Sequences and Series Class 11 Maths 2 Exercise 2.2 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 2 Sequences and Series Ex 2.2 Questions and Answers.

11th Maths Part 2 Sequences and Series Exercise 2.2 Questions And Answers Maharashtra Board

Question 1.
For the following G.P.s, find Sn.
(i) 3, 6, 12, 24, ……..
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q1 (i)

(ii) p, q, \(\frac{\mathbf{q}^{2}}{\mathbf{p}}, \frac{\mathbf{q}^{3}}{\mathbf{p}^{2}}, \ldots\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q1 (ii)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2

(iii) 0.7, 0.07, 0.007, …….
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q1 (iii)

(iv) √5, -5, 5√5, -25, …….
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q1 (iv)

Question 2.
For a G.P.
(i) a = 2, r = \(-\frac{2}{3}\), find S6.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q2 (i)

(ii) If S5 = 1023, r = 4, find a.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q2 (ii)

Question 3.
For a G.P.
(i) If a = 2, r = 3, Sn = 242, find n.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q3 (i)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2

(ii) For a G.P. sum of the first 3 terms is 125 and the sum of the next 3 terms is 27, find the value of r.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q3 (ii)

Question 4.
For a G.P.
(i) If t3 = 20, t6 = 160, find S7.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q4 (i)
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q4 (i).1

(ii) If t4 = 16, t9 = 512, find S10.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q4 (ii)

Question 5.
Find the sum to n terms
(i) 3 + 33 + 333 + 3333 + …..
Solution:
Sn = 3 + 33 + 333 +….. upto n terms
= 3(1 + 11 + 111 +….. upto n terms)
= \(\frac{3}{9}\)(9 + 99 + 999 + ….. upto n terms)
= \(\frac{3}{9}\)[(10 – 1) + (100 – 1) + (1000 – 1) +… upto n terms]
= \(\frac{3}{9}\)[(10 + 100 + 1000 + … upto nterms) – (1 + 1 + 1 + ….. n times)]
But 10, 100, 1000, ….. n terms are in G.P. with
a = 10, r = \(\frac{100}{10}\) = 10
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q5 (i)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2

(ii) 8 + 88 + 888 + 8888 + …..
Solution:
Sn = 8 + 88 + 888 + … upto n terms
= 8(1 + 11 + 111 + … upto n terms)
= \(\frac{8}{9}\)(9 + 99 + 999 + … upto n terms)
= \(\frac{8}{9}\)[(10 – 1) + (100 – 1) + (1000 – 1) +… upto n terms]
= \(\frac{8}{9}\)[(10 + 100 + 1000 + … upto n terms) – (1 + 1 + 1 + … n times)]
But 10, 100, 1000, … n terms are in G.P. with
a = 10, r = \(\frac{100}{10}\) = 10
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q5 (ii)

Question 6.
Find the sum to n terms
(i) 0.4 + 0.44 + 0.444 + …..
Solution:
Sn = 0.4 + 0.44 + 0.444 + ….. upto n terms
= 4(0.1 + 0.11 +0.111 + …. upto n terms)
= \(\frac{4}{9}\)(0.9 + 0.99 + 0.999 + … upto n terms)
= \(\frac{4}{9}\)[(1 – 0.1) + (1 – 0.01) + (1 – 0.001) … upto n terms]
= \(\frac{4}{9}\)[(1 + 1 + 1 + …n times) – (0.1 + 0.01 + 0.001 +… upto n terms)]
But 0.1, 0.01, 0.001, … n terms are in G.P. with
a = 0.1, r = \(\frac{0.01}{0.1}\) = 0.1
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q6 (i)

(ii) 0.7 + 0.77 + 0.777 + ……
Solution:
Sn = 0.7 + 0.77 + 0.777 + … upto n terms
= 7(0.1 + 0.11 + 0.111 + … upton terms)
= \(\frac{7}{9}\)(0.9 + 0.99 + 0.999 + … upto n terms)
= \(\frac{7}{9}\)[(1 – 0.1) + (1 – 0.01) + (1 – 0.001) +… upto n terms]
= \(\frac{7}{9}\)[(1 + 1 + 1 +… n times) – (0.1 + 0.01 + 0.001 +… upto n terms )]
But 0.1, 0.01, 0.001, … n terms are in G.P. with
a = 0.1, r = \(\frac{0.01}{0.1}\) = 0.1
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q6 (ii)

Question 7.
Find the sum to n terms of the sequence
(i) 0.5, 0.05, 0.005, …..
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q7 (i)

(ii) 0.2, 0.02, 0.002, ……
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q7 (ii)
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q7 (ii).1

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2

Question 8.
For a sequence, if Sn = 2(3n – 1), find the nth term, hence showing that the sequence is a G.P.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q8

Question 9.
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P, respectively, then verify that \(\left[\frac{S}{R}\right]^{n}\) = P2.
Solution:
Let a be the 1st term and r be the common ratio of the G.P.
∴ the G.P. is a, ar, ar2, ar3, …, arn-1
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q9
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q9.1

Question 10.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn(S3n – S2n) = (S2n – Sn)2.
Solution:
Let a and r be the 1st term and common ratio of the G.P. respectively.
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q10
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q10.1

Question 11.
Find
(i) \(\sum_{r=1}^{10}\left(3 \times 2^{r}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q11 (i)

(ii) \(\sum_{r=1}^{10} 5 \times 3^{r}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q11 (ii)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2

Question 12.
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is Rs. 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Solution:
The value of a house is Rs. 15 Lac.
Appreciation rate = 5% = \(\frac{5}{100}\) = 0.05
Value of house after 1st year = 15(1 + 0.05) = 15(1.05)
Value of house after 6 years = 15(1.05) (1.05)5
= 15(1.05)6
= 15(1.34)
= 20.1 lac.

Question 13.
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Solution:
Amount invested = Rs. 10000
Interest rate = \(\frac{8}{100}\) = 0.08
amount after 1st year = 10000(1 + 0.08) = 10000(1.08)
Value of the amount after n years
= 10000(1.08) × (1.08)n-1
= 10000(1.08)n
= 20000
∴ (1.08)n = 2
∴ (1.08)5 = 1.47 …..[Given]
∴ n = 10 years, (approximately)

Maths Solutions for Class 11 State Board 

Sequences and Series Class 11 Maths 2 Exercise 2.1 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 2 Sequences and Series Ex 2.1 Questions and Answers.

11th Maths Part 2 Sequences and Series Exercise 2.1 Questions And Answers Maharashtra Board

Question 1.
Check whether the following sequences are G.P. If so, write tn.
(i) 2, 6, 18, 54, ……
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (i)

(ii) 1, -5, 25, -125, ………
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (ii)

(iii) \(\sqrt{5}, \frac{1}{\sqrt{5}}, \frac{1}{5 \sqrt{5}}, \frac{1}{25 \sqrt{5}}, \cdots\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (iii)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

(iv) 3, 4, 5, 6, ……
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (iv)

(v) 7, 14, 21, 28, ……
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (v)

Question 2.
For the G.P.
(i) If r = \(\frac{1}{3}\), a = 9, find t7.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q2 (i)

(ii) If a = \(\frac{7}{243}\), r = 3, find t6.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q2 (ii)

(iii) If r = -3 and t6 = 1701, find a.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q2 (iii)

(iv) If a = \(\frac{2}{3}\), t6 = 162, find r.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q2 (iv)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Question 3.
Which term of the G. P. 5, 25, 125, 625, …… is 510?
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q3

Question 4.
For what values of x, the terms \(\frac{4}{3}\), x, \(\frac{4}{27}\) are in G. P.?
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q4

Question 5.
If for a sequence, \(\mathrm{t}_{\mathrm{n}}=\frac{5^{n-3}}{2^{n-3}}\), show that the sequence is a G. P. Find its first term and the common ratio.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q5
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q5.1

Question 6.
Find three numbers in G. P. such that their sum is 21 and the sum of their squares is 189.
Solution:
Let the three numbers in G. P. be \(\frac{a}{r}\), a, ar.
According to the given conditions,
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q6
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q6.1
When a = 6, r = 2,
\(\frac{a}{r}\) = 3, a = 6, ar = 12
Hence, the three numbers in G.P. are 12, 6, 3 or 3, 6, 12.

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Check:
If sum of the three numbers is 21 and sum of their squares is 189, then our answer is correct.
Sum of the numbers = 12 + 6 + 3 = 21
Sum of the squares of the numbers = 122 + 62 + 32
= 144 + 36 + 9
= 189
Thus, our answer is correct.

Question 7.
Find four numbers in G. P. such that the sum of the middle two numbers is \(\frac{10}{3}\) and their product is 1.
Solution:
Let the four numbers in G.P. be \(\frac{a}{r^{3}}, \frac{a}{r}, a r, a r^{3}\)
According to the given conditions,
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q7
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q7.1

Question 8.
Find five numbers in G. P. such that their product is 1024 and the fifth term is square of the third term.
Solution:
Let the five numbers in G. P. be
\(\frac{a}{r^{2}}, \frac{a}{r}, a, a r, a r^{2}\)
According to the given conditions,
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q8
Hence, the five numbers in G.P. are
1, 2, 4, 8, 16 or 1, -2, 4, -8, 16.

Question 9.
The fifth term of a G. P. is x, the eighth term of a G.P. is y and the eleventh term of a G.P. is z, verify whether y2 = xz.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q9

Question 10.
If p, q, r, s are in G.P., show that p + q, q + r, r + s are also in G. P.
Solution:
p, q, r, s are in G.P.
∴ \(\frac{\mathrm{q}}{\mathrm{p}}=\frac{\mathrm{r}}{\mathrm{q}}=\frac{\mathrm{s}}{\mathrm{r}}\)
Let \(\frac{\mathrm{q}}{\mathrm{p}}=\frac{\mathrm{r}}{\mathrm{q}}=\frac{\mathrm{s}}{\mathrm{r}}\) = k
∴ q = pk, r = qk, s = rk
We have to prove that p + q, q + r, r + s are in G.P.
i.e., to prove that \(\frac{\mathrm{q}+\mathrm{r}}{\mathrm{p}+\mathrm{q}}=\frac{\mathrm{r}+\mathrm{s}}{\mathrm{q}+\mathrm{r}}\)
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q10
∴ p + q, q + r, r + s are in G.P.

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Question 11.
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of the 5th hour?
Solution:
Since the number of bacteria in culture doubles every hour, increase in number of bacteria after every hour is in G.P.
∴ a = 50, r = \(\frac{100}{50}\) = 2
tn = arn-1
To find the number of bacteria at the end of the 5th hour.
(i.e., to find the number of bacteria at the beginning of the 6th hour, i.e., to find t6.)
∴ t6 = ar5
= 50 × (25)
= 50 × 32
= 1600

Question 12.
A ball is dropped from a height of 80 ft. The ball is such that it rebounds \(\left(\frac{3}{4}\right)^{\text {th }}\) of the height it has fallen. How high does the ball rebound on the 6th bounce? How high does the ball rebound on the nth bounce?
Solution:
Since the ball rebounds \(\left(\frac{3}{4}\right)^{\text {th }}\) of the height it has fallen, the height in successive bounce is in G.P.
1st height in the bounce = 80 × \(\frac{3}{4}\)
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q12

Question 13.
The numbers 3, x and x + 6 are in G. P. Find
(i) x
(ii) 20th term
(iii) nth term.
Solution:
(i) 3, x and x + 6 are in G. P.
\(\frac{x}{3}=\frac{x+6}{x}\)
x2 = 3x + 18
x2 – 3x – 18 = 0
(x – 6) (x + 3) = 0
x = 6, -3
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q13

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Question 14.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning, write down the number of mosquitoes after
(i) 3 years
(ii) 10 years
(iii) n years
Solution:
a = 200, r = 1 + \(\frac{10}{100}\) = \(\frac{11}{10}\)
Mosquitoes at the end of 1st year = 200 × \(\frac{11}{10}\)
(i) Number of mosquitoes after 3 years
= 200 × \(\frac{11}{10} \times\left(\frac{11}{10}\right)^{2}\)
= 200 \(\left(\frac{11}{10}\right)^{3}\)
= 200 (1.1)3

(ii) Number of mosquitoes after 10 years = 200 (1.1)10

(iii) Number of mosquitoes after n years = 200 (1.1)n

Question 15.
The numbers x – 6, 2x and x2 are in G. P. Find
(i) x
(ii) 1st term
(iii) nth term
Solution:
(i) x – 6, 2x and x are in Geometric progression.
∴ \(\frac{2 x}{x-6}=\frac{x^{2}}{2 x}\)
4x2 = x2(x – 6)
4 = x – 6
x = 10

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

(ii) t1 = x – 6 = 10 – 6 = 4

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q15

Maths Solutions for Class 11 State Board 

Complex Numbers Class 11 Maths 2 Miscellaneous Exercise 1 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Miscellaneous Exercise 1 Questions and Answers.

