Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 9 Differentiation Ex 9.2 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

(I) Differentiate the following w.r.t. x

Question 1.
y = \(x^{\frac{4}{3}}+e^{x}-\sin x\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q1

Question 2.
y = √x + tan x – x3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q2

Question 3.
y = log x – cosec x + \(5^{x}-\frac{3}{x^{\frac{3}{2}}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q3

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 4.
y = \(x^{\frac{7}{3}}+5 x^{\frac{4}{5}}-\frac{5}{x^{\frac{2}{5}}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q4
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q4.1

Question 5.
y = 7x + x7 – \(\frac{2}{3}\) x√x – log x + 77
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q5

Question 6.
y = 3 cot x – 5ex + 3 log x – \(\frac{4}{x^{\frac{3}{4}}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q6

(II) Diffrentiate the following w.r.t. x

Question 1.
y = x5 tan x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q1

Question 2.
y = x3 log x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q2

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 3.
y = (x2 + 2)2 sin x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q3

Question 4.
y = ex log x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q4

Question 5.
y = \(x^{\frac{3}{2}} e^{x} \log x\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q5

Question 6.
y = \(\log e^{x^{3}} \log x^{3}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q6

(III) Diffrentiate the following w.r.t. x

Question 1.
y = x2√x + x4 log x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q1
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q1.1

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 2.
y = ex sec x – \(x^{\frac{5}{3}}\) log x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q2

Question 3.
y = x4 + x√x cos x – x2 ex
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q3

Question 4.
y = (x3 – 2) tan x – x cos x + 7x . x7
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q4

Question 5.
y = sin x log x + ex cos x – ex √x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q5

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 6.
y = ex tan x + cos x log x – √x 5x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q6
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q6.1

(IV) Diffrentiate the following w.r.t.x.

Question 1.
y = \(\frac{x^{2}+3}{x^{2}-5}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q1

Question 2.
y = \(\frac{\sqrt{x}+5}{\sqrt{x}-5}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q2
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q2.1

Question 3.
y = \(\frac{x e^{x}}{x+e^{x}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q3

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 4.
y = \(\frac{x \log x}{x+\log x}\)
Solution:
y = \(\frac{x \log x}{x+\log x}\)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q4

Question 5.
y = \(\frac{x^{2} \sin x}{x+\cos x}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q5

Question 6.
y = \(\frac{5 e^{x}-4}{3 e^{x}-2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q6

(V).

Question 1.
If f(x) is a quadratic polynomial such that f(0) = 3, f'(2) = 2 and f'(3) = 12, then find f(x).
Solution:
Let f(x) = ax2 + bx + c …..(i)
∴ f(0) = a(0)2 + b(0) + c
∴ f(0) = c
But, f(0) = 3 …..(given)
∴ c = 3 …..(ii)
Differentiating (i) w.r.t. x, we get
f'(x) = 2ax + b
∴ f'(2) = 2a(2) + b
∴ f'(2) = 4a + b
But, f'(2) = 2 …..(given)
∴ 4a + b = 2 …..(iii)
Also, f'(3) = 2a(3) + b
∴ f'(3) = 6a + b
But, f'(3) = 12 …..(given)
∴ 6a + b = 12 …..(iv)
equation (iv) – equation (iii), we get
2a = 10
∴ a = 5
Substituting a = 5 in (iii), we get
4(5) + b = 2
∴ b = -18
∴ a = 5, b = -18, c = 3
∴ f(x) = 5x2 – 18x + 3

Check:
If f(0) = 3, f'(2) = 2 and f'(3) = 12, then our answer is correct.
f(x) = 5x2 – 18x + 3 and f'(x) = 10x – 18
f(0) = 5(0)2 – 18(0) + 3 = 3
f'(2) = 10(2) – 18 = 2
f'(3) = 10(3) – 18 = 12
Thus, our answer is correct.

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 2.
If f(x) = a sin x – b cos x, f'(\(\frac{\pi}{4}\)) = √2 and f'(\(\frac{\pi}{6}\)) = 2, then find f(x).
Solution:
f(x) = a sin x – b cos x
Differentiating w.r.t. x, we get
f'(x) = a cos x – b (- sin x)
∴ f'(x) = a cos x + b sin x
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 V Q2
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 V Q2.1
Now, f(x) = a sin x – b cos x
∴ f(x) = (√3 + 1) sin x + (√3 – 1) cos x

VI. Fill in the blanks. (Activity Problems)

Question 1.
y = ex . tan x
Diff. w.r.t. x
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q1.1

Question 2.
y = \(\frac{\sin x}{x^{2}+2}\)
diff. w.r.t. x
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q2
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q2.1

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 3.
y = (3x2 + 5) cos x
Diff. w.r.t. x
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q3.1

Question 4.
Differentiate tan x and sec x w.r.t. x using the formulae for differentiation of \(\frac{u}{v}\) and \(\frac{1}{v}\) respectively.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q4
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q4.1

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 9 Differentiation Ex 9.1 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 1.
Find the derivatives of the following w.r.t. x by using the method of the first principle.
(a) x2 + 3x – 1
Solution:
Let f(x) = x2 + 3x – 1
∴ f(x + h) = (x + h)2 + 3(x + h) – 1
= x2 + 2xh + h2 + 3x + 3h – 1
By first principle, we get
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (i)

(b) sin(3x)
Solution:
Let f(x) = sin 3x
f(x + h) = sin3(x + h) = sin(3x + 3h)
By first principle, we get
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (ii)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (ii).1

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

(c) e2x+1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (iii)

(d) 3x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (iv)

(e) log(2x + 5)
Solution:
Let f(x) = log(2x + 5)
∴ f(x + h) = log[2(x + h) + 5] = log (2x + 2h + 5)
By first principle, we get
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (v)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (v).1

(f) tan(2x + 3)
Solution:
Let f(x) = tan(2x + 3)
∴ f(x + h) = tan[2(x + h) + 3] = tan(2x + 2h + 3)
By first principle, we get
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (vi)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (vi).1

(g) sec(5x – 2)
Solution:
Let f(x) = sec(5x – 2)
f(x + h) = sec[5(x + h) – 2] = sec(5x + 5h – 2)
By first principle, we get
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (vii)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (vii).1

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

(h) x√x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (viii)

Question 2.
Find the derivatives of the following w.r.t. x. at the points indicated against them by using the method of the first principle.
(i) \(\sqrt{2 x+5}\) at x = 2
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (i)

(ii) tan x at x = \(\frac{\pi}{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (ii)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (ii).1

(iii) 23x+1 at x = 2
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (iii)

(iv) log(2x + 1) at x = 2
Solution:
Let f(x) = log(2x + 1)
∴ f(2) = log [2(2) + 1] = log 5 and
f(2 + h) = log [2(2 + h) + 1] = log(2h + 5)
By first principle, we get
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (iv)

(v) e3x-4 at x = 2
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (v)

(vi) cos x at x = \(\frac{5 \pi}{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (vi)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (vi).1
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (vi).2

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 3.
Show that the function f is not differentiable at x = -3,
where f(x) = x2 + 2 for x < -3
= 2 – 3x for x ≥ -3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q3
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q3.1
∴ L f'(-3) ≠ R f'(-3)
∴ f is not differentiable at x = -3.

Question 4.
Show that f(x) = x2 is continuous and differentiable at x = 0.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q4

Question 5.
Discuss the continuity and differentiability of
(i) f(x) = x |x| at x = 0
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q5 (i)

(ii) f(x) = (2x + 3) |2x + 3| at x = \(-\frac{3}{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q5 (ii)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q5 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q5 (ii).2

Question 6.
Discuss the continuity and differentiability of f(x) at x = 2.
f(x) = [x] if x ∈ [0, 4). [where [ ] is a greatest integer (floor) function]
Solution:
Explanation:
x ∈ [0, 4)
∴ 0 ≤ x < 4
We will plot graph for 0 ≤ x < 4
not for x < 0 and upto x = 4 making on X-axis.
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q6
f(x) = [x]
∴ Greatest integer function is discontinuous at all integer values of x and hence not differentiable at all integers.
∴ f is not continuous at x = 2.
∵ f(x) = 1, x < 2
= 2, x ≥ 2
x ∈ neighbourhood of x = 2.
∴ L.H.L. = 1, R.H.L. = 2
∴ f is not continuous at x = 2.
∴ f is not differentiable at x = 2.

