Maharashtra State Board Class 7 Hindi Sulabhbharati Solutions

Balbharati Solutions for Class 7 Hindi Sulabhbharati Digest Answers Maharashtra State Board | Std 7 Hindi Digest Pdf

Hindi Digest Std 7 Maharashtra Board | 7th Std Hindi Digest Pdf

7th Standard Hindi Digest Pdf | Std 7 Hindi Digest Pdf

Hindi Digest Std 7 Maharashtra Board पहली इकाई

7th Std Hindi Digest Pdf दूसरी इकाई

Maharashtra State Board Class 7 Textbook Solutions

Maharashtra State Board Class 7 History Solutions

Balbharati Solutions for Class 7 History Digest Answers Maharashtra State Board

Balbharati Maharashtra State Board 6th Std History Textbook Solutions Answers Digest

Maharashtra State Board Class 7 Textbook Solutions

Maharashtra State Board Class 7 Marathi Sulabhbharati Solutions

Marathi Sulabhbharti Class 7 Solutions Digest Answers Maharashtra State Board

Sulabhbharati 7th Class Marathi Textbook Solutions Answers Digest

Maharashtra State Board 7th Std Marathi Sulabhbharati Textbook Solutions

Marathi Sulabhbharati Class 7 Solutions

Maharashtra State Board Class 7 Textbook Solutions

Maharashtra State Board Class 7 Textbook Solutions Answers Guide

Balbharati Solutions for Class 7 Digest Answers Maharashtra State Board

Balbharati Maharashtra State Board 7th Std Textbook Solutions Answers Digest

Maharashtra State Board Textbook Solutions

Maharashtra Board Practice Set 40 Class 7 Maths Solutions Chapter 10 Bank and Simple Interest

Balbharti Maharashtra State Board Class 7 Maths Solutions covers the 7th Std Maths Practice Set 40 Answers Solutions Chapter 10 Bank and Simple Interest.

Bank and Simple Interest Class 7 Practice Set 40 Answers Solutions Chapter 10

Question 1.
If Rihanna deposits Rs 1500 in the school fund at 9 p.c.p.a for 2 years, what is the total amount she will get?
Solution:
Here, P = Rs 1500, R = 9 p.c.p.a , T = 2 years
∴ Total interest = \(\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}\)
= \(\frac{1500 \times 9 \times 2}{100}\)
= 1500 x 9 x 2
= Rs 270
∴ Total amount = Principal + Interest
= 1500 + 270
= Rs 1770
∴ Rihanna will get a total amount of Rs 1770.

Question 2.
Jethalal took a housing loan of Rs 2,50,000 from a bank at 10 p.c.p.a. for 5 years. What is the yearly interest he must pay and the total amount he returns to the bank?
Solution:
Here, P = Rs 250000, R = 10 p.c.p.a., T = 5 years
∴ Total interest = \(\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}\)
= \(\frac{250000 \times 10 \times 5}{100}\)
= 2500 x 10 x 5
= Rs 1,25,000
∴ Yearly interest = Total interest ÷ Time = 1,25,000 ÷ 5 = Rs 25000
Total amount to be returned = Principal + Total interest
= 250000 + 125000 = Rs 375000
∴ The yearly interest is Rs 25,000 and Jethalal will have to return Rs 3,75,000 to the bank.

Question 3.
Shrikant deposited Rs 85,000 for \(2\frac { 1 }{ 2 }\) years at 7 p.c.p.a. in a savings bank account. What is the total
interest he received at the end of the period?
Solution:
Here, P = Rs 85000, R = 7 p.c.p.a., T = \(2\frac { 1 }{ 2 }\) years = 2.5 years
∴ Total interest = \(\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}\)
= \(\frac{85000 \times 7 \times 2.5}{100}\)
= \(\frac{85000 \times 7 \times 25}{100 \times 10}\)
= 85 x 7 x 25
= Rs 14875
∴ The total interest received by Shrikant at the end of the period is Rs 14875.

Question 4.
At a certain rate of interest, the interest after 4 years on Rs 5000 principal is Rs 1200. What would be the interest on Rs 15000 at the same rate of interest for the same period?
Solution:
The interest on Rs 5000 after 4 years is Rs 1200.
Let us suppose the interest on Rs 15000 at the same rate after 4 years is Rs x.
Taking the ratio of interest and principal, we get
∴ \(\frac{x}{15000}=\frac{1200}{5000}\)
∴ \(x=\frac{1200 \times 15000}{5000}\)
= Rs 3600
∴ The interest received on Rs 15000 is Rs 3600.