11th Maths Part 2 Complex Numbers Miscellaneous Exercise 1 Questions And Answers Maharashtra Board

(I) Select the correct answer from the given alternatives.

Question 1.
If n is an odd positive integer, then the value of 1 + (i)2n + (i)4n + (i)6n is:
(A) -4i
(B) 0
(C) 4i
(D) 4
Answer:
(B) 0
Hint:
1 + (i2)n + (i4)n + (i2)3n
= 1 – 1 + 1 – 1 …..(n odd positive integer)
= 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 2.
The value of \(\frac{i^{592}+i^{590}+i^{588}+i^{586}+i^{584}}{i^{582}+i^{580}+i^{578}+i^{576}+i^{574}}\) is equal to:
(A) -2
(B) 1
(C) 0
(D) -1
Answer:
(D) -1
Hint:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 I Q2

Question 3.
√-3 √-6 is equal to
(A) -3√2
(B) 3√2
(C) 3√2 i
(D) -3√2 i
Answer:
(A) -3√2
Hint:
√-3 √-6
= (√3 i) (√6 i)
= 3√2 (-1)
= -3√2

Question 4.
If ω is a complex cube root of unity, then the value of ω99 + ω100 + ω101 is:
(A) -1
(B) 1
(C) 0
(D) 3
Answer:
(C) 0
Hint:
ω99 + ω100 + ω101
= ω99 (1 + ω + ω2)
= ω99 (0)
= 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 5.
If z = r(cos θ + i sin θ), then the value of \(\frac{z}{\bar{z}}+\frac{\bar{z}}{z}\) is
(A) cos 2θ
(B) 2cos 2θ
(C) 2cos θ
(D) 2sin θ
Answer:
(B) 2cos 2θ
Hint:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 I Q5

Question 6.
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers
(A) 0, 1
(B) 1, 1
(C) 1, 0
(D) -1, 1
Answer:
(B) 1, 1
Hint:
(1 + ω)7
= (-ω2)7
= -ω14
= -ω23)4
= -ω2
= 1 + ω
A = 1, B = 1

Question 7.
The modulus and argument of (1 + i√3)8 are respectively
(A) 2 and \(\frac{2 \pi}{3}\)
(B) 256 and \(\frac{8 \pi}{3}\)
(C) 256 and \(\frac{2 \pi}{3}\)
(D) 64 and \(\frac{4 \pi}{3}\)
Answer:
(C) 256 and \(\frac{2 \pi}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 I Q7

Question 8.
If arg (z) = θ, then arg \(\overline{(\mathrm{z})}\) =
(A) -θ
(B) θ
(C) π – θ
(D) π + θ
Answer:
(A) -θ
Hint:
Let z = \(\mathrm{re}^{\mathrm{i} \theta}\), then \(\overline{\mathrm{z}}=\mathrm{r} \mathrm{e}^{-\mathrm{i} \theta}\)
∴ arg \(\overline{\mathbf{z}}\) = -θ.

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 9.
If -1 + √3 i = \(\mathrm{re}^{\mathrm{i} \theta}\), then θ =
(A) –\(\frac{2 \pi}{3}\)
(B) \(\frac{\pi}{3}\)
(C) –\(\frac{\pi}{3}\)
(D) \(\frac{2 \pi}{3}\)
Answer:
(D) \(\frac{2 \pi}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 I Q9

Question 10.
If z = x + iy and |z – zi| = 1, then
(A) z lies on X-axis
(B) z lies on Y-axis
(C) z lies on a rectangle
(D) z lies on a circle
Answer:
(D) z lies on a circle
Hint:
|z – zi | = |z| |1 – i| = 1
∴ |z| = \(\frac{1}{\sqrt{2}}\)
∴ x2 + y2 = \(\frac{1}{2}\)

(II) Answer the following:

Question 1.
Simplify the following and express in the form a + ib.
(i) 3 + √-64
Solution:
3 + √-64
= 3 + √64 √-1
= 3 + 8i

(ii) (2i3)2
Solution:
(2i3)2
= 4i6
= 4(i2)3
= 4(-1)3
= -4 …..[∵ i2 = -1]
= -4 + 0i

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

(iii) (2 + 3i) (1 – 4i)
Solution:
(2 + 3i)(1 – 4i)
= 2 – 8i + 3i – 12i2
= 2 – 5i – 12(-1) …..[∵ i2 = -1]
= 14 – 5i

(iv) \(\frac{5}{2}\)i(-4 – 3i)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (iv)

(v) (1 + 3i)2 (3 + i)
Solution:
(1 + 3i)2 (3 + i)
= (1 + 6i + 9i2)(3 + i)
= (1 + 6i – 9)(3 + i) ……[∵ i2 = -1]
= (-8 + 6i)(3 + i)
= -24 – 8i + 18i + 6i2
= -24 + 10i + 6(-1)
= -24 + 10i – 6
= -30 + 10i

(vi) \(\frac{4+3 i}{1-i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (vi)

(vii) \(\left(1+\frac{2}{i}\right)\left(3+\frac{4}{i}\right)(5+i)^{-1}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (vii)

(viii) \(\frac{\sqrt{5}+\sqrt{3 i}}{\sqrt{5}-\sqrt{3} i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (viii)

(ix) \(\frac{3 i^{5}+2 i^{7}+i^{9}}{i^{6}+2 i^{8}+3 i^{18}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (ix)

(x) \(\frac{5+7 i}{4+3 i}+\frac{5+7 i}{4-3 i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (x)

Question 2.
Solve the following equations for x, y ∈ R
(i) (4 – 5i)x + (2 + 3i)y = 10 – 7i
Solution:
(4 – 5i)x + (2 + 3i)y = 10 – 7i
(4x + 2y) + (3y – 5x) i = 10 – 7i
Equating real and imaginary parts, we get
4x + 2y= 10 i.e., 2x + y = 5 ……(i)
and 3y – 5x = -7 ……(ii)
Equation (i) × 3 – equation (ii) gives
11x = 22
∴ x = 2
Putting x = 2 in (i), we get
2(2) + y = 5
∴ y = 1
∴ x = 2 and y = 1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

(ii) \(\frac{x+i y}{2+3 i}\) = 7 – i
Solution:
\(\frac{x+i y}{2+3 i}\) = 7 – i
x + iy = (7 – i)(2 + 3i)
x + iy = 14 + 21i – 2i – 3i2
x + iy = 14 + 19i – 3(-1)
x + iy = 17 + 19i
Equating real and imaginary parts, we get
∴ x = 17 and y = 19

(iii) (x + iy) (5 + 6i) = 2 + 3i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q2 (iii)

(iv) 2x + i9 y(2 + i) = x i7 + 10 i16
Solution:
2x + i9 y(2 + i) = x i7 + 10 i16
2x + (i4)2 . i . y(2 + i) = x(i2)3 . i + 10 . (i4)4
2x + (1)2 . iy(2 + i) = x(-1)3 . i + 10(1)4 ……..[∵ i2 = -1, i4 = 1]
2x + 2yi + y i2 = -xi + 10
2x + 2yi – y + xi = 10
(2x – y) + (x + 2y)i = 10 + 0 . i
Equating real and imaginary parts, we get
2x – y = 10 ……(i)
and x + 2y = 0 ……..(ii)
Equation (i) × 2 + equation (ii) gives, we get
5x = 20
∴ x = 4
Putting x = 4 in (i), we get
2(4) – y = 10
y = 8 – 10
∴ y = -2
∴ x = 4 and y = -2

Question 3.
Evaluate
(i) (1 – i + i2)-15
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q3 (i)

(ii) i131 + i49
Solution:
i131 + i49
= (i4)32 . i3 + (i4)12 . i
= (1)32 (-i) + (1)12 . i
= -i + i
= 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 4.
Find the value of
(i) x3 + 2x2 – 3x + 21, if x = 1 + 2i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q4 (i)

(ii) x4 + 9x3 + 35x2 – x + 164, if x = -5 + 4i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q4 (ii)

Question 5.
Find the square roots of
(i) -16 + 30i
Solution:
Let \(\sqrt{-16+30 \mathrm{i}}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
-16 + 30i = a2 + b2 i2 + 2abi
-16 + 30i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = -16 and 2ab = 30
a2 – b2 = -16 and b = \(\frac{15}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (i)

(ii) 15 – 8i
Solution:
Let \(\sqrt{15-8 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
15 – 8i = a2 + b2 i2 + 2abi
15 – 8i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 15 and 2ab = -8
a2 – b2 = 15 and b = \(\frac{-4}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (ii)
When a = 4, b = \(\frac{-4}{4}\) = -1
When a = -4, b = \(\frac{-4}{-4}\) = 1
∴ \(\sqrt{15-8 i}\) = ±(4 – i)

(iii) 2 + 2√3 i
Solution:
Let \(\sqrt{2+2 \sqrt{3}}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
2 + 2√3 i = a2 + b2 i2 + 2abi
2 + 2√3 i = a2 – b2 + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 2 and 2ab = 2√3
a2 – b2 = 2 and b = \(\frac{\sqrt{3}}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (iii)

(iv) 18i
Solution:
Let √18i = a + bi, where a, b ∈ R.
Squaring on both sides, we get
18i = a2 + b2 i2 + 2abi
0 + 18i = a2 – b2 + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 0 and 2ab = 18
a2 – b2 = 0 and b = \(\frac{9}{a}\)
\(a^{2}-\left(\frac{9}{a}\right)^{2}=0\)
\(a^{2}-\frac{81}{a^{2}}=0\)
a4 – 81 = 0
(a2 – 9) (a2 + 9) = 0
a2 = 9 or a2 = -9
But a ∈ R
∴ a2 ≠ -9
∴ a2 = 9
∴ a = ± 3
When a = 3, b = \(\frac{9}{3}\) = 3
When a = -3, b = \(\frac{9}{-3}\) = -3
∴ √18i = ±(3 + 3i) = ±3(1 + i)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

(v) 3 – 4i
Solution:
Let \(\sqrt{3-4 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
3 – 4i = a2 + b2 i2 + 2abi
3 – 4i = a2 – b2 + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 3 and 2ab = -4
a2 – b2 = 3 and b = \(\frac{-2}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (v)

(vi) 6 + 8i
Solution:
Let \(\sqrt{6+8 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
6 + 8i = a2 + b2 i2 + 2abi
6 + 8i = a2 – b2 + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 6 and 2ab = 8
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (vi)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (vi).1

Question 6.
Find the modulus and argument of each complex number and express it in the polar form.
(i) 8 + 15i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (i)

(ii) 6 – i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (ii)

(iii) \(\frac{1+\sqrt{3} \mathbf{i}}{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (iii).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

(iv) \(\frac{-1-\mathbf{i}}{\sqrt{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (iv)

(v) 2i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (v)

(vi) -3i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (vi)

(vii) \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \mathbf{i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (vii)

