\end{array}\right|\) = 29
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q4
∴ x(5 – 12) + 1(10x + 9) + 2(-8x – 3) = 29
∴ -7x + 10x + 9 – 16x – 6 = 29
∴ -13x + 3 = 29
∴ -13x = 26
∴ x = -2

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1

Question 5.
Find x and y if \(\left|\begin{array}{ccc}
4 i & i^{3} & 2 i \\
1 & 3 i^{2} & 4 \\
5 & -3 & i
\end{array}\right|\) = x + iy, where i = √-1.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q5
= 4i(-3i + 12) + i(i – 20) + 2i(-3 + 15)
= -12i2 + 48i + i2 – 20i + 24i
= -11i2 + 52i
= -11(-1) + 52i …..[∵ i2 = -1]
= 11 + 52i
Comparing with x + iy, we get
x = 11, y = 52

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.3

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 6 Permutations and Combinations Ex 6.3 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.3

Question 1.
Find n if nP6 : nP3 = 120 : 1
Solution:
nP6 : nP3 = 120 : 1
∴ \(\frac{n !}{(n-6) !} \div \frac{n !}{(n-3) !}=\frac{120}{1}\)
∴ \(\frac{\mathrm{n} !}{(\mathrm{n}-6) !} \times \frac{(\mathrm{n}-3) !}{\mathrm{n} !}\) = 120
∴ \(\frac{n !}{(n-6) !} \times \frac{(n-3)(n-4)(n-5)(n-6) !}{n !}\) = 120
∴ (n – 3) (n – 4) (n – 5) = 120
∴ (n – 3) (n – 4) (n – 5) = 6 × 5 × 4
Comparing on both sides, we get
n – 3 = 6
∴ n = 9

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.3

Question 2.
Find m and n if (m+n)P2 = 56 and (m-n)P2 = 12
Solution:
m+nP2 = 56
∴ \(\frac{(\mathrm{m}+\mathrm{n}) !}{(\mathrm{m}+\mathrm{n}-2) !}\) = 56
∴ \(\frac{(m+n)(m+n-1)(m+n-2) !}{(m+n-2) !}\) = 56
∴ (m + n) (m + n – 1) = 8 × 7
Comparing on both sides, we get
m + n = 8 …..(i)
Also m-nP2 = 12
∴ \(\frac{(m-n) !}{(m-n-2) !}\) = 12
∴ \(\frac{(m-n)(m-n-1)(m-n-2) !}{(m-n-2) !}\) = 12
∴ (m – n) (m – n – 1) = 4 × 3
Comparing on both sides, we get
m – n = 4 …..(ii)
Adding (i) and (ii), we get
2m = 12
∴ m = 6
Substituting m = 6 in (ii), we get
6 – n = 4
∴ n = 2

Question 3.
Find r if 12Pr-2 : 11Pr-1 = 3 : 14
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.3 Q3
∴ (14 – r)(13 – r) = 8 × 7
Comparing on both sides, we get
14 – r = 8
∴ r = 6

Question 4.
Show that (n + 1) nPr = (n – r + 1) (n+1)Pr.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.3 Q4

Question 5.
How many 4 letter words can be formed using letters in the word MADHURI if
(i) letters can be repeated?
(ii) letters cannot be repeated?
Solution:
There are 7 letters in the word MADHURI.
(i) A 4 letter word is to be formed from the letters of the word MADHURI and repetition of letters is allowed.
∴ 1st letter can be filled in 7 ways.
2nd letter can be filled in 7 ways.
3rd letter can be filled in 7 ways.
4th letter can be filled in 7 ways.
∴ Total no. of ways a 4-letter word can be formed = 7 × 7 × 7 × 7 = 2401
∴ 2401 four-lettered words can be formed when repetition of letters is allowed.