Question 5.
If Pankaj deposits Rs 1,50,000 in a bank at 10 p.c.p.a. for two years, what is the total amount he will get from the bank?
Solution:
Here, P = 150000, R = 10 p.c.p.a., T = 2 years
∴ Total interest = \(\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}\)
= \(\frac{150000 \times 10 \times 2}{100}\)
= Rs 30000
∴ Total amount = Principal + Total Interest
= 150000 + 30000
= Rs 180000
∴ Pankaj will receive Rs 180000 from the bank.

Maharashtra Board Class 7 Maths Chapter 10 Banks and Simple Interest Practice Set 40 Intext Questions and Activities

Question 1.
Observe the entries made in the page of a passbook shown below and answer the following questions. (Textbook pg. no. 70)

Maharashtra Board Class 7 Maths Solutions Chapter 10 Banks and Simple Interest Practice Set 40 1

  1. On 2.2.16 the amount deposited was Rs__and the balance Rs__.
  2. On 12.2.16, Rs__were withdrawn by cheque no. 243965. The balance was Rs__
  3. On 26.2.2016 the bank paid an interest of Rs__

Solution:

  1. 1500, 7000
  2. 3000, 9000
  3. 135

Practice Set 40 Class 7 Question 2.
Suvidya borrowed a sum of Rs 30000 at 8 p.c.p.a. interest for a year from her bank to buy a computer. At the end of the period, she had to pay back an amount of Rs 2400 over and above what she had borrowed.
Based on this information fill in the blanks below. (Textbook pg. no. 70)

  1. Principal = Rs__
  2. Rate of interest =__%
  3. Interest = Rs__
  4. Time =__year.
  5. The total amount returned to the bank = 30,000 + 2,400 = Rs__

Solution:

  1. 30000
  2. 8
  3. 2400
  4. 1
  5. Rs 32400

Maharashtra Board Miscellaneous Problems Set 1 Class 7 Maths Solutions

Balbharti Maharashtra State Board Class 7 Maths Solutions covers the 7th Std Maths Miscellaneous Problems Set 1 Answers Solutions.

Maharashtra Board Miscellaneous Problems Set 1 Class 7 Maths Solutions

Question 1.
Solve the following:
i. (-16) × (-5)
ii. (72) ÷ (-12)
iii. (-24) × (2)
iv. 125 ÷ 5
v. (-104) ÷ (-13)
vi. 25 × (-4)
Solution:
i. (-16) × (-5) = 80

ii. 72 ÷ (-12) = \(\frac { 72 }{ -12 }\)
= \(\frac{1}{(-1)} \times \frac{72}{12}\)
(-1) × 12
= -6

iii. (-24) × 2 = -48

iv. 125 ÷ 5 = \(\frac { 125 }{ 5 }\)
= 25

v. (-104) ÷ (-13) = \(\frac { -104 }{ -13 }\)
= \(\frac { 104 }{ 13 }\)
= 8

vi. 25 × (-4) = -100

Question 2.
Find the prime factors of the following numbers and find their LCM and HCF:
i. 75,135
ii. 114,76
iii. 153,187
iv. 32,24,48
Solution:
i. 75 = 3 × 25
= 3 × 5 × 5
135 = 3 × 45
= 3 × 3 × 15
= 3 × 3 × 3 × 5
∴ HCF of 75 and 135 = 3 × 5
= 15
LCM of 75 and 135 = 3 × 5 × 5 × 3 × 3
= 675

ii. 114 = 2 × 57
= 2 × 3 × 19
76 = 2 × 38
= 2 × 2 × 19
∴ HCF of 114 and 76 = 2 × 19
= 38
LCM of 114 and 76 = 2 × 19 × 3 × 2
= 228

iii. 153 = 3 × 51
= 3 × 3 × 17
187 = 11 × 17
∴ HCF of 153 and 187 = 17
LCM of 153 and 187 = 17 × 3 × 3 × 11
= 1683

iv. 32 = 2 × 16
= 2 × 2 × 8
= 2 × 2 × 2 × 4
= 2 × 2 × 2 × 2 × 2
24 = 2 × 12
= 2 × 2 × 6
= 2 × 2 × 2 × 3
48 = 2 × 24
= 2 × 2 × 12
= 2 × 2 × 2 × 6
= 2 × 2 × 2 × 2 × 3
∴ HCF of 32, 24 and 48 = 2 × 2 × 2
= 8
LCM of 32,24 and 48 = 2 × 2 × 2 × 2 × 2 × 3
= 96

Question 3.
Simplify:
i. \(\frac { 322 }{ 391 }\)
ii. \(\frac { 247 }{ 209 }\)
iii. \(\frac { 117 }{ 156 }\)
Solution:
i. \(\frac { 322 }{ 391 }\)
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 1

ii. \(\frac { 247 }{ 209 }\)
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 2

iii. \(\frac { 117 }{ 156 }\)
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 3