Question 7.
Represent 1 + 21, 2 – i, -3 – 2i, -2 + 3i by points in Argand’s diagram.
Solution:
The complex numbers 1 + 2i, 2 – i, -3 – 2i, -2 + 3i will be represented by the points A(1, 2), B(2, -1), C(-3, -2), D(-2, 3) respectively as shown below:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q7

Question 8.
Show that z = \(\frac{5}{(1-i)(2-i)(3-i)}\) is purely imaginary number.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q8

Question 9.
Find the real numbers x and y such that \(\frac{x}{1+2 i}+\frac{y}{3+2 i}=\frac{5+6 i}{-1+8 i}\)
Solution:
\(\frac{x}{1+2 i}+\frac{y}{3+2 i}=\frac{5+6 i}{-1+8 i}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q9
(3x + y) + 2(x + y)i = 5 + 6i
Equating real and imaginary parts, we get
3x + y = 5 ……(i)
and 2(x + y) = 6
i.e., x + y = 3 …….(ii)
Subtracting (ii) from (i), we get
2x = 2
∴ x = 1
Putting x = 1 in (ii), we get
1 + y = 3
∴ y = 2
∴ x = 1, y = 2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 10.
Show that \(\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{10}+\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)^{10}=0\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q10

Question 11.
Show that \(\left(\frac{1+i}{\sqrt{2}}\right)^{8}+\left(\frac{1-i}{\sqrt{2}}\right)^{8}=2\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q11
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q11.1

Question 12.
Convert the complex numbers in polar form and also in exponential form.
(i) z = \(\frac{2+6 \sqrt{3} i}{5+\sqrt{3} i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (i).1

(ii) z = -6 + √2 i
Solution:
z = -6 + √2 i
∴ a = -6, b = √2
i.e. a < 0, b > 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (ii)

(iii) \(\frac{-3}{2}+\frac{3 \sqrt{3} i}{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (iii).1

Question 13.
If x + iy = \(\frac{a+i b}{a-i b}\), prove that x2 + y2 = 1.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q13

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 14.
Show that z = \(\left(\frac{-1+\sqrt{-3}}{2}\right)^{3}\) is a rational number.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q14

Question 15.
Show that \(\frac{1-2 i}{3-4 i}+\frac{1+2 i}{3+4 i}\) is real.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q15
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q15.1

Question 16.
Simplify
(i) \(\frac{\mathrm{i}^{29}+\mathrm{i}^{39}+\mathrm{i}^{49}}{\mathrm{i}^{30}+\mathrm{i}^{40}+\mathrm{i}^{50}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q16 (i)

(ii) \(\left(\mathrm{i}^{65}+\frac{1}{\mathrm{i}^{145}}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q16 (ii)

(iii) \(\frac{\mathrm{i}^{238}+\mathrm{i}^{236}+\mathrm{i}^{234}+\mathrm{i}^{232}+\mathrm{i}^{230}}{\mathrm{i}^{228}+\mathrm{i}^{226}+\mathrm{i}^{224}+\mathrm{i}^{222}+\mathrm{i}^{220}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q16 (iii)

Question 17.
Simplify \(\left[\frac{1}{1-2 i}+\frac{3}{1+i}\right]\left[\frac{3+4 i}{2-4 i}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q17
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q17.1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 18.
If α and β are complex cube roots of unity, prove that (1 – α) (1 – β) (1 – α2) (1 – β2) = 9.
Solution:
α and β are the complex cube roots of unity.
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q18

Question 19.
If ω is a complex cube root of unity, prove that (1 – ω + ω2)6 + (1 + ω – ω2)6 = 128.
Solution:
ω is the complex cube root of unity.
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2
∴ L.H.S. = (1 – ω + ω2)6 + (1 + ω – ω2)6
= [(1 + ω2) – ω]6 + [(1 + ω) – ω2]6
= (-ω – ω))6 + (-ω2 – ω2)6
= (-2ω)6 + (-2ω2)6
= 64ω6 + 64ω12
= 64(ω3)2 + 64(ω3)4
= 64(1)2 + 64(1)4
= 128
= R.H.S.

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 20.
If ω is the cube root of unity, then find the value of \(\left(\frac{-1+\mathbf{i} \sqrt{3}}{2}\right)^{18}+\left(\frac{-1-\mathbf{i} \sqrt{3}}{2}\right)^{18}\)
Solution:
If ω is the complex cube root of unity, then
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q20
Given Expression = ω18 + (ω2)18
= ω18 + ω36
= (ω3)6 + (ω3)12
= (1)6 + (1)12
= 2

Maths Solutions for Class 11 State Board

Complex Numbers Class 11 Maths 2 Exercise 1.4 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Ex 1.4 Questions and Answers.

11th Maths Part 2 Complex Numbers Exercise 1.4 Questions And Answers Maharashtra Board

Question 1.
Find the value of
(i) ω18
(ii) ω21
(iii) ω-30
(iv) ω-105
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q1

Question 2.
If ω is the complex cube root of unity, show that
(i) (2 – ω)(2 – ω2) = 7
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
L.H.S. = (2 – ω)(2 – ω2)
= 4 – 2ω2 – 2ω + ω3
= 4 – 2(ω2 + ω) + 1
= 4 – 2(-1) + 1
= 4 + 2 + 1
= 7
= R.H.S.

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(ii) (1 + ω – ω2)6 = 64
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (ii)

(iii) (1 + ω)3 – (1 + ω2)3 = 0
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (iii)

(iv) (2 + ω + ω2)3 – (1 – 3ω + ω2)3 = 65
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (iv)

(v) (3 + 3ω + 5ω2)6 – (2 + 6ω + 2ω2)3 = 0
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (v)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(vi) \(\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}\) = ω2
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (vi)

(vii) (a + b) + (aω + bω2) + (aω2 + bω) = 0
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (vii)

(viii) (a – b)(a – bω)(a – bω2) = a3 – b3
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (viii)

(ix) (a + b)2 + (aω + bω2)2 + (aω2+ bω)2 = 6ab
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (ix)

Question 3.
If ω is the complex cube root of unity, find the value of
(i) ω + \(\frac{1}{\omega}\)
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
\(\omega+\frac{1}{\omega}=\frac{\omega^{2}+1}{\omega}=\frac{-\omega}{\omega}=-1\)

(ii) ω2 + ω3 + ω4
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
ω2 + ω3 + ω4
= ω2(1 + ω + ω2)
= ω2(0)
= 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(iii) (1 + ω2)3
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(1 + ω2)3
= (-ω)3
= -ω3
= -1

(iv) (1 – ω – ω2)3 + (1 – ω + ω2)3
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(1 – ω – ω2)3 + (1 – ω + ω2)3
= [1 – (ω + ω2)]3 + [(1 + ω2) – ω]3
= [1 – (-1)]2 + (-ω – ω)3
= 23 + (-2ω)3
= 8 – 8ω3
= 8 – 8(1)
= 0

(v) (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
= (1 + ω)(1 + ω2)(1 + ω)(1 + ω2) …..[∵ ω3 = 1, ω4 = ω]
= (-ω2)(-ω)(-ω2)(-ω)
= ω6
= (ω3)2
= (1)2
= 1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

Question 4.
If α and β are the complex cube roots of unity, show that
(i) α2 + β2 + αβ = 0
(ii) α4 + β4 + α-1β-1 = 0
Solution:
α and β are the complex cube roots of unity.
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q4 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q4 (ii)

Question 5.
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are complex cube roots of unity, show that xyz = a3 + b3.
Solution:
x = a + b, y = αa + βb, z = aβ + bα
α and β are the complex cube roots of unity.
∴ α = \(\frac{-1+i \sqrt{3}}{2}\) and β = \(\frac{-1-i \sqrt{3}}{2}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q5

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

Question 6.
Find the equation in cartesian coordinates of the locus of z if
(i) |z| = 10
Solution:
Let z = x + iy
|z| = 10
|x + iy| = 10
\(\sqrt{x^{2}+y^{2}}\) = 10
∴ x2 + y2 = 100

(ii) |z – 3| = 2
Solution:
Let z = x + iy
|z – 3| = 2
|x + iy – 3| = 2
|(x – 3) + iy| = 2
\(\sqrt{(x-3)^{2}+y^{2}}\) = 2
∴ (x – 3)2 + y2 = 4

(iii) |z – 5 + 6i| = 5
Solution:
Let z = x + iy
|z – 5 + 6i| = 5
|x + iy – 5 + 6i| = 5
|(x – 5) + i(y + 6)| = 5
\(\sqrt{(x-5)^{2}+(y+6)^{2}}\) = 5
∴ (x – 5)2 + (y + 6)2 = 25

(iv) |z + 8| = |z – 4|
Solution:
Let z = x + iy
|z + 8| = |z – 4|
|x + iy + 8| = |x + iy – 4|
|(x + 8) + iy | = |(x – 4) + iy|
\(\sqrt{(x+8)^{2}+y^{2}}=\sqrt{(x-4)^{2}+y^{2}}\)
(x + 8)2 + y2 = (x – 4)2 + y2
x2 + 16x + 64 + y2 = x2 – 8x + 16 + y2
16x + 64 = -8x + 16
24x + 48 = 0
∴ x + 2 = 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(v) |z – 2 – 2i | = |z + 2 + 2i|
Solution:
Let z = x + iy
|z – 2 – 2i| = |z + 2 + 2i|
|x + iy – 2 – 2i | = |x + iy + 2 + 2i |
|(x – 2) + i(y – 2)| = |(x + 2) + i(y + 2)|
\(\sqrt{(x-2)^{2}+(y-2)^{2}}=\sqrt{(x+2)^{2}+(y+2)^{2}}\)
(x – 2)2 + (y – 2)2 = (x + 2)2 + (y + 2)2
x2– 4x + 4 + y2 – 4y + 4 = x2 + 4x + 4 + y2 + 4y + 4
-4x – 4y = 4x + 4y
8x + 8y = 0
x + y = 0
y = -x

(vi) \(\frac{|z+3 i|}{|z-6 i|}=1\)
Solution:
Let z = x + iy
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q6 (vi)
x2 + (y + 3)2 = x2 + (y – 6)2
y2 + 6y + 9 = y2 – 12y + 36
18y – 27 = 0
2y – 3 = 0

Question 7.
Use De Moivre’s theorem and simplify the following:
(i) \(\frac{(\cos 2 \theta+i \sin 2 \theta)^{7}}{(\cos 4 \theta+i \sin 4 \theta)^{3}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q7 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q7 (i).1

(ii) \(\frac{\cos 5 \theta+i \sin 5 \theta}{(\cos 3 \theta-i \sin 3 \theta)^{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q7 (ii)

(iii) \(\frac{\left(\cos \frac{7 \pi}{13}+i \sin \frac{7 \pi}{13}\right)^{4}}{\left(\cos \frac{4 \pi}{13}-i \sin \frac{4 \pi}{13}\right)^{6}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q7 (iii)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

Question 8.
Express the following in the form a + ib, a, b ∈ R, using De Moivre’s theorem.
(i) (1 – i)5
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (i).1

(ii) (1 + i)6
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (ii)

(iii) (1 – √3 i)4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (iii).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(iv) (-2√3 – 2i)5
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (iv)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (iv).1

Maths Solutions for Class 11 State Board

Complex Numbers Class 11 Maths 2 Exercise 1.3 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Ex 1.3 Questions and Answers.