(ii) When repetition of letters is not allowed, the number of 4-letter words formed from the letters of the word MADHURI is
7P4 = \(\frac{7 !}{(7-4) !}=\frac{7 \times 6 \times 5 \times 4 \times 3 !}{3 !}\) = 840
∴ 840 four-letter words can be formed when repetition of letters is not allowed.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.3

Alternate method:
There are 7 letters in the word MADHURI.
(i) Since letters can be repeated
∴ In all places of a four-letter word, any one of seven letters M, A, D, H, U, R, I can appear.
∴ Using the Multiplication theorem, we get
Number of four-letter words with repetition of letters M, A, D, H, U, R, I = 7 × 7 × 7 × 7 = 2401

(ii) Since the letters cannot be repeated therefore 1st, 2nd, 3rd, 4th places can be filled in 7, 6, 5, 4 ways respectively
∴ Using the multiplication theorem, we get
Number of four-letter words, with no repetition of letters M, A, D, H, U, R, I = 7 × 6 × 5 × 4 = 840

Question 6.
Determine the number of arrangements of letters of the word ALGORITHM if
(i) vowels are always together.
(ii) no two vowels are together.
(iii) Consonants are at even positions
(iv) O is first and T is last.
Solution:
A word is to be formed using the letters of the word ALGORITHM.
There are 9 letters in the word ALGORITHM.
(i) When vowels are always together:
There are 3 vowels in the word ALGORITHM. (i.e, A, I, O)
Let us consider these 3 vowels as one unit.
This unit with 6 other letters is to be arranged.
∴ It becomes an arrangement of 7 things which can be done in 7P7 i.e., 7! ways and 3 vowels can be arranged among themselves in 3P3 i.e., 3! ways.
∴ the total number of ways in which the word can be formed = 7! × 3!
= 5040 × 6
= 30240
∴ 30240 words can be formed if vowels are always together.

(ii) When no two vowels are together:
There are 6 consonants in the word ALGORITHM.
They can be arranged among themselves in 6P6 i.e., 6! ways.
Let consonants be denoted by C.
_C_C_ C_C_C_C_
6 consonants create 7 gaps in which 3 vowels are to arranged.
∴ 3 vowels can be filled in 7P3
= \(\frac{7 !}{(7-3) !}\)
= \(\frac{7 \times 6 \times 5 \times 4 !}{4 !}\)
= 210 ways
∴ total number of ways in which the word can be formed = 6! × 210
= 720 × 210
= 151200
∴ 151200 words can be formed if no two vowels are together.

(iii) When consonants are at even positions:
There are 4 even places and 6 consonants in the word ALGORITHM.
1st, 2nd, 3rd, 4th even places are filled in 6, 5, 4, 3 way respectively.
∴ The number of ways to fill four even places by consonants = 6 × 5 × 4 × 3 = 360
The remaining 5 letters (3 vowels and 2 consonants) can be arranged among themselves in 5P5 i.e., 5! ways.
∴ Total number of ways the words can be formed
In which even places are occupied by consonants = 360 × 5!
= 360 × 120
= 43200
∴ 43200 words can be formed if even positions are occupied by consonants.

(iv) When beginning with O and ends with T:
All the letters of the word ALGORITHM are to be arranged among themselves such that arrangement begins with O and ends with T.
7 letters other than O and T can be filled between O and T in 7P7 i.e., 7! ways = 5040 ways.
∴ 5040 words beginning with O and ending with T can be formed.

Question 7.
In a group photograph, 6 teachers and principals are in the first row and 18 students are in the second row. There are 12 boys and 6 girls among the students. If the middle position is reserved for the principal and if no two girls are together, find the number of arrangements.
Solution:
In 1st row middle seat is fixed for the principal.
Also 1st row, 6 teachers can be arranged among themselves in 6P6 i.e., 6! ways.
In the 2nd row, 12 boys can be arranged among themselves in 12P12 i.e., 12! ways.
13 gaps are created by 12 boys, in which 6 girls are to be arranged.
together which can be done in 13P6 ways.
∴ total number of arrangements = 6! × 12! × 13P6 …..[using Multiplications Principle]
= 6! × 12! × \(\frac{13 !}{(13-6) !}\)
= 6! × 12! × \(\frac{13 !}{7 !}\)
= \(\frac{6 ! \times 12 ! \times 13 !}{7 \times 6 !}\)
= \(\frac{12 ! 13 !}{7}\)

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.3

Question 8.
Find the number of ways letters of the word HISTORY can be arranged if
(i) Y and T are together
(ii) Y is next to T.
Solution:
There are 7 letters in the word HISTORY
(i) When ‘Y’ and ‘T’ are together.
Let us consider ‘ Y’ and ‘T’ as one unit
This unit with the other 5 letters is to be arranged.
∴ The number of arrangements of one unit and 5 letters = 6P6 = 6!
Also, ‘Y’ and ‘T’ can be arranged among themselves in 2P2 i.e., 2! ways.
∴ a total number of arrangements when Y and T are always together = 6! × 2!
= 720 × 2
= 1440
∴ 1440 words can be formed if Y and T are together.