Question 4.
i. 784
ii. 225
iii. 1296
iv. 2025
v. 256
Solution:
i. 784
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 4
∴ 784 = 2 × 2 × 2 × 2 × 7 × 7
∴ √784 = 2 × 2 × 7
= 28

ii. 225
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 5
∴ 225 = 3 × 3 × 5 × 5
∴ √225 = 3 × 5
= 15

iii. 1296
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 6
∴ 1296 = 2 × 2 × 2 × 2 × 3 × 3 × 3 × 3
∴ √1296 = 2 × 2 × 3 × 3
= 36

iv. 2025
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 7
∴ 2025 = 3 × 3 × 3 × 3 × 5 × 5
∴ √2025 = 3 × 3 × 5
= 45

v. 256
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 8
∴ 256 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2
∴ √256 = 2 × 2 × 2 × 2
= 16

Question 5.
There are four polling booths for a certain election. The numbers of men and women who cast their vote at each booth is given in the table below. Draw a joint bar graph for this data.

Polling Booths Navodaya Vidyalaya Vidyaniketan School City High School Eklavya School
Women 500 520 680 800
Men 440 640 760 600

Solution:
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 9

Question 6.
Simplify the expressions:
i. 45 ÷ 5 + 120 × 4 – 12
ii. (38 – 8) × 2 ÷ 5 + 13
iii. \(\frac{5}{3}+\frac{4}{7} \div \frac{32}{21}\)
iv. 3 × {4 [85 + 5 – (15 – 3)] + 2}
Solution:
i. 45 ÷ 5 + 120 × 4 – 12
= 9 + 80 – 12
= 89 – 12
= 77

ii. (38 – 8) × 2 ÷ 5 + 13
= 30 × 2 ÷ 5 + 13
= 60 ÷ 5 + 13
= 12 + 13
= 25

iii. \(\frac{5}{3}+\frac{4}{7} \div \frac{32}{21}\)
\(\frac{5}{3}+\frac{4}{7} \times \frac{21}{32}\)
\(\frac{5}{3}+\frac{3}{8}=\frac{40}{24}+\frac{9}{24}\)
\(\frac{49}{24}\)

iv. 3 × {4 [85 + 5 – (15 – 3)] + 2}
= 3 × {4[90 – 5] + 2}
= 3 × {4 × 85 + 2}
= 3 × (340 + 2)
= 3 × 342
= 1026

Question 7.
Solve:
i. \(\frac{5}{12}+\frac{7}{16}\)
ii. \(3 \frac{2}{5}-2 \frac{1}{4}\)
iii. \(\frac{12}{5} \times \frac{(-10)}{3}\)
iv. \(4 \frac{3}{8} \div \frac{25}{18}\)
Solution:
i. \(\frac{5}{12}+\frac{7}{16}\)
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 10

ii. \(3 \frac{2}{5}-2 \frac{1}{4}\)
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 11

iii. \(\frac{12}{5} \times \frac{(-10)}{3}\)
= 4 × (-2)
= -8

iv. \(4 \frac{3}{8} \div \frac{25}{18}\)
= \(\frac{7}{4} \times \frac{9}{5}\)
= \(\frac { 63 }{ 20 }\)

Question 8.
Construct ∆ABC such that m∠A = 55°, m∠B = and l(AB) = 5.9 cm.
Solution:
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 12

Question 9.
Construct ∆XYZ such that, l(XY) = 3.7 cm, l(YZ) = 7.7 cm, l(XZ) = 6.3 cm.
Solution:
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 13

Question 10.
Construct ∆PQR such that, m∠P = 80°, m∠Q = 70°, l(QR) = 5.7 cm.
Ans:
In ∆PQR,
m∠P + m∠Q + m∠R = 180° …. (Sum of the measures of the angles of a triangle is 180°)
∴ 80 + 70 + m∠R = 180
∴ 150 + m∠R = 180
∴ m∠R = 180 – 150
∴ m∠R = 30°
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 14

Question 11.
Construct ∆EFG from the given measures. l(FG) = 5 cm, m∠EFG = 90°, l(EG) = 7 cm.
Solution:
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 15

Question 12.
In ∆LMN, l(LM) = 6.2 cm, m∠LMN = 60°, l(MN) 4 cm. Construct ∆LMN.
Solution:
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 16

Question 13.
Find the measures of the complementary angles of the following angles:
i. 35°
ii. a°
iii. 22°
iv. (40 – x)°
Solution:
i. Let the measure of the complementary
angle be x°.
35 + x = 90
∴35 + x-35 = 90 – 35
….(Subtracting 35 from both sides)
∴x = 55
∴The complementary angle of 35° is 55°.

ii. Let the measure of the complementary angle be x°.
a + x = 90
∴a + x – a = 90 – a
….(Subtracting a from both sides)
∴x = (90 – a)
∴The complementary angle of a° is (90 – a)°.

iii. Let the measure of the complementary angle be x°.
22 + x = 90
∴22 + x – 22 = 90 – 22
….(Subtracting 22 from both sides)
∴x = 68
∴The complementary angle of 22° is 68°.

iv. Let the measure of the complementary angle be a°.
40 – x + a = 90
∴40 – x + a – 40 + x = 90 – 40 + x
….(Subtracting 40 and adding x on both sides)
∴a = (50 + x)
∴The complementary angle of (40 – x)° is (50 + x)°.