11th Maths Part 2 Complex Numbers Exercise 1.3 Questions And Answers Maharashtra Board

Question 1.
Find the modulus and amplitude for each of the following complex numbers:
(i) 7 – 5i
Solution:
Let z = 7 – 5i
a = 7, b = -5
i.e. a > 0, b < 0
|z| = \(\sqrt{a^{2}+b^{2}}=\sqrt{7^{2}+(-5)^{2}}=\sqrt{49+25}=\sqrt{74}\)
Here, (7, -5) lies in 4th quadrant.
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (i)

(ii) √3 + √2 i
Solution:
Let z = √3 + √2 i
a = √3, b = √2,
i.e. a > 0, b > 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (ii)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(iii) -8 + 15i
Solution:
Let z = -8 + 15i
a = -8, b = 15 , i.e. a < 0, b > 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (iii)

(iv) -3(1 – i)
Solution:
Let z = -3(1 – i) = -3 + 3i
a = -3, b = 3 , i.e. a < 0, b > 0
|z| = \(\sqrt{a^{2}+b^{2}}=\sqrt{(-3)^{2}+3^{2}}=\sqrt{9+9}\) = 3√2
Here, (-3, 3) lies in 2nd quadrant.
amp(z) = π – \(\tan ^{-1}\left|\frac{b}{a}\right|\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (iv)

(v) -4 – 4i
Solution:
Let z = -4 – 4i
a = -4, b = -4 , i.e. a < 0, b < 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (v)

(vi) √3 – i
Solution:
Let z = √3 – i
a = √3, b = -1, i.e. a > 0, b < 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (vi)

(vii) 3
Solution:
Let z = 3 + 0i
a = 3, b = 0
z is a real number, it lies on the positive real axis.
|z|= \(\sqrt{a^{2}+b^{2}}=\sqrt{3^{2}+0^{2}}=\sqrt{9+0}\) = 3
and amp (z) = 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(viii) 1 + i
Solution:
Let z = 1 + i
a = 1, b = 1, i.e. a > 0, b > 0
|z| = \(\sqrt{a^{2}+b^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{1+1}=\sqrt{2}\)
Here, (1, 1) lies in 1st quadrant.
amp (z) = \(\tan ^{-1}\left(\frac{b}{a}\right)=\tan ^{-1}(1)=\frac{\pi}{4}\)

(ix) 1 + i√3
Solution:
Let z = 1 + i√3
a = 1, b = √3, i.e. a > 0, b > 0
|z| = \(\sqrt{a^{2}+b^{2}}=\sqrt{1^{2}+(\sqrt{3})^{2}}=\sqrt{1+3}=2\)
Here, (1, √3) lies in 1st quadrant.
amp (z) = \(\tan ^{-1}\left(\frac{b}{a}\right)=\tan ^{-1}(\sqrt{3})=\frac{\pi}{3}\)

(x) (1 + 2i)2 (1 – i)
Solution:
Let z = (1 + 2i)2 (1 – i)
= (1 + 4i + 4i2) (1 – i)
= [1 + 4i + 4(-1)] (1 – i) ….[∵ i2 = -1]
= (-3 + 4i) (1 – i)
= -3 + 3i + 4i – 4i2
= -3 + 7i – 4(-1)
= -3 + 7i + 4
∴ z = 1 + 7i
∴ a = 1, b = 7, i. e. a > 0, b > 0
∴ |z| = \(\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=\sqrt{1^{2}+7^{2}}=\sqrt{1+49}=5 \sqrt{2}\)
Here, (1, 7) lies in 1st quadrant.
∴ amp(z) = \(\tan ^{-1}\left(\frac{b}{a}\right)=\tan ^{-1}(7)\)

Question 2.
Find real values of θ for which \(\left(\frac{4+3 i \sin \theta}{1-2 i \sin \theta}\right)\) is purely real.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Question 3.
If z = 3 + 5i, then represent the z, \(\overline{\mathbf{z}}\), -z, \(\overline{\mathbf{-z}}\) in Argand’s diagram.
Solution:
z = 3 + 5i
\(\overline{\mathbf{z}}\) = 3 – 5i
-z = – 3 – 5i
\(\overline{\mathbf{-z}}\)= -3 + 5i
The above complex numbers will be represented by the points
A (3, 5), B (3, -5), C (-3, -5) , D (-3, 5) respectively as shown below:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q3

Question 4.
Express the following complex numbers in polar form and exponential form.
(i) -1 + √3 i
Solution:
Let z = – 1 + √3
a = -1, b = √3
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (i)

(ii) -i
Solution:
Let z = -i = 0 – i
a = 0, b = -1
z lies on negative imaginary Y-axis.
|z| = r = \(\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=\sqrt{0^{2}+(-1)^{2}}\) = 1 and
θ = amp z = 270° = \(\frac{3 \pi}{2}\)
The polar form of z = r (cos θ + i sin θ)
= 1 (cos 270° + i sin 270°)
= 1 (cos \(\frac{3 \pi}{2}\) + i sin \(\frac{3 \pi}{2}\))
The exponential form of z = \(r e^{i \theta}=e^{\frac{3 \pi}{2} i}\)

(iii) -1
Solution:
Let z = -1 = -1 + 0.i
a = -1, b = 0
z lies on negative real X-axis.
|z| = r = \(\sqrt{a^{2}+b^{2}}=\sqrt{(-1)^{2}+0^{2}}\) = 1 and
θ = amp z = 180° = π
The polar form of z = r (cos θ + i sin θ)
= 1 (cos 180° + i sin 180°)
= 1 (cos π + i sin π)
The exponential form of z = \(r e^{i \theta}=e^{\pi i}\)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(iv) \(\frac{1}{1+i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (iv)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (iv).1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (iv).2

(v) \(\frac{1+2 i}{1-3 i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (v)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (v).1

(vi) \(\frac{1+7 \mathbf{i}}{(2-\mathbf{i})^{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (vi)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (vi).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Question 5.
Express the following numbers in the form x + iy:
(i) \(\sqrt{3}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (i)

(ii) \(\sqrt{2} \cdot\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (ii)

(iii) \(7\left(\cos \left(-\frac{5 \pi}{6}\right)+i \sin \left(-\frac{5 \pi}{6}\right)\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (iii)

(iv) \(e^{\frac{\pi}{3} i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (iv)

(v) \(e^{\frac{-4 \pi}{3} i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (v)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (v).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(vi) \([latex]e^{\frac{5 \pi}{6} i}\)[/latex]
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (vi)

Question 6.
Find the modulus and argument of the complex number \(\frac{1+2 i}{1-3 i}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q6
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q6.1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q6.2
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q6.3

Question 7.
Convert the complex number \(\mathrm{z}=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}\) in the polar form.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q7
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q8

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Question 8.
For z = 2 + 3i, verify the following:
(i) \(\overline{(\bar{z})}=z\)
Solution:
z = 2 + 3i
∴ \(\bar{z}\) = 2 – 3i
∴ \(\overline{\bar{z}}\) = 2 + 3i = z

(ii) \(\overline{z \bar{z}}=|z|^{2}\)
Solution:
z\(\bar{z}\) = (2 + 3i) (2 – 3i)
= 4 – 9i2
= 4 – 9(-1) …..[∵ i2 = -1]
= 13
|z|2 = \(\left(\sqrt{2^{2}+3^{2}}\right)^{2}\)
= 22 + 32
= 4 + 9
= 13
∴ \(\overline{z \bar{z}}=|z|^{2}\)

(iii) (z + \(\bar{z}\)) is real
Solution:
(z + \(\bar{z}\)) = (2 + 3i) + (2 – 3i)
= 2 + 3i + 2 – 3i
= 4, which is a real number.
∴ z + \(\bar{z}\) is real.

(iv) z – \(\bar{z}\) = 6i
Solution:
z – \(\bar{z}\) = (2 + 3i) – (2 – 3i)
= 2 + 3i – 2 + 3i
= 6i

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Question 9.
z1 = 1 + i, z2 = 2 – 3i, verify the following:
(i) \(\overline{Z_{1}+Z_{2}}=\overline{Z_{1}}+\overline{Z_{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (i)

(ii) \(\overline{Z_{1}-Z_{2}}=\overline{Z_{1}}-\overline{Z_{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (ii)

(iii) \(\overline{Z_{1} \cdot Z_{2}}=\overline{Z_{1}} \cdot \overline{Z_{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (iii)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(iv) \(\overline{\left(\frac{\mathbf{z}_{1}}{\mathbf{z}_{2}}\right)}=\frac{\overline{\mathbf{z}}_{1}}{\overline{\mathbf{z}}_{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (iv)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (iv).1

Maths Solutions for Class 11 State Board

Complex Numbers Class 11 Maths 2 Exercise 1.2 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Ex 1.2 Questions and Answers.

11th Maths Part 2 Complex Numbers Exercise 1.2 Questions And Answers Maharashtra Board

Question 1.
Find the square root of the following complex numbers:
(i) -8 – 6i
Solution:
Let \(\sqrt{-8-6 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
-8 – 6i = (a + bi)2
-8 – 6i = a2 + b2i2 + 2abi
-8 – 6i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = -8 and 2ab = -6
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (i).1

(ii) 7 + 24i
Solution:
Let \(\sqrt{7+24 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
7 + 24i = (a + bi)2
7 + 24i = a2 + b2i2 + 2abi
7 + 24i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 7 and 2ab = 24
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (ii)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iii) 1 + 4√3 i
Solution:
Let \(\sqrt{1+4 \sqrt{3} i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
1 + 4√3 i = (a + bi)2
1 + 4√3i = a2 + b2i2 + 2abi
1 + 4√3i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real arid imaginary parts, we get
a2 – b2 = 1 and 2ab = 4√3
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (iii).1

(iv) 3 + 2√10 i
Solution:
Let \(\sqrt{3+2 \sqrt{10}} i\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
3 + 2√10 i = a2 + b2i2 + 2abi
3 + 2√10 i = (a2 – b2) + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 3 and 2ab = 2√10
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (iv)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (iv).1

(v) 2(1 – √3 i)
Solution:
Let \(\sqrt{2(1-\sqrt{3} i)}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
2(1 – √3 i) = a2 + b2i2 + 2abi
2 – 2√3 i = (a2 – b2) + 2abi ….[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 2 and 2ab = -2√3
a2 – b2 = 2 and b = \(-\frac{\sqrt{3}}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (v)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

Question 2.
Solve the following quadratic equations:
(i) 8x2 + 2x + 1 = 0
Solution:
Given equation is 8x2 + 2x + 1 = 0
Comparing with ax2 + bx + c = 0, we get
a = 8, b = 2, c = 1
Discriminant = b2 – 4ac
= (2)2 – 4 × 8 × 1
= 4 – 32
= -28 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q2 (i)

(ii) 2x2 – √3 x + 1 = 0
Solution:
Given equation is 2x2 – √3 x + 1 = 0
Comparing with ax2 + bx + c = 0, we get
a = 2, b = -√3, c = 1
Discriminant = b2 – 4ac
= (-√3)2 – 4 × 2 × 1
= 3 – 8
= -5 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q2 (ii)

(iii) 3x2 – 7x + 5 = 0
Solution:
Given equation is 3x2 – 7x + 5 = 0
Comparing with ax2 + bx + c = 0, we get
a = 3, b = -7, c = 5
Discriminant = b2 – 4ac
= (-7)2 – 4 × 3 × 5
= 49 – 60
= -11 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q2 (iii)
The roots of the given equation are \(\frac{7+\sqrt{11} \mathrm{i}}{6}\) and \(\frac{7-\sqrt{11} \mathrm{i}}{6}\)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iv) x2 – 4x + 13 = 0
Solution:
Given equation is x2 – 4x + 13 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -4, c = 13
Discriminant = b2 – 4ac
= (-4)2 – 4 × 1 × 13
= 16 – 52
= -36 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q2 (iv)
∴ The roots of the given equation are 2 + 3i and 2 – 3i.

Question 3.
Solve the following quadratic equations:
(i) x2 + 3ix + 10 = 0
Solution:
Given equation is x2 + 3ix + 10 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 3i, c = 10
Discriminant = b2 – 4ac
= (3i)2 – 4 × 1 × 10
= 9i2 – 40
= -9 – 40 ……[∵ i2 = -1]
= -49 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q3 (i)
∴ x = 2i or x = -5i
∴ The roots of the given equation are 2i and -5i.

(ii) 2x2 + 3ix + 2 = 0
Solution:
Given equation is 2x2 + 3ix + 2 = 0
Comparing with ax + bx + c = 0, we get
a = 2, b = 3i, c = 2
Discriminant = b2 – 4ac
= (3i)2 – 4 × 2 × 2
= 9i2 – 16
= -9 – 16 …..[∵ i2 = -1]
= -25 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q3 (ii)
∴ The roots of the given equation are \(\frac{1}{2}\)i and -2i.