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 7.
Test the continuity and differentiability of
f(x) = 3x + 2 if x > 2
= 12 – x2 if x ≤ 2 at x = 2.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q7
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q7.1

Question 8.
If f(x) = sin x – cos x if x ≤ \(\frac{\pi}{2}\)
= 2x – π + 1 if x > \(\frac{\pi}{2}\)
Test the continuity and differentiability of f at x = \(\frac{\pi}{2}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q8
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q8.1
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q8.2

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 9.
Examine the function
f(x) = x2 cos(\(\frac{1}{x}\)), for x ≠ 0
= 0, for x = 0
for continuity and differentiability at x = 0.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q9

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 8 Continuity Miscellaneous Exercise 8 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

(I) Select the correct answer from the given alternatives.

Question 1.
f(x) = \(\frac{2^{\cot x}-1}{\pi-2 x}\), for x ≠ \(\frac{\pi}{2}\)
= log √2, for x = \(\frac{\pi}{2}\)
(A) f is continuous at x = \(\frac{\pi}{2}\)
(B) f has a jump discontinuity at x = \(\frac{\pi}{2}\)
(C) f has a removable discontinuity
(D) \(\lim _{x \rightarrow \frac{\pi}{2}} f(x)=2 \log 3\)
Answer:
(A) f is continuous at x = \(\frac{\pi}{2}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q1

Question 2.
If f(x) = \(\frac{1-\sqrt{2} \sin x}{\pi-4 x}\), for x ≠ \(\frac{\pi}{4}\) is continuous at x = \(\frac{\pi}{4}\), then f(\(\frac{\pi}{4}\)) =
(A) \(\frac{1}{\sqrt{2}}\)
(B) \(-\frac{1}{\sqrt{2}}\)
(C) \(-\frac{1}{4}\)
(D) \(\frac{1}{4}\)
Answer:
(D) \(\frac{1}{4}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q2.1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 3.
If f(x) = \(\frac{(\sin 2 x) \tan 5 x}{\left(e^{2 x}-1\right)^{2}}\), for x ≠ 0 is continuous at x = 0, then f(0) is
(A) \(\frac{10}{e^{2}}\)
(B) \(\frac{10}{e^{4}}\)
(C) \(\frac{5}{4}\)
(D) \(\frac{5}{2}\)
Answer:
(D) \(\frac{5}{2}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q3

Question 4.
f(x) = \(\frac{x^{2}-7 x+10}{x^{2}+2 x-8}\), for x ∈ [-6, -3]
(A) f is discontinuous at x = 2
(B) f is discontinuous at x = -4
(C) f is discontinuous at x = 0
(D) f is discontinuous at x = 2 and x = -4
Answer:
(B) f is discontinuous at x = -4
Hint:
f(x) = \(\frac{x^{2}-7 x+10}{x^{2}+2 x-8}\), for x ∈ [-6, -3]
= \(\frac{x^{2}-7 x+10}{(x+4)(x-2)}\)
Here f(x) is a rational function and is continuous everywhere except at the points Where denominator becomes zero.
Here, denominator becomes zero when x = -4 or x = 2
But x = 2 does not lie in the given interval.
∴ x = -4 is the point of discontinuity.

Question 5.
If f(x) = ax2 + bx + 1, for |x – 1| ≥ 3 and
= 4x + 5, for -2 < x < 4
is continuous everywhere then,
(A) a = \(\frac{1}{2}\), b = 3
(B) a = \(-\frac{1}{2}\), b = -3
(C) a = \(-\frac{1}{2}\), b = 3
(D) a = \(\frac{1}{2}\), b = -3
Answer:
(A) a = \(\frac{1}{2}\), b = 3
Hint:
f(x) = ax2 + bx + 1, |x – 1| ≥ 3
= 4x + 5; -2 < x < 4
The first interval is
|x – 1| ≥ 3
∴ x – 1 ≥ 3 or x – 1 ≤ -3
∴ x ≥ 4 or x ≤ -2
∴ f(x) is same for x ≤ -2 as well as x ≥ 4.
∴ f(x) is defined as:
f(x) = ax2 + bx + 1; x ≤ -2
= 4x + 5; -2 < x < 4
= ax2 + bx + 1; x ≥ 4
f(x) is continuous everywhere.
∴ f(x) is continuous at x = -2 and x = 4.
As f(x) is continuous at x = -2,
\(\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{+}} f(x)\)
∴ \(\lim _{x \rightarrow-2}\left(a x^{2}+b x+1\right)=\lim _{x \rightarrow-2}(4 x+5)\)
∴ a(-2)2 + b(-2) + 1 = 4(-2) + 5
∴ 4a – 2b + 1 = -3
∴ 4a – 2b = -4
∴ 2a – b = -2 …..(i)
∵ f(x) is continuous at x = 4,
\(\lim _{x \rightarrow 4^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 4^{+}} \mathrm{f}(x)\)
∴ \(\lim _{x \rightarrow 4}(4 x+5)=\lim _{x \rightarrow 4}\left(a x^{2}+b x+1\right)\)
4(4) + 5 = a(4)2 + b(4) + 1
16a + 4b + 1 = 21
16a + 4b = 20
4a + b = 5 …..(ii)
Adding (i) and (ii), we get
6a = 3
∴ a = \(\frac{1}{2}\)
Substituting a = \(\frac{1}{2}\) in (ii), we get
4(\(\frac{1}{2}\)) + b = 5
∴ 2 + b = 5
∴ b = 3
∴ a = \(\frac{1}{2}\), b = 3

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 6.
f(x) = \(\frac{\left(16^{x}-1\right)\left(9^{x}-1\right)}{\left(27^{x}-1\right)\left(32^{x}-1\right)}\), for x ≠ 0
= k, for x = 0
is continuous at x = 0, then ‘k’ =
(A) \(\frac{8}{3}\)
(B) \(\frac{8}{15}\)
(C) \(-\frac{8}{15}\)
(D) \(\frac{20}{3}\)
Answer:
(B) \(\frac{8}{15}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q6

Question 7.
f(x) = \(\frac{32^{x}-8^{x}-4^{x}+1}{4^{x}-2^{x+1}+1}\), for x ≠ 0
= k, for x = 0,
is continuous at x = 0, then value of ‘k’ is
(A) 6
(B) 4
(C) (log 2) (log 4)
(D) 3 log 4
Answer:
(A) 6
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q7
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q7.1

Question 8.
If f(x) = \(\frac{12^{x}-4^{x}-3^{x}+1}{1-\cos 2 x}\), for x ≠ 0 is continuous at x = 0 then the value of f(0) is
(A) \(\frac{\log 12}{2}\)
(B) log 2 . log 3
(C) \(\frac{\log 2 \cdot \log 3}{2}\)
(D) None of these
Answer:
(B) log 2 . log 3
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q8

Question 9.
If f(x) = \(\left(\frac{4+5 x}{4-7 x}\right)^{\frac{4}{x}}\), for x ≠ 0 and f(0) = k, is continuous at x = 0, then k is
(A) e7
(B) e3
(C) e12
(D) \(e^{\frac{3}{4}}\)
Answer:
(C) e12
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q9
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q9.1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 10.
If f(x) = \(\lfloor x\rfloor\) for x ∈ (-1, 2), then f is discontinuous at
(A) x = -1, 0, 1, 2
(B) x = -1, 0, 1
(C) x = 0, 1
(D) x = 2
Answer:
(C) x = 0, 1
Hint:
f(x) = \(\lfloor x\rfloor\), x ∈ (-1, 2)
This function is discontinuous at all integer values of x between -1 and 2.
∴ f(x) is discontinuous at x = 0 and x = 1.

II. Discuss the continuity of the following functions at the point(s) or on the interval indicated against them.

Question 1.
f(x) = \(\frac{x^{2}-3 x-10}{x-5}\), for 3 ≤ x ≤ 6, x ≠ 5
= 10, for x = 5
= \(\frac{x^{2}-3 x-10}{x-5}\), for 6 < x ≤ 9
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q1

Question 2.
f(x) = 2x2 – 2x + 5, for 0 ≤ x ≤ 2
= \(\frac{1-3 x-x^{2}}{1-x}\), for 2 < x < 4
= \(\frac{x^{2}-25}{x-5}\), for 4 ≤ x ≤ 7 and x ≠ 5
= 7, for x = 5
Solution:
The domain of f(x) is [0, 7].
(i) For 0 ≤ x ≤ 2
f(x) = 2x2 – 2x + 5
It is a polynomial function and is Continuous at all point in [0, 2).