Question 14.
Find the measures of the supplements of the following angles:
i. 111°
ii. 47°
iii. 180°
iv. (90 – x)°
Solution:
i. Let the measure of the supplementary
angle be x°.
111 + x = 180
∴ 111 + x – 111 = 180 – 111
…..(Subtracting 111 from both sides)
∴ x = 69
∴ The supplementary angle of 111° is 69°.

ii. Let the measure of the supplementary angle be x°.
47 + x = 180
∴47 + x – 47 = 180 – 47
….(Subtracting 47 from both sides)
∴x = 133
∴The supplementary angle of 47° is 133°.

iii. Let the measure of the supplementary angle be x°.
180 + x = 180
∴180 + x – 180 = 180 – 180
….(Subtracting 180 from both sides)
∴x = 0
∴The supplementary angle of 180° is 0°.

iv. Let the measure of the supplementary angle be a°.
90 – x + a = 180
∴90 – x + a – 90 + x = 180 – 90+ x
….(Subtracting 90 and adding x on both sides)
∴a = 180 – 90 + x
∴a = (90 + x)
∴The supplementary angle of (90 – x)° is (90 + x)°.

Question 15.
Construct the following figures:
i. A pair of adjacent angles
ii. Two supplementary angles which are not adjacent angles.
iii. A pair of adjacent complementary angles.
Solution:
i.
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 17

ii.
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 18

iii.
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 19

Question 16.
In ∆PQR the measures of ∠P and ∠Q are equal and m∠PRQ = 70°, Find the measures of the following angles.
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 20

  1. m∠PRT
  2. m∠P
  3. m∠Q

Solution:
Here, ∠PRQ and ∠PRT are angles in a linear pair.
m∠PRQ + m∠PRT = 180°
∴70 + m∠PRT = 180
∴m∠PRT = 180 – 70
∴m∠PRT = 110°
Now, ∠PRT is the exterior angle of ∆PQR.
∴m∠P + m∠Q = m∠PRT
∴m∠P + m∠P = m∠PRT ….(The measures of ∠P and ∠Q is same)
∴2m∠P = 110
∴m∠P = \(\frac { 110 }{ 2 }\)
∴m∠P = 55°
∴m∠Q =

Question 17.
Simplify
i. 54 × 53
ii. \(\left(\frac{2}{3}\right)^{6} \div\left(\frac{2}{3}\right)^{9}\)
iii. \(\left(\frac{7}{2}\right)^{8} \times\left(\frac{7}{2}\right)^{-6}\)
iv. \(\left(\frac{4}{5}\right)^{2} \div\left(\frac{5}{4}\right)\)
Solution:
Simplify
i. 54 × 53
= 54+3
= 57

ii. \(\left(\frac{2}{3}\right)^{6} \div\left(\frac{2}{3}\right)^{9}\)
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 21

iii. \(\left(\frac{7}{2}\right)^{8} \times\left(\frac{7}{2}\right)^{-6}\)
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 22

iv. \(\left(\frac{4}{5}\right)^{2} \div\left(\frac{5}{4}\right)\)
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 1 23

Question 18.
Find the value:
i. 1716  ÷ 1716
ii. 10-3
iii. (2³)²
iv. 46 × 4-4
Solution:
i. 1716  ÷ 1716
= 170
= 1

ii. 10-3
= \(\frac{1}{10^{3}}\)
= \(\frac{1}{1000}\)

iii. (2³)²
= 23×2
= 26
= 2 × 2 × 2 × 2 × 2 × 2
= 64

iv. 46 × 4-4
= 46+(-4)
= 42
= 4 × 4
= 16

Question 19.
Solve:
i. (6a – 5b – 8c) + (15b + 2a – 5c)
ii. (3x + 2y) (7x – 8y)
iii. (7m – 5n) – (-4n – 11m)
iv. (11m – 12n + 3p) – (9m + 7n – 8p)
Solution:
i. (6a – 5b – 8c) + (15b + 2a – 5c)
= (6a + 2a) + (-5b + 15b) + (-8c – 5c)
= 8a + 10b – 13c

ii. (3x + 2y) (7x – 8y)
= 3x × (7x – 8y) + 2yx (7x – 8y)
= 21x² – 24xy + 14xy – 16y²
= 21x² – 10xy – 16y²

iii. (7m – 5n) – (-4n – 11m)
= 7m – 5n + 4n + 11m
= (7m + 11m) + (-5n + 4n)
= 18m – n

iv. (11m – 12n + 3p) – (9m + 7n – 8p)
= 11m – 12n + 3p – 9m – 7n + 8p
= (11m – 9m) + (-12n – 7n) + (3p + 8p)
= 2m – 19n + 11p