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iii) x2 + 4ix – 4 = 0
Solution:
Given equation is x2 + 4ix – 4 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 4i, c = -4
Discriminant = b2 – 4ac
= (4i)2 – 4 × 1 × (-4)
= 16i2 + 16
= -16 + 16 …..[∵ i2 = -1]
= 0
So, the given equation has equal roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q3 (iii)
∴ x = -2i
∴ The root of the given equation is -2i.

(iv) ix2 – 4x – 4i = 0
Solution:
ix2 – 4x – 4i = 0
Multiplying throughout by i, we get
i2x2 – 4ix – 4i2 = 0
-x2 – 4ix + 4 = 0 …[∵ i2 = -1]
x2 + 4ix – 4 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 4i, c = -4
Discriminant = b2 – 4ac
= (4i)2 – 4 × 1 × (-4)
= 16i2 + 16
= -16 + 16
= 0
So, the given equation has equal roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q3 (iv)
∴ The root of the given equation is -2i

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

Question 4.
Solve the following quadratic equations:
(i) x2 – (2 + i) x – (1 – 7i) = 0
Solution:
Given equation is x2 – (2 + i)x – (1 – 7i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(2 + i), c = -(1 – 7i)
Discriminant = b2 – 4ac
= [-(2 + i)]2 – 4 × 1 × -(1 – 7i)
= 4 + 4i + i2 + 4 – 28i
= 4 + 4i – 1 + 4 – 28i …..[∵ i2 = – 1]
= 7 – 24i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (i)
Let \(\sqrt{7-24 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
7 – 24i = a2 + i2b2 + 2abi
7 – 24i = a2 – b2 + 2abi
Equating real and imaginary parts, we get
a2 – b2 = 7 and 2ab = -24
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (i).1

(ii) x2 – (3√2 + 2i) x + 6√2 i = 0
Solution:
Given equation is x2 – (3√2 + 2i) x + 6√2 i = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(3√2 + 2i), c = 6√2i
Discriminant = b2 – 4ac
= [-(3√2 + 2i)]2 – 4 × 1 × 6√2 i
= 18 + 12√2i + 4i2 – 24√2 i
= 18 – 12√2 i – 4 ……[∵ i2 = -1]
= 14 – 12√2 i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (ii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (ii).2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iii) x2 – (5 – i) x + (18 + i) = 0
Solution:
Given equation is x2 – (5 – i)x + (18 + i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(5 – i), c = 18 + i
Discriminant = b2 – 4ac
= [-(5 – i)]2 – 4 × 1 × (18 + i)
= 25 – 10i + i2 – 72 – 4i
= 25 – 10i – 1 – 72 – 4i ……[∵ i2 = -1]
= -48 – 14i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iii).1

(iv) (2 + i) x2 – (5 – i) x + 2(1 – i) = 0
Solution:
Given equation is (2 + i) x2 – (5 – i) x + 2(1 – i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 2 + i, b = -(5 – i), c = 2(1 – i)
Discriminant = b2 – 4ac
= [-(5 – i)]2 – 4 × (2 + i) × 2(1 – i)
= 25 – 10i + i2 – 8(2 + i) (1 – i)
= 25 – 10i + i2 – 8(2 – 2i + i – i2)
= 25 – 10i – 1 – 8(2 – i + 1) …..[∵ i2 = -1]
= 25 – 10i – 1 – 16 + 8i – 8
= -2i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iv)
Let \(\sqrt{-2 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
-2i = a2 + b2i2 + 2abi
-2i = a2 – b2 + 2abi
Equating real and imaginary parts, we get
a2 – b2 = 0 and 2ab = -2
a2 – b2 = 0 and b = \(-\frac{1}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iv).1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iv).2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

Question 5.
Find the value of
(i) x3 – x2 + x + 46, if x = 2 + 3i
Solution:
x = 2 + 3i
x – 2 = 3i
(x – 2)2 = 9i2
x2 – 4x + 4 = 9(-1) …..[∵ i2 = -1]
x2 – 4x + 13 = 0 …..(i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (i)
Dividend = Divisor × Quotient + Remainder
∴ x3 – x2 + x + 46 = (x2 – 4x + 13) (x + 3) + 7
= 0(x + 3) + 7 …..[from(i)]
= 7

Alternate Method:
x = 2 + 3i
α = 2 + 3i, \(\bar{\alpha}\) = 2 – 3i
α\(\bar{\alpha}\) = (2 + 3i)(2 – 3i)
= 4 – 6i + 6i – 9i2
= 4 – 9(-1)
= 4 + 9
= 13
α + \(\bar{\alpha}\) = 2 + 3i + 2 – 3i = 4
∴ Standard form of quadratic equation,
x2 – (Sum of roots) x + Product of roots = 0
x2 – 4x + 13 = 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (i).1
Dividend = Divisor × Quotient + Remainder
∴ x3 – x2 + x + 46 = (x2 – 4x + 13).(x + 3) + 7
= 0(x + 3) + 7 …..[From (i)]
= 7

(ii) 2x3 – 11x2 + 44x + 27, if x = \(\frac{25}{3-4 i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (ii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (ii).1
Dividend = Divisor × Quotient + Remainder
2x3 – 11x2 + 44x + 27 = (x2 – 6x + 25)(2x + 1) + 2
= 0.(2x + 1) + 2 …..[From (i)]
= 0 + 2
= 2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iii) x3 + x2 – x + 22, if x = \(\frac{5}{1-2 i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (iii)
Dividend = Divisor × Quotient + Remainder
x3 + x2 – x + 22 = (x2 – 2x + 5)(x + 3) + 7
= 0.(x + 3) + 7 …..[From (i)]
= 0 + 7
= 7

(iv) x4 + 9x3 + 35x2 – x + 4, if x = -5 + √-4
Solution:
x = -5 + √-4
x + 5 = √-4
x + 5 = √4 √-1
x + 5 = 2i
(x + 5)2 = 4i2
x2 + 10x + 25 = 4(-1) ….[∵ i2 = -1]
x2 + 10x + 29 = 0 …..(i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (iv)
Dividend = Divisor × Quotient + Remainder
x4 + 9x3 + 35x2 – x + 4 = (x2 + 10x + 29) (x2 – x + 16) – 132x – 460
= 0.(x2 – x + 16) – 132x – 460 …..[From (i)]
= -132 (-5 + 2i) – 460
= 660 – 264i – 460
= 200 – 264i

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(v) 2x4 + 5x3 + 7x2 – x + 41, if x = -2 – √3i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (v)
Dividend = Divisor × Quotient + Remainder
2x4 + 5x3 + 7x2 – x + 41 = (x2 + 4x + 7) (2x2 – 3x + 5) + 6
= 0(2x2 – 3x + 5) + 6 ……[From (i)]
= 0 + 6
= 6

Maths Solutions for Class 11 State Board

Complex Numbers Class 11 Maths 2 Exercise 1.1 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Ex 1.1 Questions and Answers.

11th Maths Part 2 Complex Numbers Exercise 1.1 Questions And Answers Maharashtra Board

Question 1.
Simplify:
(i) √-16 + 3√-25 + √-36 – √-625
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q1 (i)
= 4i + 3(5i) + 6i – 25i
= 25i – 25i
= 0

(ii) 4√-4 + 5√-9 – 3√-16
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q1 (ii)

Question 2.
Write the conjugates of the following complex numbers
(i) 3 + i
Solution:
Conjugate of (3 + i) is (3 – i).

(ii) 3 – i
Solution:
Conjugate of (3 – i) is (3 + i).

(iii) √-5 – √7 i
Solution:
Conjugate of (√-5 – √7 i) is (√-5 + √7 i).

(iv) -√-5
Solution:
-√-5 = -√5 × √-1 = -√5 i
Conjugate of (-√-5) is √5 i

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1

(v) 5i
Solution:
Conjugate of (5i) is (-5i).

(vi) √5 – i
Solution:
Conjugate of (√5 – i) is (√5 + i).

(vii) √2 + √3 i
Solution:
Conjugate of (√2 + √3 i) is (√2 – √3 i)

(viii) cos θ + i sin θ
Solution:
Conjugate of (cos θ + i sin θ) is (cos θ – i sin θ)

Question 3.
Find a and b if
(i) a + 2b + 2ai = 4 + 6i
Solution:
a + 2b + 2ai = 4 + 6i
Equating real and imaginary parts, we get
a + 2b = 4 …..(i)
2a = 6 ……(ii)
∴ a = 3
Substituting, a = 3 in (i), we get
3 + 2b = 4
∴ b = \(\frac{1}{2}\)
∴ a = 3 and b = \(\frac{1}{2}\)

Check:
For a = 3 and b = \(\frac{1}{2}\)
Consider, L.H.S. = a + 2b + 2ai
= 3 + 2(\(\frac{1}{2}\)) + 2(3)i
= 4 + 6i
= R.H.S.

(ii) (a – b) + (a + b)i = a + 5i
Solution:
(a – b) + (a + b)i = a + 5i
Equating real and imaginary parts, we get
a – b = a ……(i)
a + b = 5 ……(ii)
From (i), b = 0
Substituting b = 0 in (ii), we get
a + 0 = 5
∴ a = 5
∴ a = 5 and b = 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1

(iii) (a + b) (2 + i) = b + 1 + (10 + 2a)i
Solution:
(a + b) (2 + i) = b + 1 + (10 + 2a)i
2(a + b) + (a + b)i = (b + 1) + (10 + 2a)i
Equating real and imaginary parts, we get
2(a + b) = b + 1
∴ 2a + b = 1 ……(i)
and a + b = 10 + 2a
-a + b = 10 …….(ii)
Subtracting equation (ii) from (i), we get
3a = -9
∴ a = -3
Substituting a = – 3 in (ii), we get
-(-3) + b = 10
∴ b = 7
∴ a = -3 and b = 7

(iv) abi = 3a – b + 12i
Solution:
abi = 3a – b + 12i
∴ 0 + abi = (3a – b) + 12i
Equating real and imaginary parts, we get
3a – b = 0
∴ 3a = b …..(i)
and ab = 12
∴ b = \(\frac{12}{a}\) ……..(ii)
Substituting b = \(\frac{12}{a}\) in (i), we get
3a = \(\frac{12}{a}\)
3a2 = 12
a2 = 4
a = ±2
When a = 2, b = \(\frac{12}{a}\) = \(\frac{12}{2}\) = 6
When a = -2, b = \(\frac{12}{a}\) = \(\frac{12}{-2}\) = -6
∴ a = 2 and b = 6 or a = -2 and b = -6

(v) \(\frac{1}{a+i b}\) = 3 – 2i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q3 (v)

(vi) (a + ib) (1 + i) = 2 + i
Solution:
(a + ib)(1 + i) = 2 + i
a + ai + bi + bi2 = 2 + i
a + (a + b)i + b(-1) = 2 + i ……(∵ i2 = -1)
(a – b) + (a + b)i = 2 + i
Equating real and imaginary parts, we get
a – b = 2 ……(i)
a + b = 1 …….(ii)
Adding equations (i) and (ii), we get
2a = 3
∴ a = \(\frac{3}{2}\)
Substituting a = \(\frac{3}{2}\) in (ii), we get
\(\frac{3}{2}\) + b = 1
∴ b = 1 – \(\frac{3}{2}\) = \(\frac{-1}{2}\)
∴ a = \(\frac{3}{2}\) and b = \(\frac{-1}{2}\)

Question 4.
Express the following in the form of a + ib, a, b ∈ R, i = √-1. State the values of a and b:
(i) (1 + 2i)(-2 + i)
Solution:
(1 + 2i)(-2 + i) = -2 + i – 4i + 2i2
= -2 – 3i + 2(-1) ……[∵ i2 = -1]
∴ (1 + 2i)(-2 + i) = -4 – 3i
∴ a = -4 and b = -3