(ii) For 2 < x < 4
f(x) = \(\frac{1-3 x-x^{2}}{1-x}\)
It is a rational function and is continuous everwhere except at points where its denominator becomes zero.
Denominator becomes zero at x = 1
But x = 1 does not lie in the interval.
f(x) is continuous at all points in (2, 4).

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

(iii) For 4 ≤ x ≤ 7, x ≤ 5
f(x) = \(\frac{x^{2}-25}{x-5}\)
It is a rational function and is continuous everywhere except at points where its denominator becomes zero.
Denominator becomes zero at x = 5
But x = 5 does not lie in the interval.
∴ f(x) is continuous at all points in (4, 7] – {5}.

(iv) For continuity at x = 2:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q2 (iv)
∴ f(x) is continuous at x = 2.

(v) For continuity at x = 4:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q2 (v)
∴ f(x) is continuous at x = 4.

(vi) For continuity at x = 5.
f(5) = 7
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q2 (vi)
∴ f(x) is discontinuous at x = 5.
Thus, f(x) is continuous at all points on its domain except at x = 5.

Question 3.
f(x) = \(\frac{\cos 4 x-\cos 9 x}{1-\cos x}\), for x ≠ 0
f(0) = \(\frac{68}{15}\), at x = 0 on \(-\frac{\pi}{2}\) ≤ x ≤ \(\frac{\pi}{2}\)
Solution:
The domain of f(x) is [\(-\frac{\pi}{2}\), \(\frac{\pi}{2}\)]
(i) For [\(-\frac{\pi}{2}\), \(\frac{\pi}{2}\)] – {0}:
f(x) = \(\frac{\cos 4 x-\cos 9 x}{1-\cos x}\)
It is a rational function and is continuous everywhere except at points where its denominator becomes zero.
Denominator becomes zero when cos x = 1,
i.e., x = 0
But x = 0 does not lie in the interval.
∴ f(x) is continuous at all points in [\(-\frac{\pi}{2}\), \(\frac{\pi}{2}\)] – {0}

(ii) For continuity at x = 0:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q3 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q3 (ii).1
∴ \(\lim _{x \rightarrow 0} f(x) \neq f(0)\)
∴ f(x) is discontinuous at x = 0.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 4.
f(x) = \(\frac{\sin ^{2} \pi x}{3(1-x)^{2}}\), for x ≠ 1
= \(\frac{\pi^{2} \sin ^{2}\left(\frac{\pi x}{2}\right)}{3+4 \cos ^{2}\left(\frac{\pi x}{2}\right)}\), for x = 1, at x = 1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q4

Question 5.
f(x) = \(\frac{|x+1|}{2 x^{2}+x-1}\), for x ≠ -1
= 0, for x = -1, at x = -1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q5
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q5.1

Question 6.
f(x) = [x + 1] for x ∈ [-2, 2)
Where [*] is greatest integer function.
Solution:
f(x) = [x + 1], x ∈ [-2, 2)
∴ f(x) = -1, x ∈ [-2, -1)
= 0, x ∈ [-1, 0)
= 1, x ∈ [0, 1)
= 2, x ∈ [1, 2)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q6
∴ \(\lim _{x \rightarrow-1^{-}} \mathrm{f}(x)=\lim _{x \rightarrow-1^{+}} \mathrm{f}(x)\)
∴ f(x) is discontinuous at x = -1.
Similarly, f(x) is discontinuous at the points x = 0 and x = 1.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 7.
f(x) = 2x2 + x + 1, for |x – 3| ≥ 2
= x2 + 3, for 1 < x < 5
Solution:
|x – 3| ≥ 2
∴ x – 3 ≥ 2 or x – 3 ≤ -2
∴ x ≥ 5 or x ≤ 1
∴ f(x) = 2x2 + x + 1, x ≤ 1
= x2 + 3, 1 < x < 5
= 2x2 + x + 1, x ≥ 5
Consider the intervals
x < 1 , i.e., (-∞, 1)
1 < x < 5, i.e., (1, 5) x > 5, i.e., (5, ∞)
In all these intervals, f(x) is a polynomial function and hence is continuous at all points.
For continuity at x = 1:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q7
∴ f(x) is discontinuous at x = 5.
∴ f(x) is continuous for all x ∈ R, except at x = 5.

III. Identify discontinuities if any for the following functions as either a jump or a removable discontinuity on their respective domains.

Question 1.
f(x) = x2 + x – 3, for x ∈ [-5, -2)
= x2 – 5, for x ∈ (-2, 5]
Solution:
f(-2) has not been defined.
\(\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{-}}\left(x^{2}+x-3\right)\)
= (-2)2 + (-2) – 3
= 4 – 2 – 3
= -1
\(\lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow-2^{+}}\left(x^{2}-5\right)\)
= (-2)2 – 5
= 4 – 5
= -1
∴ \(\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{+}} f(x)\)
∴ \(\lim _{x \rightarrow-2} f(x) \text { exists. }\)
But f(-2) has not been defined.
∴ f(x) has a removable discontinuity at x = -2.

Question 2.
f(x) = x2 + 5x + 1, for 0 ≤ x ≤ 3
= x3 + x + 5, for 3 < x ≤ 6
Solution:
\(\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}\left(x^{2}+5 x+1\right)\)
= (3)2 + 5(3) + 1
= 9 + 15 + 1
= 25
\(\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left(x^{3}+x+5\right)\)
= (3)3 + 3 + 5
= 27 + 3 + 5
= 35
∴ \(\lim _{x \rightarrow 3^{-}} f(x) \neq \lim _{x \rightarrow 3^{+}} f(x)\)
∴ \(\lim _{x \rightarrow 3} f(x)\) does not exist.
∴ f(x) is discontinuous at x = 3.
∴ f(x) has a jump discontinuity at x = 3.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 3.
f(x) = \(\frac{x^{2}+x+1}{x+1}\), for x ∈ [0, 3)
= \(\frac{3 x+4}{x^{2}-5}\), for x ∈ [3, 6]
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 III Q3
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 III Q3.1
∴ f(x) is continuous at x = 3.

IV. Discuss the continuity of the following functions at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous.

Question 1.
f(x) = \(\frac{(x+3)\left(x^{2}-6 x+8\right)}{x^{2}-x-12}\)
Solution:
f(x) = \(\frac{(x+3)\left(x^{2}-6 x+8\right)}{x^{2}-x-12}\)
= \(\frac{(x+3)(x-2)(x-4)}{(x-4)(x+3)}\)
∴ f(x) is not defined at x = 4 and x = -3.
∴ The domain of function f = R – {-3, 4}.
For x ≠ -3 and 4,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 IV Q1
f(x) is discontinuous at x = 4 and x = -3.
This discontinuity is removable.
∴ f(x) can be redefined as
f(x) = \(\frac{(x+3)\left(x^{2}-6 x+8\right)}{x^{2}-x-12}\), for x ≠ 4, x ≠ -3
= -5, for x ∈ R – {-3, 4}, x = -3
= 2, for x ∈ R – {-3, 4}, x = 4

Question 2.
f(x) = x2 + 2x + 5, for x ≤ 3
= x3 – 2x2 – 5, for x > 3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 IV Q2
∴ f(x) is discontinuous at x = 3.
This discontinuity is irremovable.

V. Find k if the following functions are continuous at the points indicated against them.

Question 1.
f(x) = \(\left(\frac{5 x-8}{8-3 x}\right)^{\frac{3}{2 x-4}}\), for x ≠ 2
= k, for x = 2 at x = 2.
Solution:
f(x) is continuous at x = 2. …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 V Q1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 V Q1.1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 2.
f(x) = \(\frac{45^{x}-9^{x}-5^{x}+1}{\left(k^{x}-1\right)\left(3^{x}-1\right)}\), for x ≠ 0
= \(\frac{2}{3}\), for x = 0, at x = 0
Solution:
f(x) is continuous at x = 0 …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 V Q2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 V Q2.1

VI. Find a and b if the following functions are continuous at the points or on the interval indicated against them.

Question 1.
f(x) = \(\frac{4 \tan x+5 \sin x}{a^{x}-1}\), for x < 0
= \(\frac{9}{\log 2}\), for x = 0
= \(\frac{11 x+7 x \cdot \cos x}{b^{x}-1}\), for x < 0
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VI Q1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VI Q1.1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 2.
f(x) = ax2 + bx + 1, for |2x – 3| ≥ 2
= 3x + 2, for \(\frac{1}{2}\) < x < \(\frac{5}{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VI Q2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VI Q2.1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VI Q2.2

VII. Find f(a), if f is continuous at x = a where,

Question 1.
f(x) = \(\frac{1+\cos (\pi x)}{\pi(1-x)^{2}}\), for x ≠ 1 and at a = 1.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VII Q1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VII Q1.1

Question 2.
f(x) = \(\frac{1-\cos [7(x-\pi)]}{5(x-\pi)^{2}}\), for x ≠ π and at a = π.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VII Q2

VIII. Solve using intermediate value theorem.

Question 1.
Show that 5x – 6x = 0 has a root in [1, 2].
Solution:
Let f(x) = 5x – 6x
5x and 6x are continuous functions for all x ∈ R.
∴ 5x – 6x is also continuous for all x ∈ R.
i.e., f(x) is continuous for all x ∈ R.
A root of f(x) exists, if f(x) = 0 for at least one value of x.
f(1) = 51 – 6(1) = -1 < 0
f(2) = (5)2 – 6(2) = 13 > 0
∴ f(1) < 0 and f(2) > 0
∴ By intermediate value theorem, there has to be a point ‘c’ between 1 and 2 such that f(c) = 0.
∴ There is a root of the given equation in [1, 2].