Question 20.
Solve the following equations:
i 4(x + 12) = 8
ii. 3y + 4 = 5y – 6
Solution:
i. 4(x + 12) = 8
∴4x + 48 = 8
∴4x + 48 – 48 = 8 – 48
….(Subtracting 48 from both sides)
∴ 4x = -40
∴ x = \(\frac { -40 }{ 4 }\)
∴ x = -10

ii. 3y + 4 = 5y – 6
∴ 3y + 4 + 6 = 5y – 6 + 6
….(Adding 6 on both sides)
∴ 3y + 10 = 5y
∴ 3y + 10 – 3y = 5y – 3y
….(Subtracting 3y from both sides)
∴ 10 = 2y
∴ 2y = 10
∴ y = \(\frac { 10 }{ 2 }\)
∴ y = 5

Maharashtra Board Practice Set 1 Class 7 Maths Solutions Chapter 1 Geometrical Constructions

Balbharti Maharashtra State Board Class 7 Maths Solutions covers the 7th Std Maths Practice Set 1 Answers Solutions Chapter 1 Geometrical Constructions.

Geometrical Constructions Class 7 Practice Set 1 Answers Solutions Chapter 1

Question 1.
Draw line segments of the lengths given below and draw their perpendicular bisectors:
i. 5.3 cm
ii. 6.7 cm
iii. 3.8 cm
Solution:
i.
Maharashtra Board Class 7 Maths Solutions Chapter 1 Geometrical Constructions Practice Set 1 1
Line AB is the perpendicular bisector of seg PQ.

ii.
Maharashtra Board Class 7 Maths Solutions Chapter 1 Geometrical Constructions Practice Set 1 2
Line UV is the perpendicular bisector of seg ST.

iii.
Maharashtra Board Class 7 Maths Solutions Chapter 1 Geometrical Constructions Practice Set 1 3
Line ST is the perpendicular bisector of seg LM.

Question 2.
Draw angles of the measures given below and draw their bisectors:
i. 105°
ii. 55°
iii. 90°
Solution:
i. 105°
Maharashtra Board Class 7 Maths Solutions Chapter 1 Geometrical Constructions Practice Set 1 4

ii. 55°
Maharashtra Board Class 7 Maths Solutions Chapter 1 Geometrical Constructions Practice Set 1 5

iii. 90°
Maharashtra Board Class 7 Maths Solutions Chapter 1 Geometrical Constructions Practice Set 1 6

Question 3.
Draw, an obtuse-angled triangle and a right-angled triangle. Find the points of concurrence of the angle bisectors of each triangle. Where do the points of concurrence lie?
Solution:
Maharashtra Board Class 7 Maths Solutions Chapter 1 Geometrical Constructions Practice Set 1 7
The points of concurrence of the angle bisectors of both the triangles lie in the interior of the triangles.

Question 4.
Draw a right-angled triangle. Draw the perpendicular bisectors of its sides. Where does the point of concurrence lie?
Solution:
Maharashtra Board Class 7 Maths Solutions Chapter 1 Geometrical Constructions Practice Set 1 8
The point of concurrence of the perpendicular bisectors of the sides of the right angled triangle lies on the hypotenuse.

Question 5.
Maithili, Shaila and Ajay live in three different places in the city. A toy shop is equidistant from the three houses. Which geometrical construction should be used to represent this? Explain your answer.
Solution:
Since, Maithili, Shaila and Ajay live in three different places, lines joining their houses will form a triangle.
The position of the toy shop which is equidistant from three houses can be found out by drawing the perpendicular bisector of the sides of the triangle joining the three houses.
The shop will be at the point of concurrence of the perpendicular bisectors.