(ii) When ‘Y’ is next to ‘T’
Let us take this (‘Y’ next to ‘T’) as one unit.
This unit with 5 other letters is to be arranged.
∴ The number of arrangements of 6 letters and one unit = 6P6 = 6!
Also ‘Y’ has to be always next to ‘T’.
So they can be arranged in 1 way.
∴ total number of arrangements possible when Y is next to T = 6! × 1 = 720
∴ 720 words can be formed if Y is next to T.

Question 9.
Find the number of arrangements of the letters in the word BERMUDA so that consonants and vowels are in the same relative positions.
Solution:
There are 7 letters in the word “BERMUDA” out of which 3 are vowels and 4 are consonants.
If relative positions of consonants and vowels are not changed.
3 vowels can be arranged among themselves in 3P3 i.e., 3! ways.
4 consonants can be arranged among themselves in 4P4 i.e., 4! ways.
∴ total no. of arrangements possible if relative positions of vowels and consonants are not changed = 3! × 4!
= 6 × 24
= 144

Question 10.
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 4, 5, 6, 8 if
(i) digits can be repeated
(ii) digits cannot be repeated
Solution:
(i) A 4 digit number is to be made from the digits 1, 2, 4, 5, 6, 8 such that digits can be repeated.
∴ The unit’s place digit can be filled in 6 ways.
10’s place digit can be filled in 6 ways.
100’s place digit can be filled in 6 ways.
1000’s place digit can be filled in 6 ways.
∴ total number of numbers = 6 × 6 × 6 × 6 = 64 = 1296
∴ 1296 four-digit numbers can be formed if repetition of digits is allowed.

(ii) A 4 different digit number is to be made from the digits 1, 2, 4, 5, 6, 8 without repetition of digits.
∴ 4 different digits are to be arranged from 6 given digits which can be done in 6P4
= \(\frac{6 !}{(6-4) !}\)
= \(\frac{6 \times 5 \times 4 \times 3 \times 2 !}{2 !}\)
= 360 ways
∴ 360 four-digit numbers can be formed, if repetition of digits is not allowed.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.3

Question 11.
How many numbers can be formed using the digits 0, 1, 2, 3, 4, 5 without repetition so that the resulting numbers are between 100 and 1000?
Solution:
A number between 100 and 1000 is a 3 digit number and is to be formed from the digits 0, 1, 2, 3, 4, 5, without repetition of digits.
∴ 100’s place digit must be a non-zero number which can be filled in 5 ways.
10’s place digits can be filled in 5 ways.
Unit’s place digit can be filled in 4 ways.
∴ total number of ways the number can be formed = 5 × 5 × 4 = 100
∴ 100 numbers between 100 and 1000 can be formed.

Question 12.
Find the number of 6-digit numbers using the digits 3, 4, 5, 6, 7, 8 without repetition. How many of these numbers are
(i) divisible by 5?
(ii) not divisible by 5?
Solution:
A number of 6 different digits is to be formed from the digits 3, 4, 5, 6, 7, 8 which can be done in 6P6 i.e., 6! = 720 ways
(i) If the number is divisible by 5, then
The unit’s place digit must be 5, and hence unit’s place can be filled in 1 way
Other 5 digits can be arranged among themselves in 5P5 i.e., 5! ways
∴ Total number of ways in which numbers divisible by 5 can be formed = 1 × 5! = 120

(ii) If the number is not divisible by 5, then
Unit’s place can be any digit from 3, 4, 6, 7, 8 which can be selected in 5 ways.
Other 5 digits can be arranged in 5P5 i.e., 5! ways
∴ The total number of ways in which numbers not divisible by 5 can be formed = 5 × 5!
= 5 × 120
= 600