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 2.
Show that x3 – 5x2 + 3x + 6 = 0 has at least two real roots between x = 1 and x = 5.
Solution:
Let f(x) = x3 – 5x2 + 3x + 6
f(x) is a polynomial function and hence it is continuous for all x ∈ R.
A root of f(x) exists, if f(x) = 0 for at least one value of x.
Here, we have been asked to show that f(x) has at least two roots between x = 1 and x = 5.
f(1) = (1)3 – 5(1)2 + 3(1) + 6
= 5 > 0
f(2) = (2)3 – 5(2)2 + 3(2) + 6
= 8 – 20 + 6 + 6
= 0
∴ x = 2 is a root of f(x).
Also, f(3) = (3)3 – 5(3)2 + 3(3) + 6
= 27 – 45 + 9 + 6
= -3 < 0
f(4) = (4)3 – 5(4)2 + 3(4) + 6
= 64 – 80 + 12 + 6
= 2 > 0
∴ f(3) < 0 and f(4) > 0
∴ By intermediate value theorem, there has to be a point ‘c’ between 3 and 4 such that f(c) = 0.
∴ There are two roots, x = 2 and a root between x = 3 and x = 4.
Thus, there are at least two roots of the given equation between x = 1 and x = 5.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 8 Continuity Ex 8.1 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 1.
Examine the continuity of
(i) f(x) = x3 + 2x2 – x – 2 at x = -2
Solution:
Given, f(x) = x3 + 2x2 – x – 2
f(x) is a polynomial function and hence it is continuous for all x ∈ R.
∴ f(x) is continuous at x = -2.

(ii) f(x) = sin x, for x ≤ \(\frac{\pi}{4}\)
= cos x, for x > \(\frac{\pi}{4}\), at x = \(\frac{\pi}{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q1 (ii)

(iii) f(x) = \(\frac{x^{2}-9}{x-3}\), for x ≠ 3
= 8 for x = 3, at x = 3.
Solution:
f(3) = 8 ….(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q1 (iii)
∴ f(x) is discontinuous at x = 3.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 2.
Examine whether the function is continuous at the points indicated against them.
(i) f(x) = x3 – 2x + 1, if x ≤ 2
= 3x – 2, if x > 2, at x = 2.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q2 (i)

(ii) f(x) = \(\frac{x^{2}+18 x-19}{x-1}\), for x ≠ 1
= 20, for x = 1, at x = 1.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q2 (ii)

(iii) f(x) = \(\frac{x}{\tan 3 x}+2\), for x < 0
= \(\frac{7}{3}\), for x ≥ 0, at x = 0.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q2 (iii)

Question 3.
Find all the points of discontinuities of f(x) = [x] on the interval (-3, 2).
Solution:
f(x) = [x], x ∈ (-3, 2)
i.e., f(x) = -3, x ∈ (-3, -2)
= -2, x ∈ [-2, -1)
= -1, x ∈ [- 1, 0)
= 0, x ∈ [0, 1)
= 1, x ∈ [1, 2)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q3
Similarly, f(x) is discontinuous at the points x = -1, x = 0, x = 1.
Thus all the integer values of x in the interval (-3, 2),
i.e., the points x = -2, x = -1, x = 0 and x = 1 are the required points of discontinuities.

Question 4.
Discuss the continuity of the function f(x) = |2x + 3|, at x = \(\frac{-3}{2}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q4
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q4.1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 5.
Test the continuity of the following functions at the points or intervals indicated against them.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5.1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (iii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (iv)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (iv).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (iv).2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (v)

Question 6.
Identify discontinuities for the following functions as either a jump or a removable discontinuity.
(i) f(x) = \(\frac{x^{2}-10 x+21}{x-7}\)
Solution:
Given, f(x) = \(\frac{x^{2}-10 x+21}{x-7}\)
It is a rational function and is discontinuous if
x – 7 = 0, i.e., x = 7
∴ f(x) is continuous for all x ∈ R, except at x = 7.
∴ f(7) is not defined.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q6 (i)
Thus, \(\lim _{x \rightarrow 7} \mathrm{f}(x)\) exist but f(7) is not defined.
∴ f(x) has a removable discontinuity.

(ii) f(x) = x2 + 3x – 2, for x ≤ 4
= 5x + 3, for x > 4.
Solution:
f(x) = x2 + 3x – 2, x ≤ 4
= 5x + 3, x > 4
f(x) is a polynomial function for both the intervals.
∴ f(x) is continuous for both the given intervals.
Let us test the continuity at x = 4.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q6 (ii)
∴ f(x) is discontinuous at x = 4.
∴ f(x) has a jump discontinuity at x = 4.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

(iii) f(x) = x2 – 3x – 2, for x < -3 = 3 + 8x, for x > -3.
Solution:
f(x) = x2 – 3x – 2, x < -3 = 3 + 8x, x > -3
f(x) is a polynomial function for both the intervals.
∴ f(x) is continuous for both the given intervals.
Let us test the continuity at x = -3.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q6 (iii)
∴ f(x) is discontinuous at x = -3.
∴ f(x) has a jump discontinuity at x = -3

(iv) f(x) = 4 + sin x, for x < π = 3 – cos x for x > π.
Solution:
f(x) = 4 + sin x, x < π = 3 – cos x, x > π
sin x and cos x are continuous for all x ∈ R.
4 and 3 are constant functions.
∴ 4 + sin x and 3 – cos x are continuous for all x ∈ R.
∴ f(x) is continuous for both the given intervals.
Let us test the continuity at x = π.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q6 (iv)
But f(π) is not defined.
∴ f(x) has a removable discontinuity at x = π.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 7.
Show that the following functions have a continuous extension to the point where f(x) is not defined. Also, find the extension.
(i) f(x) = \(\frac{1-\cos 2 x}{\sin x}\), for x ≠ 0.
Solution:
f(x) = \(\frac{1-\cos 2 x}{\sin x}\), for x ≠ 0
Here, f(0) is not defined.
Consider,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q7 (i)
But f(0) is not defined.
∴ f(x) has a removable discontinuity at x = 0.
∴ The extension of the original function is
f(x) = \(\frac{1-\cos 2 x}{\sin x}\) for x ≠ 0
= 0 for x = 0
∴ f(x) is continuous at x = 0.

(ii) f(x) = \(\frac{3 \sin ^{2} x+2 \cos x(1-\cos 2 x)}{2\left(1-\cos ^{2} x\right)}\), for x ≠ 0.
Solution:
f(x) = \(\frac{3 \sin ^{2} x+2 \cos x(1-\cos 2 x)}{2\left(1-\cos ^{2} x\right)}\), for x ≠ 0
Here, f(0) is not defined.
Consider,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q7 (ii)
But f(0) is not defined.
∴ f(x) has a removable discontinuity at x = 0.
∴ The extension of the original function is
f(x) = \(\frac{3 \sin ^{2} x+2 \cos x(1-\cos 2 x)}{2\left(1-\cos ^{2} x\right)}\), x ≠ 0
= \(\frac{7}{2}\), x = 0
∴ f(x) is continuous at x = 0.