Maharashtra Board Class 7 Maths Chapter 1 Geometrical Constructions Practice Set 1 Intext Questions and Activities

Question 1.
Draw a line segment PS of length 4cm and draw its perpendicular bisector. (Textbook pg. no. 1)

  1. How will your verify that CD is the perpendicular bisector? m∠CMS = __°
  2. Is l(PM) = l(SM)?

Solution:
Maharashtra Board Class 7 Maths Solutions Chapter 1 Geometrical Constructions Practice Set 1 9

  1. Here, m∠CMS = 90°
  2. Also, l(PM) = l(SM) = 2cm
    ∴ line CD is the perpendicular bisector of seg PS.

Maharashtra Board Practice Set 30 Class 7 Maths Solutions Chapter 6 Indices

Balbharti Maharashtra State Board Class 7 Maths Solutions covers the 7th Std Maths Practice Set 30 Answers Solutions Chapter 6 Indices.

Indices Class 7 Practice Set 30 Answers Solutions Chapter 6

Question 1.
Find the square root:
i. 625
ii. 1225
iii. 289
iv. 4096
v. 1089
Solution:
i. 625
Maharashtra Board Class 7 Maths Solutions Chapter 6 Indices Practice Set 30 1
∴ 625 = 5 x 5 x 5 x 5
∴ √625 = 5 x 5 = 25

ii. 1225
Maharashtra Board Class 7 Maths Solutions Chapter 6 Indices Practice Set 30 2
∴ 1225 = 5 x 5 x 7 x 7
∴ √1225 = 5 x 7 = 35

iii. 289
Maharashtra Board Class 7 Maths Solutions Chapter 6 Indices Practice Set 30 3
∴ 289 = 17 x 17
∴ √289 = 17

iv. 4096
Maharashtra Board Class 7 Maths Solutions Chapter 6 Indices Practice Set 30 4
∴ 4096 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
∴ √4096 = 2 x 2 x 2 x 2 x 2 x 2
= 64

v. 1089
Maharashtra Board Class 7 Maths Solutions Chapter 6 Indices Practice Set 30 5
∴ 1089 = 3 x 3 x 11 x 11
∴ √1089 = 3 x 11
= 33

Maharashtra Board Class 7 Maths Chapter 6 Indices Practice Set 30 Intext Questions and Activities

Question 1.
Try to write the following numbers in the standard form. (Textbook pg. no. 48)
i. The diameter of Sun is 1400000000 m.
ii. The velocity of light is 300000000 m/sec.
Solution:
i. 1400000000 m = 1.4 x 109 m
ii. 300000000 m/s = 3.0 x 108 m/sec.

Question 2.
The box alongside shows the number called Googol. Try to write it as a power of 10. (Textbook pg. no. 48)
Maharashtra Board Class 7 Maths Solutions Chapter 6 Indices Practice Set 30 6
Solution:
1 x 10100

Maharashtra Board Practice Set 29 Class 7 Maths Solutions Chapter 6 Indices

Balbharti Maharashtra State Board Class 7 Maths Solutions covers the 7th Std Maths Practice Set 29 Answers Solutions Chapter 6 Indices.

Indices Class 7 Practice Set 29 Answers Solutions Chapter 6

Question 1.
Simplify:
i. \(\left[\left(\frac{15}{12}\right)^{3}\right]^{4}\)
ii. (34)-2
iii. \(\left[\left(\frac{1}{7}\right)^{-3}\right]^{4}\)
iv. \(\left[\left(\frac{2}{5}\right)^{-2}\right]^{-3}\)
v. (65)4
vi. \(\left[\left(\frac{6}{7}\right)^{5}\right]^{2}\)
vii. \(\left[\left(\frac{2}{3}\right)^{-4}\right]^{5}\)
viii. \(\left[\left(\frac{5}{8}\right)^{3}\right]^{-2}\)
ix. \(\left[\left(\frac{3}{4}\right)^{6}\right]^{7}\)
x. \(\left[\left(\frac{2}{5}\right)^{-3}\right]^{2}\)
Solution:
i. \(\left[\left(\frac{15}{12}\right)^{3}\right]^{4}\)
\(=\left(\frac{15}{12}\right)^{3 \times 4}=\left(\frac{15}{12}\right)^{12}\)

ii. (34)-2
= 34×(-2)
= 3-8

iii. \(\left[\left(\frac{1}{7}\right)^{-3}\right]^{4}\)
\(=\left(\frac{1}{7}\right)^{(-3) \times 4}=\left(\frac{1}{7}\right)^{-12}\)

iv. \(\left[\left(\frac{2}{5}\right)^{-2}\right]^{-3}\)
\(=\left(\frac{2}{5}\right)^{(-2) \times(-3)}=\left(\frac{2}{5}\right)^{6}\)

v. (65)4
= 65×4
= 620

vi. \(\left[\left(\frac{6}{7}\right)^{5}\right]^{2}\)
\(=\left(\frac{6}{7}\right)^{5 \times 2}=\left(\frac{6}{7}\right)^{10}\)