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1

(ii) (1 + i)(1 – i)-1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q4 (ii)

(iii) \(\frac{i(4+3 i)}{1-i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q4 (iii)

(iv) \(\frac{(2+i)}{(3-i)(1+2 i)}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q4 (iv)

(v) \(\left(\frac{1+i}{1-1}\right)^{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q4 (v)

(vi) \(\frac{3+2 i}{2-5 i}+\frac{3-2 i}{2+5 i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q4 (vi)

(vii) (1 + i)-3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q4 (vii)

(viii) \(\frac{2+\sqrt{-3}}{4+\sqrt{-3}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q4 (viii)

(ix) (-√5 + 2√-4 ) + (1 – √-9 ) + (2 + 3i)(2 – 3i)
Solution:
(-√5 + 2√-4) + (1 – √-9) + (2 + 3i)(2 – 3i)
= (-√5 + 2√4.√-1) + (1 – √9.√-1) + 4 – 9i2
= [-√5 + 2(2)i] + (1 – 3i) + 4 – 9i2
= -√5 + 4i + 1 – 3i + 4 – 9(-1) ……[∵ i2 = -1]
= (14 – √5) + i
∴ a = 14 – √5 and b = 1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1

(x) (2 + 3i)(2 – 3i)
Solution:
(2 + 3i)(2 – 3i)
= 4 – 9i2
= 4 – 9(-1) …[∵ i2 = -1]
= 4 + 9
= 13
∴ (2 + 3i)(2 – 3i) = 13 + 0i
∴ a = 13 and b = 0

(xi) \(\frac{4 i^{8}-3 i^{9}+3}{3 i^{11}-4 i^{10}-2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q4 (xi)

Question 5.
Show that (-1 + √3i)3 is a real number.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q5

Question 6.
Find the value of (3 + \(\frac{2}{\mathrm{i}}\)) (i6 – i7) (1 + i11).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q6

Question 7.
Evaluate the following:
(i) i35
(ii) i888
(iii) i93
(iv) i116
(v) i403
(vi) \(\frac{1}{i^{58}}\)
(vii) i-888
(viii) i30 + i40 + i50 + i60
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q7

Question 8.
Show that 1 + i10 + i20 + i30 is a real number.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q8
= 1 – 1 + 1 – 1
= 0, which is a real number.

Question 9.
Find the value of
(i) i49 + i68 + i89 + i110
(ii) i + i2 + i3 + i4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q9

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1

Question 10.
Simplify: \(\frac{\mathbf{i}^{592}+\mathbf{i}^{590}+\mathbf{i}^{588}+\mathbf{i}^{586}+\mathbf{i}^{584}}{\mathbf{i}^{582}+\mathbf{i}^{580}+\mathbf{i}^{578}+\mathbf{i}^{576}+\mathbf{i}^{574}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q10

Question 11.
Find the value of 1 + i2 + i4 + i6 + i8 + …… + i20.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q11

Question 12.
Show that 1 + i10 + i100 – i1000 = 0.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q12

Question 13.
Is (1 + i14 + i18 + i22) a real number? Justify your answer.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q13

Question 14.
Evaluate: \(\left(\mathbf{i}^{37}+\frac{1}{\mathbf{i}^{67}}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q14

Question 15.
Prove that: (1 + i)4 × \(\left(1+\frac{1}{\mathrm{i}}\right)^{4}\) = 16
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q15

Question 16.
Find the value of \(\frac{\mathbf{i}^{6}+\mathbf{i}^{7}+\mathbf{i}^{8}+\mathbf{i}^{9}}{\mathbf{i}^{2}+\mathbf{i}^{3}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q16

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1

Question 17.
If a = \(\frac{-1+\sqrt{3} i}{2}\), b = \(\frac{-1-\sqrt{3} i}{2}\), then show that a2 = b and b2 = a.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q17

Question 18.
If x + iy = (a + ib)3, show that \(\frac{x}{a}+\frac{y}{b}\) = 4(a2 – b2)
Solution:
x + iy = (a + ib)3
x + iy = a3 + 3a2bi + 3ab2i2 + b3i3
x + iy = a3 + 3a2bi – 3ab2 – b3i ……[∵ i2 = -1, i3 = -i]
x + iy = (a3 – 3ab2) + (3a2b – b3)i
Equating real and imaginary parts, we get
x = a3 – 3ab2 and y = 3a2b – b3
\(\frac{x}{a}\) = a2 – 3b2 and \(\frac{y}{b}\) = 3a2 – b2
\(\frac{x}{a}+\frac{y}{b}\) = a2 – 3b + 3a2 – b2
\(\frac{x}{a}+\frac{y}{b}\) = 4a2 – 4b2
\(\frac{x}{a}+\frac{y}{b}\) = 4(a2 – b2)

Alternate Method:
x + iy = (a + ib)3
x + iy = a3 + 3a2bi + 3ab2i2 + b3i3
x + iy = a3 + 3a2bi – 3ab2 – b3i …..[∵ i2 = -1, i3 = -i]
x + iy = (a3 – 3ab2) + (3a2b – b3)i
Equating real and imaginary parts, we get
x = a3 – 3ab2 and y = 3a2b – b3
Consider
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q18

Question 19.
If \(\frac{a+3 i}{2+i b}\) = 1 – i, show that (5a – 7b) = 0.
Solution:
\(\frac{a+3 i}{2+i b}\) = 1 – i
a + 3i = (1 – i)(2 + ib)
= 2 + bi – 2i – bi2
= 2 + (b – 2)i – b(-1) ……[∵ i2 = -1]
a + 3i = (2 + b) + (b – 2)i
Equating real and imaginary parts, we get
a = 2 + b and 3 = b – 2
a = 2 + b and b = 5
a = 2 + 5 = 7
5a – 7b = 5(7) – 7(5) = 35 – 35 = 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1

Question 20.
If x + iy = \(\sqrt{\frac{a+i b}{c+i d}}\), prove that \(\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q20
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q20.1

Question 21.
If (a + ib) = \(\frac{1+i}{1-i}\), then prove that a2 + b2 = 1.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q21
∴ a + bi = 0 + i
Equating real and imaginary parts, we get
a = 0 and b = 1
a2 + b2 = 02 + 12 = 1

Question 22.
Show that \(\left(\frac{\sqrt{7}+i \sqrt{3}}{\sqrt{7}-i \sqrt{3}}+\frac{\sqrt{7}-i \sqrt{3}}{\sqrt{7}+i \sqrt{3}}\right)\) is real.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q22

Question 23.
If (x + iy)3 = y + vi, then show that \(\frac{y}{x}+\frac{v}{y}\) = 4(x2 – y2).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q23

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1

Question 24.
Find the values of x and y which satisfy the following equations (x, y ∈ R)
(i) (x + 2y) + (2x – 3y)i + 4i = 5
Solution:
(x + 2y) + (2x – 3y)i + 4i = 5
(x + 2y) + (2x – 3y)i = 5 – 4i
Equating real and imaginary parts, we get
x + 2y = 5 ……(i)
and 2x – 3y = -4 …..(ii)
Equation (i) x 2 – equation (ii) gives
7y = 14
∴ y = 2
Substituting y = 2 in (i), we get
x + 2(2) = 5
x + 4 = 5
∴ x = 1
∴ x = 1 and y = 2

Check:
For x = 1 and y = 2
Consider, L.H.S. = (x + 2y) + (2x – 3y)i + 4i
= (1 + 4) + (2 – 6)i + 4i
= 5 – 4i + 4i
= 5
= R.H.S.

(ii) \(\frac{x+1}{1+i}+\frac{y-1}{1-i}=i\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q24 (ii)
(x + y) + (y – x – 2)i = 2i
(x + y) + (y – x – 2)i = 0 + 2i
Equating real and imaginary parts, we get
x + y = 0 and y – x – 2 = 2
∴ x + y = 0 …….(i)
and -x + y = 4 …….(ii)
Adding (i) and (ii), we get
2y = 4
∴ y = 2
Substituting y = 2 in (i), we get
x + 2 = 0
∴ x = -2
∴ x = -2 and y = 2

(iii) \(\frac{x+i y}{2+3 i}+\frac{2+i}{2-3 i}=\frac{9}{13}(1+i)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1 Q24 (iii)
(2x + 3y + 1) + (8 – 3x + 2y)i = 9 + 9i
Equating real and imaginary parts, we get
2x + 3y + 1 = 9 and 8 – 3x + 2y = 9
2x + 3y = 8 ……(i)
and 3x – 2y = – 1 ……(ii)
Equation (i) × 2 + equation (ii) × 3 gives
13x = 13
∴ x = 1
Substituting x = 1 in (i), we get
2(1) + 3y = 8
3y = 6
∴ y = 2
∴ x = 1 and y = 2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.1

(iv) If x(1 + 3i) + y(2 – i) – 5 + i3 = 0, find x + y
Solution:
x(1 + 3i) + y(2 – i) – 5 + i3 = 0
x + 3xi + 2y – yi – 5 – i = 0 ……[∵ i3 = -i]
(x + 2y – 5) + (3x – y – 1)i = 0 + 0i
Equating real and imaginary parts, we get
x + 2y – 5 = 0 …..(i)
and 3x – y – 1 = 0 ……(ii)
Equation (i) + equation (ii) × 2 gives
7x – 7 = 0
7x = 1
∴ x = 1
Substituting x = 1 in (i), we get
1 + 2y – 5 = 0
2y = 4
y = 2
∴ x = 1 and y = 2
∴ x + y = 1 + 2 = 3

(v) If x + 2i + 15i6y = 7x + i3(y + 4), find x + y
Solution:
x + 2i + 15i6y = 7x + i3(y + 4)
x + 2i + 15(i2)3 y = 7x + i3(y + 4)
x + 2i + 15(-1)3 y = 7x – i(y + 4) ……[∵ i2 = -1, i3 = -i]
x + 2i – 15y – 7x + iy + 4i = 0
(-6x – 15y) + i(y + 6) = 0 + 0i
Equating real and imaginary parts, we get
-6x – 15y = 0 and y + 6 = 0
-6x – 15y = 0 and y = -6
-6x – 15(-6) = 0
-6x + 90 = 0
∴ x = 15
∴ x + y = 15 – 6 = 9

Maths Solutions for Class 11 State Board

Trigonometry – II Class 11 Maths 1 Miscellaneous Exercise 3 Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 11 Maths Solutions Pdf Chapter 3 Trigonometry – II Miscellaneous Exercise 3 Questions and Answers.

11th Maths Part 1 Trigonometry – II Miscellaneous Exercise 3 Questions And Answers Maharashtra Board

I. Select the correct option from the given alternatives.

Question 1.
The value of sin(n + 1) A sin(n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
(a) sin A
(b) cos A
(c) -cos A
(d) sin 2A
Answer:
(b) cos A
Hint:
L.H.S. = sin [(n + 1)A] . sin [(n + 2)A] + cos [(n + 1)A] . cos [(n + 2)A]
= cos [(n + 2)A] . cos [(n + 1)A] + sin [(n + 2)A] . sin [(n + 1)A]
Let (n + 2)A = a and (n + 1)A = b … (i)
∴ L.H.S. = cos a . cos b + sin a . sin b
= cos (a – b)
= cos [(n + 2)A – (n + 1)A] ……..[From (i)]
= cos [(n + 2 – n – 1)A]
= cos A
= R.H.S.