(iii) f(x) = \(\frac{x^{2}-1}{x^{3}+1}\), for x ≠ -1
Solution:
f(x) = \(\frac{x^{2}-1}{x^{3}+1}\), for x ≠ -1
Here, f(-1) is not defined.
Consider,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q7 (iii)
But f(-1) is not defined.
∴ f(x) has a removable discontinuity at x = -1.
∴ The extension of the original function is
f(x) = \(\frac{x^{2}-1}{x^{3}+1}\), x ≠ -1
= \(-\frac{2}{3}\), x = -1
∴ f(x) is continuous at x = \(-\frac{2}{3}\)

Question 8.
Discuss the continuity of the following functions at the points indicated against them.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (i).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (i).2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (iii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (iii).1

Question 9.
Which of the following functions has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it becomes continuous.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9.1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (i).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (i).2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (ii).2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (iii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (iii).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (iv)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (v)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (v).1

Question 10.
(i) If f(x) = \(\frac{\sqrt{2+\sin x}-\sqrt{3}}{\cos ^{2} x}\), for x ≠ \(\frac{\pi}{2}\), is continuous at x = \(\frac{\pi}{2}\) then find f(\(\frac{\pi}{2}\)).
Solution:
f(x) is continuous at x = \(\frac{\pi}{2}\), …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (i).1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

(ii) If f(x) = \(\frac{\cos ^{2} x-\sin ^{2} x-1}{\sqrt{3 x^{2}+1}-1}\) for x ≠ 0, is continuous at x = 0 then find f(0).
Solution:
f(x) is continuous at x = 0, …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (ii).1

(iii) If f(x) = \(\frac{4^{x-\pi}+4^{\pi-x}-2}{(x-\pi)^{2}}\) for x ≠ π, is continuous at x = π, then find f(π).
Solution:
f(x) is continuous at x = π, …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (iii)

Question 11.
(i) If f(x) = \(\frac{24^{x}-8^{x}-3^{x}+1}{12^{x}-4^{x}-3^{x}+1}\), for x ≠ 0
= k, for x = 0
is continuous at x = 0, then find k.
Solution:
f(x) is continuous at x = 0 …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (i).1

(ii) If f(x) = \(\frac{5^{x}+5^{-x}-2}{x^{2}}\), for x ≠ 0
= k, for x = 0
is continuous at x = 0, then find k.
Solution:
f(x) is continuous at x = 0 …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (ii)

(iii) If f(x) = \(\frac{\sin 2 x}{5 x}\) – a, for x > 0
= 4 for x = 0
= x2 + b – 3, for x < 0
is continuous at x = 0, find a and b.
Solution:
f(x) is continuous at x = 0 ……(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (iii)

(iv) For what values of a and b is the function
f(x) = ax + 2b + 18, for x ≤ 0
= x2 + 3a – b, for 0 < x ≤ 2 = 8x – 2, for x > 2,
continuous for every x?
Solution:
f(x) is continuous for every x …..(given)
∴ f(x) is continuous at x = 0 and x = 2.
As f(x) is continuous at x = 0,
\(\lim _{x \rightarrow 0^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 0^{+}} \mathrm{f}(x)\)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (iv)
∴ (2)2 + 3a – b = 8(2) – 2
∴ 4 + 3a – b = 14
∴ 3a – b = 10 …….(ii)
Subtracting (i) from (ii), we get
2a = 4
∴ a = 2
Substituting a = 2 in (i), we get
2 – b = 6
∴ b = -4
∴ a = 2 and b = -4

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

(v) For what values of a and b is the function
f(x) = \(\frac{x^{2}-4}{x-2}\), for x < 2
= ax2 – bx + 3, for 2 ≤ x < 3
= 2x – a + b, for x ≥ 3
continuous for every x on R?
Solution:
f(x) is continuous for every x on R …..(given)
∴ f(x) is continuous at x = 2 and x = 3.
As f(x) is continuous at x = 2,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (v)
∴ a(3)2 – b(3) + 3 = 2(3) – a + b
∴ 9a – 3b + 3 = 6 – a + b
∴ 10a – 4b = 3 …..(ii)
Multiplying (i) by 2, we get
8a – 4b = 2 ….(iii)
Subtracting (ii) from (iii), we get
-2a = -1
∴ a = \(\frac{1}{2}\)
Substituting a = \(\frac{1}{2}\) in (i), we get
4(\(\frac{1}{2}\)) – 2b = 1
∴ 2 – 2b = 1
∴ 1 = 2b
∴ b = \(\frac{1}{2}\)
∴ a = \(\frac{1}{2}\) and b = \(\frac{1}{2}\)

Question 12.
Discuss the continuity of f on its domain, where
f(x) = |x + 1|, for -3 ≤ x ≤ 2
= |x – 5|, for 2 < x ≤ 7
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q12

Question 13.
Discuss the continuity of f(x) at x = \(\frac{\pi}{4}\) where,
f(x) = \(\frac{(\sin x+\cos x)^{3}-2 \sqrt{2}}{\sin 2 x-1}\), for x ≠ \(\frac{\pi}{4}\)
= \(\frac{3}{\sqrt{2}}\), for x = \(\frac{\pi}{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q13
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q13.1

Question 14.
Determine the values of p and q such that the following function is continuous on the entire real number line.
f(x) = x + 1, for 1 < x < 3
= x2 + px + q, for |x – 2| ≥ 1.
Solution:
|x – 2| ≥ 1
∴ x – 2 ≥ 1 or x – 2 ≤ -1
∴ x ≥ 3 or x ≤ 1
∴ f(x) = x2 + px + q for x ≥ 3 as well as x ≤ 1
Thus, f(x) = x2 + px + q; x ≤ 1
= x + 1; 1 < x < 3 = x2 + px + q; x > 3
f(x) is continuous for all x ∈ R.
∴ f(x) is continuous at x = 1 and x = 3.
As f(x) is continuous at x = 1,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q14
Subtracting (i) from (ii), we get
2p = -6
∴ p = -3
Substituting p = -3 in (i), we get
-3 + q = 1
∴ q = 4
∴ p = -3 and q = 4

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 15.
Show that there is a root for the equation 2x3 – x – 16 = 0 between 2 and 3.
Solution:
Let f(x) = 2x3 – x – 16
f(x) is a polynomial function and hence it is continuous for all x ∈ R.
A root of f(x) exists, if f(x) = 0 for at least one value of x.
f(2) = 2(2)3 – 2 – 16 = -2 < 0
f(3) = 2(3)3 – 3 – 16 = 35 > 0
∴ f(2) < 0 and f(3) > 0
∴ By intermediate value theorem,
there has to be point ‘c’ between 2 and 3 such that f(c) = 0.
∴ There is a root of the given equation between 2 and 3.

Question 16.
Show that there is a root for the equation x3 – 3x = 0 between 1 and 2.
Solution:
Let f(x) = x3 – 3x
f(x) is a polynomial function and hence it is continuous for all x ∈ R.
A root of f(x) exists, if f(x) = 0 for at least one value of x.
f(1) = (1)3 – 3(1) = -2 < 0
f(2) = (2)3 – 3(2) = 2 > 0
∴ f(1) < 0 and f(2) > 0
∴ By intermediate value theorem,
there has to be point ‘c’ between 1 and 2 such that f(c) = 0.
There is a root of the given equation between 1 and 2.

Question 17.
Let f(x) = ax + b (where a and b are unknown)
= x2 + 5 for x ∈ R
Find the values of a and b, so that f(x) is continuous at x = 1.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q17
Solution:
f(x) = x2 + 5, x ∈ R
∴ f(1) = 1 + 5 = 6
If f(x) = ax + b is continuous at x = 1, then
f(1) = \(\lim _{x \rightarrow 1}(a x+b)\) = a + b
∴ 6 = a + b where, a, b ∈ R
∴ There are infinitely many values of a and b.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 18.
Activity: Suppose f(x) = px + 3 for a ≤ x ≤ b
= 5x2 – q for b < x ≤ c
Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the boxes.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q18
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q18.1

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.5

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 4 Methods of Induction and Binomial Theorem Ex 4.5 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.5

Question 1.
Show that C0 + C1 + C2 + ….. + C8 = 256
Solution:
Since C0 + C1 + C2 + C3 + ….. + Cn = 2n
Putting n = 8, we get
C0 + C1 + C2 + ….. + C8 = 28
∴ C0 + C1 + C2 + ….. + C8 = 256

Question 2.
Show that C0 + C1 + C2 + …… + C9 = 512
Solution:
Since C0 + C1 + C2 + C3 + ….. + Cn = 2n
Putting n = 9, we get
C0 + C1 + C2 + ….. + C9 = 29
∴ C0 + C1 + C2 + …… + C9 = 512