vii. \(\left[\left(\frac{2}{3}\right)^{-4}\right]^{5}\)
\(=\left(\frac{2}{3}\right)^{(-4) \times 5}=\left(\frac{2}{3}\right)^{-20}\)

viii. \(\left[\left(\frac{5}{8}\right)^{3}\right]^{-2}\)
\(=\left(\frac{5}{8}\right)^{3 \times(-2)}=\left(\frac{5}{8}\right)^{-6}\)

ix. \(\left[\left(\frac{3}{4}\right)^{6}\right]^{7}\)
\(=\left(\frac{3}{4}\right)^{6 \times 1}=\left(\frac{3}{4}\right)^{6}\)

x. \(\left[\left(\frac{2}{5}\right)^{-3}\right]^{2}\)
\(=\left(\frac{2}{5}\right)^{(-3) \times 2}=\left(\frac{2}{5}\right)^{-6}\)

Question 2.
Write the following numbers using positive indices:
i. \(\left(\frac{2}{7}\right)^{-2}\)
ii. \(\left(\frac{11}{3}\right)^{-5}\)
iii. \(\left(\frac{1}{6}\right)^{-3}\)
iv. \((y)^{-4}\)
Solution:
i. \(\left(\frac{7}{2}\right)^{2}\)
ii. \(\left(\frac{3}{11}\right)^{5}\)
iii. \(6^{3}\)
iv. \(\frac{1}{y^{4}}\)

Maharashtra Board Miscellaneous Problems Set 2 Class 7 Maths Solutions

Balbharti Maharashtra State Board Class 7 Maths Solutions covers the 7th Std Maths Miscellaneous Problems Set 2 Answers Solutions.

Maharashtra Board Miscellaneous Problems Set 2 Class 7 Maths Solutions

Question 1.
Angela deposited Rs 15000 in a bank at a rate of 9 p.c.p.a. She got simple interest amounting to Rs 5400. For how many years had she deposited the amount?
Solution:
Here, P = Rs 15000, R = 9 p.c.p.a., I = Rs 5400
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 2 1
∴ T = 4
∴ Angela had deposited the amount for 4 years.

Question 2.
Ten men take 4 days to complete the task of tarring a road. How many days would 8 men take?
Solution:
Let us suppose that 8 men require x days to tar the road.
Number of days required by 10 men to tar the road = 4
The number of men and the number of days required to tar the road are in inverse proportion.
∴ 8 × x = 10 x 4
∴ \(x=\frac{10 \times 4}{8}\)
∴ x = 5
∴ 8 men will require 5 days to tar the road.

Question 3.
Nasruddin and Mahesh invested Rs 40,000 and Rs 60,000 respectively to start a business. They made a profit of 30%. How much profit did each of them make?
Solution:
Total amount invested = Rs 40,000 + Rs 60,000
= Rs 1,00,000
Profit earned = 30%
∴ Total profit = 30% of 1,00,000
= \(\frac { 30 }{ 100 }\) × 100000
= Rs 30000
Proportion of investment = 40000 : 60000
= 2:3 …. (Dividing by 20000)
Let Nasruddin’s profit be Rs 2x and Mahesh’s profit be Rs 3x.
∴ 2x + 3x = 30000
∴ 5x = 30000
∴ x = \(\frac { 30000 }{ 5 }\).
∴ x = 6000
∴ Nasruddin’s profit = 2x = 2 × 6000 = Rs 12000
Mahesh’s profit = 3x = 3 × 6000 = Rs 18000
∴ The profits of Nasruddin and Mahesh are Rs 12000 and Rs 18000 respectively.

Question 4.
The diameter of a circle is 5.6 cm. Find its circumference.
Solution:
Diameter of the circle (d) = 5.6 cm
Circumference = πd
= \(\frac{22}{7} \times 5.6\)
= \(\frac{22}{7} \times \frac{56}{10}\)
= 17.6 cm
∴ The circumference of the circle is 17.6 cm.

Question 5.
Expand:
i. (2a – 3b)²
ii. (10 + y)²
iii. \(\left(\frac{p}{3}+\frac{q}{4}\right)^{2}\)
iv. \(\left(y-\frac{3}{y}\right)^{2}\)
Solution:
i. Here, A = 2a and B = 3b
∴ (2a – 3b)² = (2a)² – 2 × 2a × 3b + (3b)²
…. [(A – B)² = A² – 2AB + B²]
= 4a² – 12ab + 9b²

ii. Here, a = 10 and b = y
(10 + y)² = 102 + 2 × 10xy + y²
…. [(a + b)² = a² + 2ab + b²]
= 100 + 20y + y²