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3

Question 2.
If tan A – tan B = x and cot B – cot A = y, then cot (A – B) = ________
(a) \(\frac{1}{y}-\frac{1}{x}\)
(b) \(\frac{1}{x}-\frac{1}{y}\)
(c) \(\frac{1}{x}+\frac{1}{y}\)
(d) \(\frac{x y}{x-y}\)
Answer:
(c) \(\frac{1}{x}+\frac{1}{y}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 I Q2

Question 3.
If sin θ = n sin(θ + 2α), then tan(θ + α) is equal to
(a) \(\frac{1+n}{2-n}\) tan α
(b) \(\frac{1-n}{1+n}\) tan α
(c) tan α
(d) \(\frac{1+n}{1-n}\) tan α
Answer:
(d) \(\frac{1+n}{1-n}\) tan α
Hint:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 I Q3

Question 4.
The value of \(\frac{\cos \theta}{1+\sin \theta}\) is equal to ________
(a) \(\tan \left(\frac{\theta}{2}-\frac{\pi}{4}\right)\)
(b) \(\tan \left(-\frac{\pi}{4}-\frac{\theta}{2}\right)\)
(c) \(\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)\)
(d) \(\tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)\)
Answer:
(c) \(\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 I Q4
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 I Q4.1

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3

Question 5.
The value of cos A cos (60° – A) cos (60° + A) is equal to ________
(a) \(\frac{1}{2}\) cos 3A
(b) cos 3A
(c) \(\frac{1}{4}\) cos 3A
(d) 4cos 3A
Answer:
(c) \(\frac{1}{4}\) cos 3A
Hint:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 I Q5

Question 6.
The value of \(\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14} \sin \frac{7 \pi}{14} \sin \frac{9 \pi}{14} \sin \frac{11 \pi}{14} \sin \frac{13 \pi}{14}\) is ________
(a) \(\frac{1}{16}\)
(b) \(\frac{1}{64}\)
(c) \(\frac{1}{128}\)
(d) \(\frac{1}{256}\)
Answer:
(b) \(\frac{1}{64}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 I Q6
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 I Q6.1
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 I Q6.2

Question 7.
If α + β + γ = π, then the value of sin2 α + sin2 β – sin2 γ is equal to ________
(a) 2 sin α
(b) 2 sin α cos β sin γ
(c) 2 sin α sin β cos γ
(d) 2 sin α sin β sin γ
Answer:
(c) 2 sin α sin β cos γ
Hint:
sin2 α + sin2 β – sin2 γ
= \(\frac{1-\cos 2 \alpha}{2}+\frac{1-\cos 2 \beta}{2}-\sin ^{2} \gamma\)
= 1 – \(\frac{1}{2}\) (cos 2α + cos 2β) – 1 + cos2 γ
= \(\frac{-1}{2}\) × 2 cos(α + β) cos(α – β) + cos2 γ
= cos γ cos (α – β) + cos2 γ …..[∵ α + β + γ = π]
= cos γ [cos (α – β) + cos γ]
= cos γ [cos (α – β) – cos (α + β)]
= 2 sin α sin β cos γ

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3

Question 8.
Let 0 < A, B < \(\frac{\pi}{2}\) satisfying the equation 3sin2 A + 2sin2 B = 1 and 3sin 2A – 2sin 2B = 0, then A + 2B is equal to ________
(a) π
(b) \(\frac{\pi}{2}\)
(c) \(\frac{\pi}{4}\)
(d) 2π
Answer:
(b) \(\frac{\pi}{2}\)
Hint:
3 sin 2A – 2sin 2B = 0
sin 2B = \(\frac{3}{2}\) sin 2A …….(i)
3 sin2 A + 2 sin2 B = 1
3 sin2 A = 1 – 2 sin2 B
3 sin2 A = cos 2B ……(ii)
cos(A + 2B) = cos A cos 2B – sin A sin 2B
= cos A (3 sin2 A) – sin A (\(\frac{3}{2}\) sin 2A) …..[From (i) and (ii)]
= 3 cos A sin2 A – \(\frac{3}{2}\) (sin A) (2 sin A cos A)
= 3 cos A sin2 A – 3 sin2 A cos A
= 0
= cos \(\frac{\pi}{2}\)
∴ A + 2B = \(\frac{\pi}{2}\) ……..[∵ 0 < A + 2B < \(\frac{3 \pi}{2}\)]

Question 9.
In ∆ABC if cot A cot B cot C > 0, then the triangle is ________
(a) acute-angled
(b) right-angled
(c) obtuse-angled
(d) isosceles right-angled
Answer:
(a) acute angled
Hint:
cot A cot B cot C > 0
Case I:
cot A, cot B, cot C > 0
∴ cot A > 0, cot B > 0, cot C > 0
∴ 0 < A < \(\frac{\pi}{2}\), 0 < B < \(\frac{\pi}{2}\), 0 < C < \(\frac{\pi}{2}\)
∴ ∆ABC is an acute angled triangle.
Case II:
Two of cot A, cot B, cot C < 0
0 < A, B, C < π and two of cot A, cot B, cot C < 0
∴ Two angles A, B, C are in the 2nd quadrant which is not possible.

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3

Question 10.
The numerical value of tan 20° tan 80° cot 50° is equal to ________
(a) √3
(b) \(\frac{1}{\sqrt{3}}\)
(c) 2√3
(d) \(\frac{1}{2 \sqrt{3}}\)
Answer:
(a) √3
Hint:
L.H.S. = tan 20° tan 80° cot 50°
= tan 20° tan 80° cot (90° – 40°)
= tan 20° tan 80° tan 40°
= tan 20° tan (60° + 20°) tan (60° – 20°)
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 I Q10
= tan 3(20°)
= tan 60°
= √3
= R.H.S.

II. Prove the following.

Question 1.
tan 20° tan 80° cot 50° = √3
Solution:
L.H.S. = tan 20° tan 80° cot 50°
= tan 20° tan 80° cot (90° – 40°)
= tan 20° tan 80° tan 40°
= tan 20° tan (60° + 20°) tan (60° – 20°)
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q1
= tan 3(20°)
= tan 60°
= √3
= R.H.S.

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3

Question 2.
If sin α sin β – cos α cos β + 1 = 0, then prove that cot α tan β = -1.
Solution:
sin α sin β – cos α cos β + 1 = 0
∴ cos α cos β – sin α sin β = 1
∴ cos (α + β) = 1
∴ α + β = 0 ……[∵ cos 0 = 1]
∴ β = -α
L.H.S. = cot α tan β
= cot α tan(-α)
= -cot α tan α
= -1
= R.H.S.

Question 3.
\(\cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8 \pi}{15} \cos \frac{16 \pi}{15}=\frac{1}{16}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q3
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q3.1

Question 4.
\(\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)=\frac{1}{8}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q4
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q4.1

Question 5.
cos 12° + cos 84° + cos 156° + cos 132° = \(-\frac{1}{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q5

Question 6.
\(\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)=\sqrt{2} \cos x\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q6
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q6.1

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3

Question 7.
\(\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q7

Question 8.
sin2 6x – sin2 4x = sin 2x sin 10x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q8

Question 9.
cos2 2x – cos2 6x = sin 4x sin 8x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q9

Question 10.
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q10

Question 11.
\(\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=-\frac{\sin 2 x}{\cos 10 x}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q11

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3

Question 12.
If sin 2A = λ sin 2B, then prove that \(\frac{\tan (A+B)}{\tan (A-B)}=\frac{\lambda+1}{\lambda-1}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q12

Question 13.
\(\frac{2 \cos 2 A+1}{2 \cos 2 A-1}\) = tan (60° + A) tan (60° – A)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q13

Question 14.
tan A + tan (60° + A) + tan (120° + A) = 3 tan 3A
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q14
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q14.1

Question 15.
3 tan6 10° – 27 tan4 10° + 33 tan2 10° = 1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q15

Question 16.
cosec 48° + cosec 96° + cosec 192° + cosec 384° = 0
Solution:
L.H.S. = cosec 48° + cosec 96° + cosec 192° + cosec 384°
= cosec 48° + cosec (180° – 84°) + cosec (180° + 12°) + cosec (360° + 24°)
= cosec 48° + cosec 84° + cosec (-12°) + cosec 24°
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q16
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q16.1

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3

Question 17.
3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6 x + cos6 x) = 13
Solution:
(sin x – cos x)4
= [(sin x – cos x)2]2
= (sin2 x + cos2 x – 2 sin x cos x)2
= (1 – 2 sin x cosx)2
= 1 – 4 sin x cos x + 4 sin2 x cos2 x
(sin x + cos x)2 = sin2 x + cos2 x + 2 sin x cos x = 1 + 2 sin x cos x
sin6 x + cos6 x
= (sin2 x)3 + (cos2 x)3
= (sin2 x + cos2 x)3 – 3 sin2 x cos2 x (sin2 x + cos2 x) …..[∵ a3 + b3 = (a + b)3 – 3ab(a + b)]
= 13 – 3 sin2 x cos2 x (1)
= 1 – 3 sin2 x cos2 x
L.H.S. = 3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6 x + cos6 x)
= 3(1 – 4 sin x cos x + 4 sin2 x cos2 x) + 6(1 + 2 sin x cos x) + 4(1 – 3 sin2 x cos2 x)
= 3 – 12 sin x cos x + 12 sin2 x cos2 x + 6 + 12 sin x cos x + 4 – 12 sin2 x cos2 x
= 13
= R.H.S.

Question 18.
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
Solution:
We have to prove that,
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
i.e., to prove,
cot A – tan A – 2 tan 2A – 4 tan 4A – 8 cot 8A = 0
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q18
∴ cot θ – tan θ = 2 cot 2θ …..(i)
L.H.S. = cot A – tan A – 2 tan 2A – 4 tan 4A – 8 cot 8A
= 2 cot 2A – 2 tan 2A – 4 tan 4A – 8 cot 8A …..[From (i)]
= 2(cot 2A – tan 2A) – 4 tan 4A – 8 cot 8A
= 2 × 2 cot 2(2A) – 4 tan 4A – 8 cot 8A ……[From (i)]
= 4(cot 4A – tan 4A) – 8 cot 8A
= 4 × 2 cot 2(4A) – 8 cot 8A ……[From (i)]
= 8 cot 8A – 8 cot 8A = 0
= R.H.S.
Alternate Method:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q18.1
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q18.2
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q18.3

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3

Question 19.
If A + B + C = \(\frac{3 \pi}{2}\), then cos 2A + cos 2B + cos 2C = 1 – 4 sin A sin B sin C
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q19

Question 20.
In any triangle ABC, sin A – cos B = cos C. Show that ∠B = \(\frac{\pi}{2}\).
Solution:
sin A – cos B = cos C
∴ sin A = cos B + cos C
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q20
A = B – C ………(i)
In ∆ABC,
A + B + C = π
∴ B – C + B + C = π
∴ 2B = π
∴ B = \(\frac{\pi}{2}\)

Question 21.
\(\frac{\tan ^{3} x}{1+\tan ^{2} x}+\frac{\cot ^{3} x}{1+\cot ^{2} x}\) = sec x cosec x – 2 sin x cos x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q21

Question 22.
sin 20° sin 40° sin 80° = \(\frac{\sqrt{3}}{8}\)
Solution:
L.H.S. = sin 20°. sin 40°. sin 80°
= sin 20°. sin 40°. sin 80°
= \(\frac{1}{2}\) (2 . sin 40°. sin 20°) . sin 80°
= \(\frac{1}{2}\) [cos(40° – 20°) – cos (40° + 20°)] . sin 80°
= \(\frac{1}{2}\) (cos 20° – cos 60°) sin 80°
= \(\frac{1}{2}\) . cos 20° . sin 80° – \(\frac{1}{2}\) . cos 60° . sin 80°
= \(\frac{1}{2 \times 2}\) (2 sin 80° . cos 20°) – \(\frac{1}{2 \times 2}\) . sin 80°
= \(\frac{1}{4}\) [sin(80° + 20°) + sin (80° – 20°)] – \(\frac{1}{2}\) . sin 80°
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q22