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.5

Question 3.
Show that C1 + C2 + C3 + ….. + C7 = 127
Solution:
Since C0 + C1 + C2 + C3 + ….. + Cn = 2n
Putting n = 7, we get
C0 + C1 + C2 + ….. + C7 = 27
∴ C0 + C1 + C2 +….. + C7 = 128
But, C0 = 1
∴ 1 + C1 + C2 + ….. + C7 = 128
∴ C1 + C2 + ….. + C7 = 128 – 1 = 127

Question 4.
Show that C1 + C2 + C3 + ….. + C6 = 63
Solution:
Since C0 + C1 + C2 + C3 + ….. + Cn = 2n
Putting n = 6, we get
C0 + C1 + C2 + ….. + C6 = 26
∴ C0 + C1 + C2 + …… + C6 = 64
But, C0 = 1
∴ 1 + C1 + C2 + ….. + C6 = 64
∴ C1 + C2 + ….. + C6 = 64 – 1 = 63

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.5

Question 5.
Show that C0 + C2 + C4 + C6 + C8 = C1 + C3 + C5 + C7 = 128
Solution:
Since C0 + C1 + C2 + C3 + …… + Cn = 2n
Putting n = 8, we get
C0 + C1 + C2 + C3 + …… + C8 = 28
But, sum of even coefficients = sum of odd coefficients
∴ C0 + C2 + C4 + C6 + C8 = C1 + C3 + C5 + C7
Let C0 + C2 + C4 + C6 + C8 = C1 + C3 + C5 + C7 = k
Now, C0 + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 = 256
∴ (C0 + C2 + C4 + C6 + C8) + (C1 + C3 + C5 + C7) = 256
∴ k + k = 256
∴ 2k = 256
∴ k = 128
∴ C0 + C2 + C4 + C6 + C8 = C1 + C3 + C5 + C7 = 128

Question 6.
Show that C1 + C2 + C3 + ….. + Cn = 2n – 1
Solution:
Since C0 + C1 + C2 + C3 + ….. + Cn = 2n
But, C0 = 1
∴ 1 + C1 + C2 + C3 + …… + Cn = 2n
∴ C1 + C2 + C3 + ….. + Cn = 2n – 1

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.5

Question 7.
Show that C0 + 2C1 + 3C2 + 4C3 + ….. + (n + 1)Cn = (n + 2) 2n-1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.5 Q7

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4

Question 1.
State, by writing the first four terms, the expansion of the following, where |x| < 1.
(i) (1 + x)-4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q1 (i)

(ii) (1 – x)1/3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q1 (ii)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q1 (ii).1

(iii) (1 – x2)-3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q1 (iii)

(iv) (1 + x)-1/5
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q1 (iv)

(v) (1 + x2)-1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q1 (v)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4

Question 2.
State by writing first four terms, the expansion of the following, where |b| < |a|.
(i) (a – b)-3
Solution:
(a – b)-3 = \(\left[a\left(1-\frac{b}{a}\right)\right]^{-3}\)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q2 (i)

(ii) (a + b)-4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q2 (ii)

(iii) (a + b)1/4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q2 (iii)

(iv) (a – b)-1/4
Solution:
(a – b)-1/4 = \(\left[a\left(1-\frac{b}{a}\right)\right]^{\frac{-1}{4}}\)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q2 (iv)

(v) (a + b)-1/3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q2 (v)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4

Question 3.
Simplify the first three terms in the expansion of the following:
(i) (1 + 2x)-4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q3 (i)

(ii) (1 + 3x)-1/2
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q3 (ii)

(iii) (2 – 3x)1/3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q3 (iii)

(iv) (5 + 4x)-1/2
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q3 (iv)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q3 (iv).1

(v) (5 – 3x)-1/3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q3 (v)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4

Question 4.
Use the binomial theorem to evaluate the following upto four places of decimals.
(i) √99
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q4 (i)
= 10 [1 – 0.005 – 0.0000125 – ……]
= 10(0.9949875)
= 9.94987 5
= 9.9499

(ii) \(\sqrt[3]{126}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q4 (ii)

(iii) \(\sqrt[4]{16.08}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q4 (iii)

(iv) (1.02)-5
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q4 (iv)

(v) (0.98)-3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.4 Q4 (v)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3

Question 1.
In the following expansions, find the indicated term.
(i) \(\left(2 x^{2}+\frac{3}{2 x}\right)^{8}\), 3rd term
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q1 (i)

(ii) \(\left(x^{2}-\frac{4}{x^{3}}\right)^{11}\), 5th term
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q1 (ii)

(iii) \(\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{9}\), 7th term
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q1 (iii)

(iv) In \(\left(\frac{1}{3}+a^{2}\right)^{12}\), 9th term
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q1 (iv)

(v) In \(\left(3 a+\frac{4}{a}\right)^{13}\), 10th term
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q1 (v)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3

Question 2.
In the following expansions, find the indicated coefficients.
(i) x3 in \(\left(x^{2}+\frac{3 \sqrt{2}}{x}\right)^{9}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q2 (i)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q2 (i).1

(ii) x8 in \(\left(2 x^{5}-\frac{5}{x^{3}}\right)^{8}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q2 (ii)

(iii) x9 in \(\left(\frac{1}{x}+x^{2}\right)^{18}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q2 (iii)

(iv) x-3 in \(\left(x-\frac{1}{2 x}\right)^{5}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q2 (iv)

(v) x-20 in \(\left(x^{3}-\frac{1}{2 x^{2}}\right)^{15}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q2 (v)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3

Question 3.
Find the constant term (term independent of x) in the expansion of
(i) \(\left(2 x+\frac{1}{3 x^{2}}\right)^{9}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q3 (i)

(ii) \(\left(x-\frac{2}{x^{2}}\right)^{15}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q3 (ii)

(iii) \(\left(\sqrt{x}-\frac{3}{x^{2}}\right)^{10}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q3 (iii)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q3 (iii).1

(iv) \(\left(x^{2}-\frac{1}{x}\right)^{9}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q3 (iv)

(v) \(\left(2 x^{2}-\frac{5}{x}\right)^{9}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q3 (v)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3

Question 4.
Find the middle terms in the expansion of
(i) \(\left(\frac{x}{y}+\frac{y}{x}\right)^{12}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q4 (i)

(ii) \(\left(x^{2}+\frac{1}{x}\right)^{7}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q4 (ii)

(iii) \(\left(x^{2}-\frac{2}{x}\right)^{8}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q4 (iii)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q4 (iii).1

(iv) \(\left(\frac{x}{a}-\frac{a}{x}\right)^{10}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q4 (iv)

(v) \(\left(x^{4}-\frac{1}{x^{3}}\right)^{11}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q4 (v)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3

Question 5.
In the expansion of (k + x)8, the coefficient of x5 is 10 times the coefficient of x6. Find the value of k.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q5

Question 6.
Find the term containing x6 in the expansion of (2 – x) (3x + 1)9.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3 Q6

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.3

Question 7.
The coefficient of x2 in the expansion of (1 + 2x)m is 112. Find m.
Solution:
The coefficient of x2 in (1 + 2x)m = mC2 (22)
Given that the coefficient of x2 = 112
mC2 (4) = 112
mC2 = 28
∴ \(\frac{\mathrm{m} !}{2 !(\mathrm{m}-2) !}=28\)
∴ \(\frac{m(m-1)(m-2) !}{2 \times(m-2) !}=28\)
∴ m(m – 1) = 56
∴ m2 – m – 56 = 0
∴ (m – 8) (m + 7) = 0
As m cannot be negative.
∴ m = 8

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Complex Numbers Ex 3.2 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2

Question 1.
Find the square root of the following complex numbers:
(i) -8 – 6i
Solution:
Let \(\sqrt{-8-6 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
-8 – 6i = (a + bi)2
-8 – 6i = a2 + b2i2 + 2abi
-8 – 6i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q1 (i)

(ii) 7 + 24i
Solution:
Let \(\sqrt{7+24 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
7 + 24i = (a + bi)2
7 + 24i = a2 + b2i2 + 2abi
7 + 24i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q1 (ii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q1 (ii).1

(iii) 1 + 4√3i
Solution:
Let \(\sqrt{1+4 \sqrt{3} i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
1 + 4√3i = (a + bi)2
1 + 4√3i = a2 + b2i2 + 2abi
1 +4√3i = (a2 – b2) + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q1 (iii)