iii. Here, a = \(\frac { p }{ 3 }\) and b = \(\frac { q }{ 4 }\)
\(\left(\frac{p}{3}+\frac{q}{4}\right)^{2}=\left(\frac{p}{3}\right)^{2}+2 \times \frac{p}{3} \times \frac{q}{4}+\left(\frac{q}{4}\right)^{2}\)
…. [(a + b)² = a² + 2ab + b²]
\(\frac{p^{2}}{9}+\frac{p q}{6}+\frac{q^{2}}{16}\)

iv. Here, a = y and b = \(\frac { 3 }{ y }\)
\(\left(y-\frac{3}{y}\right)^{2}=y^{2}-2 \times y \times \frac{3}{y}+\left(\frac{3}{y}\right)^{2}\)
…. [(a – b)² = a² – 2ab + b²
= \(y^{2}-6+\frac{9}{y^{2}}\)

Question 6.
Use a formula to multiply:
i. (x – 5)(x + 5)
ii. (2a – 13)(2a + 13)
iii. (4z – 5y)(4z + 5y)
iv. (2t – 5)(2t + 5)
Solution:
i. Here, a = x and b = 5
(x – 5)(x + 5) = (x)² – (5)²
…. [(a + b)(a – b) = a² – b²]
= x² – 25

ii. Here, A = 2a and B = 13
(2a – 13)(2a + 13) = (2a)² – (13)²
…. [(A + B)(A – B) = A² – B²]
= 4a² – 169

iii. Here, a = 4z and b = 5y
(4z – 5y)(4z + 5y) = (4z)² – (5y)²
…. [(a + b)(a – b) = a² – b²]
= 16z² – 25y²

iv. Here, a = 2t and b = 5
(2t – 5)(2t + 5) = (2t)² – (5)²
…. [(a + b)(a – b) = a² – b²]
= 4t² – 25

Question 7.
The diameter of the wheel of a cart is 1.05 m. How much distance will the cart cover in 1000 rotations of the wheel?
Solution:
Diameter of the wheel (d) = 1.05 m
∴ Distance covered in 1 rotation of wheel = Circumference of the wheel
= πd
= \(\frac{22}{7} \times 1.05\)
= 3.3 m
∴ Distance covered in 1000 rotations = 1000 x 3.3 m
= 3300 m
= \(\frac { 3300 }{ 1000 }\) km …[1m = \(\frac { 1 }{ 1000 }\)km]
= 3.3 km
∴ The distance covered by the cart in 1000 rotations of the wheel is 3.3 km.

Question 8.
The area of a rectangular garden of length 40 m, is 1000 sq m. Find the breadth of the garden and its perimeter. The garden is to be enclosed by 3 rounds of fencing, leaving an entrance of 4 m. Find the cost of fencing the garden at a rate of Rs 250 per metre.
Solution:
Length of the rectangular garden = 40 m
Area of the rectangular garden = 1000 sq. m.
∴ length × breadth = 1000
∴ 40 × breadth = 1000
∴ breadth = \(\frac { 1000 }{ 40 }\)
= 25 m
Now, perimeter of the rectangular garden = 2 × (length + breadth)
= 2 (40 + 25)
= 2 × 65
= 130 m
Length of one round of fence = circumference of garden – width of the entrance
= 130 – 4
= 126 m
∴ Total length of fencing = length of one round of wire × number of rounds = 126 × 3
= 378 m
∴ Total cost of fencing = Total length of fencing × cost per metre of fencing
= 378 × 250
= 94500
∴ The cost of fencing the garden is Rs 94500.

Question 9.
From the given figure, find the length of hypotenuse AC and the perimeter of ∆ABC.
Solution:
Maharashtra Board Class 7 Maths Solutions Miscellaneous Problems Set 2 2
In ∆ABC, ∠B = 90°, and l(BC) = 21, and l(AB) = 20
∴ According to Pythagoras’ theorem,
∴ l(AC)² = l(BC)² + l(AB)²
∴ l(AC)² = 21² + 20²
∴ l(AC)² = 441 + 400
∴ l(AC)² = 841
∴ l(AC)² = 29²
∴ l(AC) = 29
Perimeter of ∆ABC = l(AB) + l(BC) + l(AC)
= 20 + 21 + 29
= 70
∴ The length of hypotenuse AC is 29 units, and the perimeter of ∆ABC is 70 units.

Question 10.
If the edge of a cube is 8 cm long, find its total surface area.
Solution: ,
Total surface area of the cube = 6 × (side)²
= 6 × (8)²
= 6 × 64
= 384 sq. cm
The total surface area of the cube is 384 sq.cm.

Question 11.
Factorize: 365y4z3 – 146y2z4
Solution:
= 365y4z3 – 146y2z4
= 73 (5y4z3 – 2y2z4)
= 73y2 (5y2z3 – 2z4)
= 73y2z3(5y2 – 2z)