Question 13.
A code word is formed by two distinct English letters followed by two non-zero distinct digits. Find the number of such code words. Also, find the number of such code words that end with an even digit.
Solution:
(i) There is a total of 26 alphabets.
A code word contains 2 English alphabets.
∴ 2 alphabets can be filled in 26P2
= \(\frac{26 !}{(26-2) !}\)
= \(\frac{26 \times 25 \times 24 !}{24 !}\)
= 650 ways
Also, alphabets to be followed by two distinct non-zero digits from 1 to 9 which can be filled in 9P2
= \(\frac{9 !}{(9-2) !}\)
= \(\frac{9 \times 8 \times 7 !}{7 !}\)
= 72 ways
∴ Total number of a code words = 650 × 72 = 46800

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.3

(ii) There are total 26 alphabets.
A code word contains 2 English alphabets.
∴ 2 alphabets can be filled in 26P2
= \(\frac{26}{(26-2) !}\)
= \(\frac{26 \times 25 \times 24 !}{24 !}\)
= 650 ways
For a code word to end with an even integer, the digit in the unit’s place should be an even number between 1 to 9 which can be filled in 4 ways.
Also, 10’s place can be filled in 8 ways.
∴ Total number of codewords = 650 × 4 × 8 = 20800 ways
∴ 20800 codewords end with an even integer.

Question 14.
Find the number of ways in which 5 letters can be posted in 3 post boxes if any number of letters can be posted in a post box.
Solution:
There are 5 letters and 3 post boxes and any number of letters can be posted in all three post boxes.
∴ Each letter can be posted in 3 ways.
∴ Total number of ways in which 5 letters can be posted = 3 × 3 × 3 × 3 × 3 = 243

Question 15.
Find the number of arranging 11 distinct objects taken 4 at a time so that a specified object
(i) always occurs
(ii) never occurs
Solution:
There are 11 distinct objects and 4 are to be taken at a time.
(i) The number of permutations of n distinct objects, taken r at a time, when one specified object will always occur is r × (n-1)P(r-1)
Here, r = 4, n = 11
∴ The number of permutations of 4 out of 11 objects when a specified object occurs.
= 4 × (11-1)P(4-1)
= 4 × 10P3
= 4 × \(\frac{10 !}{(10-3) !}\)
= 4 × \(\frac{10 !}{7 !}\)
= 4 × \(\frac{10 \times 9 \times 8 \times 7 !}{7 !}\)
= 2880
∴ There are 2880 permutations of 11 distinct objects, taken 4 at a time, in which one specified object always occurs.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.3

(ii) When one specified object does not occur then 4 things are to be arranged from the remaining 10 things, which can be done in 10P4 ways
= 10 × 9 × 8 × 7 ways
= 5040 ways
∴ There are 5040 permutations of 11 distinct objects, taken 4 at a time, in which one specified object never occurs.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 6 Permutations and Combinations Ex 6.2 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2

Question 1.
Evaluate:
(i) 8!
Solution:
8!
= 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
= 40320

(ii) 6!
Solution:
6!
= 6 × 5 × 4 × 3 × 2 × 1
= 720

(iii) 8! – 6!
Solution:
8! – 6!
= 8 × 7 × 6! – 6!
= 6! (8 × 7 – 1)
= 6! (56 – 1)
= 6 × 5 × 4 × 3 × 2 × 1 × 55
= 39,600

(iv) (8 – 6)!
Solution:
(8 – 6)!
= 2!
= 2 × 1
= 2

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2

Question 2.
Compute:
(i) \(\frac{12 !}{6 !}\)
Solution:
\(\frac{12 !}{6 !}\)
= \(\frac{12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 !}{6 !}\)
= 12 × 11 × 10 × 9 × 8 × 7
= 665280

(ii) \(\left(\frac{12}{6}\right) !\)
Solution:
\(\left(\frac{12}{6}\right) !\)
= 2!
= 2 × 1
= 2

(iii) (3 × 2)!
Solution:
(3 × 2)!
= 6!
= 6 × 5 × 4 × 3 × 2 × 1
= 720

(iv) 3! × 2!
Solution:
3! × 2!
= 3 × 2 × 1 × 2 × 1
= 12

Question 3.
Compute:
(i) \(\frac{9 !}{3 ! 6 !}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q3(i)