(iv) 3 + 2√10i
Solution:
Let \(\sqrt{3+2 \sqrt{10}} i\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
3 + 2√10i = (a + bi)2
3 + 2√10i = a2 + b2i2 + 2abi
3 + 2√10i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 3 and 2ab = 2√10
a2 – b2 = 3 and b = \(\frac{\sqrt{10}}{a}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q1 (iv)

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2

(v) 2(1 – √3i)
Solution:
Let \(\sqrt{2(1-\sqrt{3} i)}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
2(1 – √3i) = (a + bi)2
2(1 – √3i) = a2 + b2i2 + 2abi
2 – 2√3i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q1 (v)

Question 2.
Solve the following quadratic equations.
(i) 8x2 + 2x + 1 = 0
Solution:
Given equation is 8x2 + 2x + 1 = 0
Comparing with ax2 + bx + c = 0, we get
a = 8, b = 2, c = 1
Discriminant = b2 – 4ac
= (2)2 – 4 × 8 × 1
= 4 – 32
= -28 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q2 (i)
∴ the roots of the given equation are \(\frac{-1+\sqrt{7} \mathrm{i}}{8}\) and \(\frac{-1-\sqrt{7} \mathrm{i}}{8}\)

(ii) 2x2 – √3x + 1 = 0
Solution:
Given equation is 2x2 – √3x + 1 = 0
Comparing with ax2 + bx + c = 0, we get
a = 2, b = -√3, c = 1
Discriminant = b2 – 4ac
= (-√3)2 – 4 × 2 × 1
= 3 – 8
= -5 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q2 (ii)
∴ the roots of the given equation are \(\frac{\sqrt{3}+\sqrt{5} i}{4}\) and \(\frac{\sqrt{3}-\sqrt{5} i}{4}\)

(iii) 3x2 – 7x + 5 = 0
Solution:
Given equation is 3x2 – 7x + 5 = 0
Comparing with ax2 + bx + c = 0, we get
a = 3, b = -7, c = 5
Discriminant = b2 – 4ac
= (-7)2 – 4 × 3 × 5
= 49 – 60
= -11 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q2 (iii)
∴ the roots of the given equation are \(\frac{7+\sqrt{11} i}{6}\) and \(\frac{7-\sqrt{11} i}{6}\)

(iv) x2 – 4x + 13 = 0
Solution:
Given equation is x2 – 4x + 13 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -4, c = 13
Discriminant = b2 – 4ac
= (-4)2 – 4 × 1 × 13
= 16 – 52
= -36 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q2 (iv)
∴ the roots of the given equation are 2 + 3i and 2 – 3i.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2

Question 3.
Solve the following quadratic equations.
(i) x2 + 3ix + 10 = 0
Solution:
Given equation is x2 + 3ix + 10 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 3i, c = 10
Discriminant = b2 – 4ac
= (3i)2 – 4 × 1 × 10
= 9i2 – 40
= -9 – 40 …..[∵ i2 = -1]
= -49
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q3 (i)
∴ x = 2i or x = -5i
∴ the roots of the given equation are 2i and -5i.
Check:
If x = 2i and x = -5i satisfy the given equation, then our answer is correct.
L.H.S. = x2 + 3ix + 10
= (2i)2 + 3i(2i) + 10i
= 4i2 + 6i2 + 10
= 10i2 + 10
= -10 + 10 ……[∵ i2 = -1]
= 0
= R.H.S.
L.H.S. = x2 + 3ix + 10
= (-5i)2 + 3i(-5i) + 10
= 25i2 – 15i2 + 10
= 10i2 + 10
= -10 + 10 …..[∵ i2 = -1]
= 0
= R.H.S.
Thus, our answer is correct.

(ii) 2x2 + 3ix + 2 = 0
Solution:
Given equation is 2x2 + 3ix + 2 = 0
Comparing with ax2 + bx + c = 0, we get
a = 2, b = 3i, c = 2
Discriminant = b2 – 4ac
= (3i)2 – 4 × 2 × 2
= 9i2 – 16
= -9 – 16
= -25 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q3 (ii)
∴ the roots of the given equation are \(\frac{1}{2}\)i and -2i.

(iii) x2 + 4ix – 4 = 0
Solution:
Given equation is x2 + 4ix – 4 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 4i, c = -4
Discriminant = b2 – 4ac
= (4i)2 – 4 × 1 × -4
= 16i2 + 16
= -16 + 16 …..[∵ i2 = -1]
= 0
So, the given equation has equal roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q3 (iii)
∴ the roots of the given equation are -2i and -2i.

(iv) ix2 – 4x – 4i = 0
Solution:
ix2 – 4x – 4i = 0
Multiplying throughout by i, we get
i2x2 – 4ix – 4i2 = 0
∴ -x2 – 4ix + 4 = 0 ……[∵ i2 = -1]
∴ x2 + 4ix – 4 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 4i, c = -4
Discriminant = b2 – 4ac
= (4i)2 – 4 × 1 × -4
= 16i2 + 16
= -16 + 16 …..[∵ i2 = -1]
= 0
So, the given equation has equal roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q3 (iv)
∴ the roots of the given equation are -2i and -2i.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2

Question 4.
Solve the following quadratic equations.
(i) x2 – (2 + i) x – (1 – 7i) = 0
Solution:
Given equation is x2 – (2 + i)x – (1 – 7i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(2 + i), c = -(1 – 7i)
Discriminant = b2 – 4ac
= [-(2 + i)]2 – 4 × 1 × -(1 – 7i)
= 4 + 4i + i2 + 4 – 28i
= 4 + 4i – 1 + 4 – 28i …….[∵ i2 = -1]
= 7 – 24i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (i).1
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (i).2

(ii) x2 – (3√2 + 2i) x + 6√2i = 0
Solution:
Given equation is x2 – (3√2 + 2i) x + 6√2i = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(3√2 + 2i), c = 6√2i
Discriminant = b2 – 4ac
= [-(3√2 + 2i)]2 – 4 × 1 × 6√2i
= 18 + 12√2i + 4i2 – 24√2i
= 18 – 12√2i – 4 …..[∵ i2 = -1]
= 14 – 12√2i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (ii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (ii).1
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (ii).2

(iii) x2 – (5 – i) x + (18 + i) = 0
Solution:
Given equation is x2 – (5 – i)x + (18 + i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(5 – i), c = 18 + i
Discriminant = b2 – 4ac
= [-(5 – i)]2 – 4 × 1 × (18 + i)
= 25 – 10i + i2 – 72 – 4i
= 25 – 10i – 1 – 72 – 4i …..[∵ i2 = -1]
= -48 – 14i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (iii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (iii).1

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2

(iv) (2 + i) x2 – (5 – i) x + 2(1 – i) = 0
Solution:
Given equation is
(2 + i) x2 – (5 – i) x + 2(1 – i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 2 + i, b = -(5 – i), c = 2(1 – i)
Discriminant = b2 – 4ac
= [-(5 – i)]2 – 4 × (2 + i) × 2(1 – i)
= 25 – 10i + i2 – 8(2 + i)(1 – i)
= 25 – 10i + i2 – 8(2 – 2i + i – i2)
= 25 – 10i – 1 – 8(2 – i + 1) …..[∵ i2 = -1]
= 25 – 10i – 1 – 16 + 8i – 8
= -2i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (iv)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (iv).1
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (iv).2

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Complex Numbers Ex 3.1 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1

Question 1.
Write the conjugates of the following complex numbers:
(i) 3 + i
(ii) 3 – i
(iii) -√5 – √7i
(iv) -√-5
(v) 5i
(vi) √5 – i
(vii) √2 + √3i
Solution:
(i) Conjugate of (3 + i) is (3 – i)
(ii) Conjugate of (3 – i) is (3 + i)
(iii) Conjugate of (-√5 – √7i) is (-√5 + √7i)
(iv) -√-5 = -√5 × √-1 = -√5i
Conjugate of -√-5 is √5i
(v) Conjugate of 5i is -5i
(vi) Conjugate of √5 – i is √5 + i
(vii) Conjugate of √2 + √3i is √2 – √3i

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1

Question 2.
Express the following in the form of a + ib, a, b ∈ R, i = √-1. State the values of a and b:
(i) (1 + 2i)(-2 + i)
(ii) \(\frac{\mathrm{i}(4+3 \mathrm{i})}{(1-\mathrm{i})}\)
(iii) \(\frac{(2+i)}{(3-i)(1+2 i)}\)
(iv) \(\frac{3+2 i}{2-5 i}+\frac{3-2 i}{2+5 i}\)
(v) \(\frac{2+\sqrt{-3}}{4+\sqrt{-3}}\)
(vi) (2 + 3i)(2 – 3i)
(vii) \(\frac{4 i^{8}-3 i^{9}+3}{3 i^{11}-4 i^{10}-2}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.2
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.3
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.4
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.5

Question 3.
Show that (-1 + √3i)3 is a real number.
Solution:
(-1 + √3i)3
= (-1)3 + 3(-1)2 (√3i) + 3(-1)(√3i)2 +(√3i)3 [∵ (a + b)3 = a3 + 3a2b + 3ab2 + b3]
= -1 + 3√3i – 3(3i2) + 3√3 i3
= -1 + 3√3i – 3(-3) – 3√3i [∵ i2 = -1, i3 = -1]
= -1 + 9
= 8, which is a real number.

Question 4.
Evaluate the following:
(i) i35
(ii) i888
(iii) i93
(iv) i116
(v) i403
(vi) \(\frac{1}{i^{58}}\)
(vii) i30 + i40 + i50 + i60
Solution:
We know that, i2 = -1, i3 = -i, i4 = 1
(i) i35 = (i4)8 (i2) i = (1)8 (-1) i = -i
(ii) i888 = (i4)222 = (1)222 = 1
(iii) i93 = (i4)23 . i = (1)23 . i = i
(iv) i116 = (i4)29 = (1)29 = 1
(v) i403 = (i4)100 (i2) i = (1)100 (-1) i = -i
(vi) \(\frac{1}{i^{88}}=\frac{1}{\left(i^{4}\right)^{14} \cdot i^{2}}=\frac{1}{(1)^{14}(-1)}=-1\)
(vii) i30 + i40 + i50 + i60
= (i4)7 i2 + (i4)10 + (i4)12 i2 + (i4)15
= (1)7 (-1) + (1)10 + (1)12 (-1) + (1)15
= -1 + 1 – 1 + 1
= 0

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1

Question 5.
Show that 1 + i10 + i20 + i30 is a real number.
Solution:
1 + i10 + i20 + i30
= 1 + (i4)2 . i2 + (i4)5 + (i4)7 . i2
= 1 + (1)2 (-1) + (1)5 + (1)7 (-1) [∵ i4 = 1, i2 = -1]
= 1 – 1 + 1 – 1
= 0, which is a real number.

Question 6.
Find the value of
(i) i49 + i68 + i89 + i110
(ii) i + i2 + i3 + i4
Solution:
(i) i49 + i68 + i89 + i110
= (i4)12 . i + (i4)17 + (i4)22 . i + (i4)27 . i2
= (1)12 . i + (1)17 + (1)22 . i + (1)27(-1) ……[∵ i4 = 1, i2 = -1]
= i + 1 + i – 1
= 2i

(ii) i + i2 + i3 + i4
= i + i2 + i2 . i + i4
= i – 1 – i + 1 [∵ i2 = -1, i4 = 1]
= 0

Question 7.
Find the value of 1 + i2 + i4 + i6 + i8 + …… + i20.
Solution:
1 + i2 + i4 + i6 + i8 + ….. + i20
= 1 + (i2 + i4) + (i6 + i8) + (i10 + i12) + (i14 + i16) + (i18 + i20)
= 1 + [i2 + (i2)2] + [(i2)3 + (i2)4] + [(i2)5 + (i2)6] + [(i2)7 + (i2)8] + [(i2)9 + (i2)10]
= 1 + [-1 + (- 1)2] + [(-1)3 + (-1)4] + [(-1)5 + (-1)6] + [(-1)7 + (-1)8] + [(-1)9 + (-1)10] [∵ i2 = -1]
= 1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + (-1 + 1) + (-1 + 1)
= 1 + 0 + 0 + 0 + 0 + 0
= 1

Question 8.
Find the values of x and y which satisfy the following equations (x, y ∈ R):
(i) (x + 2y) + (2x – 3y)i + 4i = 5
(ii) \(\frac{x+1}{1+\mathrm{i}}+\frac{y-1}{1-\mathrm{i}}=\mathrm{i}\)
Solution:
(i) (x + 2y) + (2x – 3y)i + 4i = 5
∴ (x + 2y) + (2x – 3y)i = 5 – 4i
Equating real and imaginary parts, we get
x + 2y = 5 ……..(i)
and 2x – 3y = -4 ………(ii)
Equation (i) × 2 – equation (ii) gives
7y = 14
∴ y = 2
Putting y- 2 in (i), we get
x + 2(2) = 5
∴ x + 4 = 5
∴ x = 1
∴ x = 1 and y = 2
Check:
If x = 1 and y = 2 satisfy the given condition, then our answer is correct.
L.H.S. = (x + 2y) + (2x – 3y)i + 4i
= (1 + 4) + (2 – 6)i + 4i
= 5 – 4i + 4i
= 5
= R.H.S.
Thus, our answer is correct.

(ii) \(\frac{x+1}{1+\mathrm{i}}+\frac{y-1}{1-\mathrm{i}}=\mathrm{i}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q8
(x + y) + (y – x – 2)i = 2i
(x + y) + (y – x – 2)i = 0 + 2i
Equating real and imaginary parts, we get
x + y = 0 and y – x – 2 = 2
∴ x + y = 0 ……(i)
and -x + y = 4 ……..(ii)
Adding (i) and (ii), we get
2y = 4
∴ y = 2
Putting y = 2 in (i), we get
x + 2 = 0
∴ x = -2
∴ x = -2 and y = 2

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1

Question 9.
Find the value of:
(i) x3 – x2 + x + 46, if x = 2 + 3i
(ii) 2x3 – 11x2 + 44x + 27, if x = \(\frac{25}{3-4 i}\)
Solution:
(i) x = 2 + 3i
∴ x – 2 = 3i
∴ (x – 2)2 = 9i2
∴ x2 – 4x + 4 = 9(-1) …..[∵ i2 = -1]
∴ x2 – 4x + 13 = 0 ……(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q9
∴ x3 – x2 + x + 46 = (x2 – 4x + 13)(x + 3) + 7
= 0(x + 3) + 7 ……[From (i)]
= 7

(ii) x = \(\frac{25}{3-4 i}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q9.1
∴ x = 3 + 4i
∴ x – 3 = 4i
∴ (x – 3)2 = 16i2
∴ x2 – 6x + 9 = 16(-1) …….[∵ i2 = -1]
∴ x2 – 6x + 25 = 0 …….(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q9.2
∴ 2x3 – 11x2 + 44x + 27
= (x2 – 6x + 25) (2x + 1) + 2
= 0 . (2x + 1) + 2 ……[From (i)]
= 0 + 2
= 2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Ex 7.5 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 7 Limits Ex 7.5

I. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow \frac{\pi}{2}}\left[\frac{cosec x-1}{\left(\frac{\pi}{2}-x\right)^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q1.1

Question 2.
\(\lim _{x \rightarrow a} \frac{\sin x-\sin a}{\sqrt[5]{x}-\sqrt[5]{a}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q2.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5

Question 3.
\(\lim _{x \rightarrow \pi}\left[\frac{\sqrt{5+\cos x}-2}{(\pi-x)^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q3.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q3.2

Question 4.
\(\lim _{x \rightarrow \frac{\pi}{6}}\left[\frac{\cos x-\sqrt{3} \sin x}{\pi-6 x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q4.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5

Question 5.
\(\lim _{x \rightarrow 1}\left[\frac{1-x^{2}}{\sin \pi x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 I Q5

II. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow \frac{\pi}{6}}\left[\frac{2 \sin x-1}{\pi-6 x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q1.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5

Question 2.
\(\lim _{x \rightarrow \frac{\pi}{4}}\left[\frac{\sqrt{2}-\cos x-\sin x}{(4 x-\pi)^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q2.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q2.2

Question 3.
\(\lim _{x \rightarrow \frac{\pi}{6}}\left[\frac{2-\sqrt{3} \cos x-\sin x}{(6 x-\pi)^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q3.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q3.2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5

Question 4.
\(\lim _{x \rightarrow a}\left[\frac{\sin (\sqrt{x})-\sin (\sqrt{a})}{x-a}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q4.1

Question 5.
\(\lim _{x \rightarrow \frac{\pi}{2}}\left[\frac{\cos 3 x+3 \cos x}{(2 x-\pi)^{3}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q5
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.5 II Q5.1