(ii) \(\frac{6 !-4 !}{4 !}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q3(ii)

(iii) \(\frac{8 !}{6 !-4 !}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q3(iii)

(iv) \(\frac{8 !}{(6-4) !}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q3(iv)

Question 4.
Write in terms of factorials
(i) 5 × 6 × 7 × 8 × 9 × 10
Solution:
5 × 6 × 7 × 8 × 9 × 10
= 10 × 9 × 8 × 7 × 6 × 5
Multiplying and dividing by 4!, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q4(i)

(ii) 3 × 6 × 9 × 12 × 15
Solution:
3 × 6 × 9 × 12 × 15
= 3 × (3 × 2) × (3 × 3) × (3 × 4) × (3 × 5)
= (35) (5 × 4 × 3 × 2 × 1)
= 35 (5!)

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2

(iii) 6 × 7 × 8 × 9
Solution:
6 × 7 × 8 × 9
= 9 × 8 × 7 × 6
Multiplying and dividing by 5!, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q4(iii)

(iv) 5 × 10 × 15 × 20 × 25
Solution:
5 × 10 × 15 × 20 × 25
= (5 × 1) × (5 × 2) × (5 × 3) × (5 × 4) × (5 × 5)
= (55) (5 × 4 × 3 × 2 × 1)
= (55) (5!)

Question 5.
Evaluate: \(\frac{n !}{r !(n-r) !}\) for
(i) n = 8, r = 6
Solution:
n = 8, r = 6
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q5(i)

(ii) n = 12, r = 12
Solution:
n = 12, r = 12
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q5(ii)

Question 6.
Find n, if
(i) \(\frac{n}{8 !}=\frac{3}{6 !}+\frac{1}{4 !}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q6(i)

(ii) \(\frac{n}{6 !}=\frac{4}{8 !}+\frac{3}{6 !}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q6(ii)

(iii) \(\frac{1}{n !}=\frac{1}{4 !}-\frac{4}{5 !}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q6(iii)

Question 7.
Find n, if
(i) (n + 1)! = 42 × (n – 1)!
Solution:
(n + 1)! = 42(n – 1)!
∴ (n + 1) n (n – 1)! = 42(n – 1)!
∴ n2 + n = 42
∴ n(n + 1) = 6 × 7
Comparing on both sides, we get
∴ n = 6

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2

(ii) (n + 3)! = 110 × (n + 1)!
Solution:
(n + 3)! = 110 × (n + 1)!
∴ (n + 3) (n + 2) (n + 1)! = 110 (n + 1)!
∴ (n + 3) (n + 2) = (11) (10)
Comparing on both sides, we get
n + 3 = 11
∴ n = 8

Question 8.
Find n, if:
(i) \(\frac{n !}{3 !(n-3) !}: \frac{n !}{5 !(n-5) !}=5: 3\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q8(i)
∴ 12 = (n – 3)(n – 4)
∴ (n – 3)(n – 4) = 4 × 3
Comparing on both sides, we get
n – 3 = 4
∴ n = 7

(ii) \(\frac{n !}{3 !(n-5) !}: \frac{n !}{5 !(n-7) !}=10: 3\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q8(ii)
∴ (n – 5) (n – 6) = 3 × 2
Comparing on both sides, we get
n – 5 = 3
∴ n = 8

Question 9.
Find n, if:
(i) \(\frac{(17-n) !}{(14-n) !}\) = 5!
Solution:
\(\frac{(17-n) !}{(14-n) !}\) = 5!
∴ \(\frac{(17-n)(16-n)(15-n)(14-n) !}{(14-n) !}\) = 5 × 4 × 3 × 2 × 1
∴ (17 – n) (16 – n) (15 – n) = 6 × 5 × 4
Comparing on both sides, we get
17 – n = 6
∴ n = 11

(ii) \(\frac{(15-n) !}{(13-n) !}\) = 12
Solution:
\(\frac{(15-n) !}{(13-n) !}\) = 12
∴ \(\frac{(15-\mathrm{n})(14-\mathrm{n})(13-\mathrm{n}) !}{(13-\mathrm{n}) !}\) = 12
∴ (15 – n) (14 – n) = 4 × 3
Comparing on both sides, we get
15 – n = 4
∴ n = 11

Question 10.
Find n if \(\frac{(2 n) !}{7 !(2 n-7) !}: \frac{n !}{4 !(n-4) !}\) = 24 : 1
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q10
∴ (2n – 1) (2n – 3) (2n – 5) = 9 × 7 × 5
Comparing on both sides, we get
2n – 1 = 9
∴ n = 5

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2

Question 11.
Show that \(\frac{n !}{r !(n-r) !}+\frac{n !}{(r-1) !(n-r+1) !}=\frac{(n+1) !}{r !(n-r+1)}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q11
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q11.1

Question 12.
Show that \(\frac{9 !}{3 ! 6 !}+\frac{9 !}{4 ! 5 !}=\frac{10 !}{4 ! 6 !}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q12

Question 13.
Find the value of:
(i) \(\frac{8 !+5(4 !)}{4 !-12}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q13(i)

(ii) \(\frac{5(26 !)+(27 !)}{4(27 !)-8(26 !)}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q13(ii)

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2

Question 14.
Show that
\(\frac{(2 n) !}{n !}\) = 2n (2n – 1) (2n – 3)…5.3.1
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q14
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Permutations and Combinations Ex 6.2 Q14.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 5 Correlation Ex 5.1 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1

Question 1.
Draw a scatter diagram for the data given below and interpret it.
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q1
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q1.1
Since all the points lie in a band rising from left to right.
Therefore, there is a positive correlation between the values of X and Y respectively.

Question 2.
For the following data of marks of 7 students in Physics (x) and Mathematics (y), draw scatter diagram and state the type of correlation.
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q2
Solution:
We take marks in Physics on X-axis and marks in Mathematics on Y-axis and plot the points as below.
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q2.1
We get a band of points rising from left to right. This indicates the positive correlation between marks in Physics and marks in Mathematics.

Question 3.
Draw a scatter diagram for the data given below. Is there any correlation between Aptitude score and Grade points?
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q3
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q3.1
The points are completely scattered i.e., no trend is observed.
∴ there is no correlation between Aptitude score (X) and Grade point (Y).

Question 4.
Find correlation coefficient between x andy series for the following data:
n = 15, \(\bar{x}\) = 25, \(\bar{y}\) = 18, σx = 3.01, σy = 3.03, \(\sum\left(x_{\mathrm{i}}-\bar{x}\right)\left(y_{\mathrm{i}}-\bar{y}\right)\) = 122
Solution:
Here, n = 15, \(\bar{x}\) = 25, \(\bar{y}\) = 18, σx = 3.01, σy = 3.03, \(\sum\left(x_{\mathrm{i}}-\bar{x}\right)\left(y_{\mathrm{i}}-\bar{y}\right)\) = 122
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q4

Question 5.
The correlation coefficient between two variables x and y are 0.48. The covariance is 36 and the variance of x is 16. Find the standard deviation of y.
Solution:
Given, r = 0.48, Cov(X, Y) = 36
Since \(\sigma_{X}^{2}\) = 16
∴ σx = 4
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q5
∴ the standard deviation of y is 18.75.

Question 6.
In the following data, one of the values of y is missing. Arithmetic means of x and y series are 6 and 8 respectively. (√2 = 1.4142)
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q6
(i) Estimate missing observation.
(ii) Calculate correlation coefficient.
Solution:
(i) Let X = xi, Y = yi and missing observation be ‘a’.
Given, \(\bar{x}\) = 6, \(\bar{y}\) = 8, n = 5
∴ 8 = \(\frac{35+a}{5}\)
∴ 40 = 35 + a
∴ a = 5
(ii) We construct the following table:
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q6.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q6.2

Question 7.
Find correlation coefficient from the following data. [Given: √3 = 1.732]
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q7
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q7.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q7.2
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q7.3

Question 8.
The correlation coefficient between x and y is 0.3 and their covariance is 12. The variance of x is 9, find the standard deviation of y.
Solution:
Given, r = 0.3, Cov(X, Y) = 12,
\(\sigma_{X}^{2}\) = 9
∴ \(\sigma_{\mathrm{X}}\) = 3
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Correlation Ex 5.1 Q8
∴ the standard deviation of y is 13.33.