Question 23.
sin 18° = \(\frac{\sqrt{5}-1}{4}\)
Solution:
Let θ = 18°
∴ 5θ = 90°
∴ 2θ + 3θ = 90°
∴ 2θ = 90° – 3θ
∴ sin 2θ = sin (90° – 3θ)
∴ sin 2θ = cos 3θ
∴ 2 sin θ cos θ = 4 cos3 θ – 3 cos θ
∴ 2 sin θ = 4 cos2 θ – 3 …..[∵ cos θ ≠ 0]
∴ 2 sin θ = 4 (1 – sin2 θ) – 3
∴ 2 sin θ = 1 – 4 sin2 θ
∴ 4 sin2 θ + 2 sin θ – 1 = 0
∴ sin θ = \(\frac{-2 \pm \sqrt{4+16}}{8}\)
= \(\frac{-2 \pm 2 \sqrt{5}}{8}\)
= \(\frac{-1 \pm \sqrt{5}}{4}\)
Since, sin 18° > 0
∴ sin 18°= \(\frac{\sqrt{5}-1}{4}\)

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3

Question 24.
cos 36° = \(\frac{\sqrt{5}+1}{4}\)
Solution:
We know that,
cos 2θ = 1 – 2 sin2 θ
cos 36° = cos 2(18°)
= 1 – 2 sin2 18°
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q24
∴ cos 36° = \(\frac{\sqrt{5}+1}{4}\)

Question 25.
sin 36° = \(\frac{\sqrt{10-2 \sqrt{5}}}{4}\)
Solution:
We know that, sin2 θ = 1 – cos2 θ
sin2 36° = 1 – cos2 36°
= 1 – \(\left(\frac{\sqrt{5}+1}{4}\right)^{2}\)
= \(\frac{16-(5+1+2 \sqrt{5})}{16}\)
= \(\frac{10-2 \sqrt{5}}{16}\)
∴ sin 36° = \(\frac{\sqrt{10-2 \sqrt{5}}}{4}\) ……[∵ sin 36° is positive]

Question 26.
\(\sin \frac{\pi^{c}}{8}=\frac{1}{2} \sqrt{2-\sqrt{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q26
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q26.1

Question 27.
tan \(\frac{\pi}{8}\) = √2 – 1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q27

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3

Question 28.
tan 6° tan 42° tan 66° tan 78° = 1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q28
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q28.1

Question 29.
sin 47° + sin 61° – sin 11° – sin 25° = cos 7°
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q29

Question 30.
√3 cosec 20° – sec 20° = 4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q30
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q30.1

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3

Question 31.
In ∆ABC, ∠C = \(\frac{2 \pi}{3}\), then prove that cos2 A + cos2 B – cos A cos B = \(\frac{3}{4}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q31
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Miscellaneous Exercise 3 II Q31.1

Maharashtra State Board 11th Maths Solutions

Trigonometry – II Class 11 Maths 1 Exercise 3.5 Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 11 Maths Solutions Pdf Chapter 3 Trigonometry – II Ex 3.5 Questions and Answers.

11th Maths Part 1 Trigonometry – II Exercise 3.5 Questions And Answers Maharashtra Board

Question 1.
In Δ ABC, A + B + C = π, show that
cos2A + cos2B + cos2C = – 1 – 4 cosA cosB cosC
Solution:
L.H.S. = cos 2A + cos 2B + cos 2C
= \(2 \cdot \cos \left(\frac{2 \mathrm{~A}+2 \mathrm{~B}}{2}\right) \cdot \cos \left(\frac{2 \mathrm{~A}-2 \mathrm{~B}}{2}\right)+\cos 2 \mathrm{C}\)
= 2.cos(A + B).cos (A – B) + 2cos2C – 1
In ΔABC, A + B + C = π
∴ A + B = π – C
∴ cos(A + B) = cos(π – C)
∴ cos(A + B) = – cosC ………….(i)

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.5

∴ L.H.S. = – 2.cos C.cos (A – B) + 2.cos2C – 1 …[From(i)]
= – 1 – 2.cosC.[cos(A – B) – cosC]
= – 1 – 2.cos C.[cos(A – B) + cos(A + B)]
… [From (i)]
= – 1 – 2.cos C.(2.cos A.cos B)
= – 1 – 4.cos A.cos B.cos C = R.H.S.

Question 2.
sin A + sin B + sin C = 4 cos A/2 cos B/2 cos C/2
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.5 1

Question 3.
cos A + Cos B + Cos C = 4 cos A/2 cos B/2 cos C/2
= \(2 \cdot \cos \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right) \cdot \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)-\left(1-2 \sin ^{2} \frac{\mathrm{C}}{2}\right)\)
Solution:
L.H.S. = sin A + sin B + sin C
= \(2 \cdot \cos \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right) \cdot \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)-\left(1-2 \sin ^{2} \frac{\mathrm{C}}{2}\right)\)
In Δ ABC, A + B + C = π ,
∴ A + B = π – C
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.5 2

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.5

Question 4.
sin2 A + sin2 B – sin2 C = 2 sin A sin B cos C
Solution:
We know that, sin2 = \(\frac{1-\cos 2 \theta}{2}\)
L.H.S.
= sin2 + sin2 B + sin2 C
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.5 3
= 1 – cos(A + B). cos(A – B) – sin2C
= (1 – sin2 C ) – cos (A + B). cos (A – B)
= cos2 C – cos(A + B). cos(A – B)
∴ cos(A + B) = cos(it — C)
∴ cos(A + B) = — cos C …(i)
∴ L.H.S. = cos2C + cos C.cos(A – B)
… [From (i)]
= cos C[cos C + cos(A – B)]
= cos C[- cos(A + B) + cos(A – B)]
… [From (i)]
= cos C[cos (A-B) – cos(A + B)]
= cos C(2 sin A.sin B)
= 2 sin A.sin B. cos C
= R.H.S.
[Note: The question has been modified.]

Question 5.
\(\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}-\sin ^{2} \frac{C}{2}\) = \(1-2 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.5 4
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.5 5

Question 6.
tan \(\frac{\mathbf{A}}{2}\) tan \(\frac{\mathbf{B}}{2}\) tan \(\frac{\mathbf{B}}{2}\) tan \(\frac{\mathbf{C}}{2}\) tan \(\frac{\mathbf{C}}{2}\) tan \(\frac{\mathbf{A}}{2}\) = 1
Solution:
In Δ ABC,
A + B + C = π
∴ A + B = π – C
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.5 6

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.5

Question 7.
\(\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}\)
Solution:
In Δ ABC,
A + B + C = π
∴ A + B = π – C
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.5 7

Question 8.
tan 2A + tan 2B + tan 2C = tan 2A tan 2B + tan 2C
Solution:
In Δ ABC,
A + B + C = π
∴ 2A + 2B + 2C = 2π
∴ 2A + 2B = 2π – 2C
tan(2A + 2B) = tan(2n — 2C)
\(\frac{\tan 2 \mathrm{~A}+\tan 2 \mathrm{~B}}{1-\tan 2 \mathrm{~A} \cdot \tan 2 \mathrm{~B}}\) = -tan 2C
∴ tan2A+tan2B=—tan2C.(1-tan2A.tan2B)
∴ tan 2A + tan 2B = – tan2C+ tan2A.tan2B.tan2C
∴ tan 2A + tan 2B + tan 2C = tan2A.tan2B.tan2C

Question 9.
cos2 A + cos2 B – cos2 C = 1 – 2 sin A sin B sin C
Solution:
we know that cos2θ = \(\frac{1+\cos 2 \theta}{2}\)
L.H.S.
= cos2 A + cos2 B + cos2 C
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.5 8
= 1 + cos (A + B).cos(A — B) – cos2 C
In ΔABC,
A + B + C = π
A + B = π — C
cos(A + B) = cos(π — C)
cos(A + B) = -cosC ………….. (i)
L.H.S. = 1 — cos C.cos(A — B) — cos2 C
…[From(i)]
= 1 — cos C.[cos(A — B) + cos C]
= 1 — cos C.[cos(A — B) — cos(A + B)]
.. .[From (i)]
= 1 — cos C.(2.sin A.sin B)
= 1 — 2.sinA.sin B.cos C
= R.H.S.

Maharashtra State Board 11th Maths Solutions

Trigonometry – II Class 11 Maths 1 Exercise 3.4 Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 11 Maths Solutions Pdf Chapter 3 Trigonometry – II Ex 3.4 Questions and Answers.

11th Maths Part 1 Trigonometry – II Exercise 3.4 Questions And Answers Maharashtra Board

Question 1.
Express the following as a sum or difference of two trigonometric functions.
i. 2sin 4x cos 2x
ii. 2sin \(\frac{2 \pi}{3}\) cos \(\frac{\pi}{2}\)
iii. 2cos 4θ cos 2θ
iv. 2cos 35° cos 75°
Solution:
i. 2sin 4x cos 2x = sin(4x + 2x ) + sin (4x – 2x)
= sin 6x + sin 2x

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.4

ii.
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.4 1

[Note: Answer given in the textbook is sin \(\frac{7 \pi}{12}\) + sin \(\frac{\pi}{12}\) However, as per our calculation it is sin \(\frac{7 \pi}{6}\) + sin \(\frac{\pi}{6}\)

iii. 2cos 4θ cos 2θ = cos(4θ + 2θ)+cos (4θ – 2θ)
= cos 6θ + cos 2θ

iv. 2cos 35° cos75°
= cos(35° + 75°) + cos (35° – 75°)
= cos 110° + cos (-40)°
= cos 110° + cos 40° … [∵ cos(-θ) = cos θ]

Question 2.
Prove the following:
i. \(\frac{\sin 2 x+\sin 2 y}{\sin 2 x-\sin 2 y}=\frac{\tan (x+y)}{\tan (x-y)}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.4 2

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.4

ii. sin 6x + sin 4x – sin 2x = 4 cos x sin 2x cos 3x
Solution:
L.H.S. = sin 6x + sin 4x — sin 2x
= 2sin \(\left(\frac{6 x+4 x}{2}\right)\) cos \(\left(\frac{6 x-4 x}{2}\right)\) – 2 sin x cos x
= 2 sin 5x cos x — 2 sin x cos x
= 2 cos x (sin 5x — sin x)
= 2 cos \(\left[2 \cos \left(\frac{5 x+x}{2}\right) \sin \left(\frac{5 x-x}{2}\right)\right]\)
= 2 cos x (2 cos 3x sin 2x)
= 4 cos x sin 2x cos 3x
= R.H.S.
[Note: The question has been modified.]

iii. \(\frac{\sin x-\sin 3 x+\sin 5 x-\sin 7 x}{\cos x-\cos 3 x-\cos 5 x+\cos 7 x}\) = cot 2x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.4 3

iv. sin 18° cos 39° + sin 6° cos 15° = sin 24° cos 33°
Solution:
L.H.S. = sin 18°.cos 39° + sin 6°.cos 15°
= \(\frac{1}{2}\) (2 cos 39°sin 18° + 2.cos 15°.sin 6°)
= \(\frac{1}{2}\)[sin(39° + 18°) — sin(39° — 18°) + sin (15° + 6°) — sin (15° — 6°)]
= \(\frac{1}{2}\)(sin57° – sin21° + sin 21°- sin9°)
= \(\frac{1}{2}\)(sin57° – sin9°)
= \(\frac{1}{2}\) x 2. cos \(\left(\frac{57^{\circ}+9^{\circ}}{2}\right) \cdot \sin \left(\frac{57^{\circ}-9^{\circ}}{2}\right)\)
= cos 33° .sin 24°
= sin 24°. cos 33°
= R.H.S.

v. cos 20° cos 40° cos 60°cos 80° = 1/16
Solution:
L.H.S. = cos 20°.cos 40°.cos 60°.cos 80°
= cos 20°.cos 40°.\(\frac{1}{2}\) .cos 80°
= \(\frac{1}{2 \times 2}\)(2 cos 40°.cos 20°).cos 80°
= \(\frac{1}{4}\)[cos(40° + 20°) + cos(40°- 20°)].cos80°
= \(\frac{1}{4}\)(cos 60° + cos 20°) cos 80°
=\(\frac{1}{4}\)cos 60°. cos 80° + \(\frac{1}{4}\) cos 20°. cos 80°
= \(\frac{1}{4}\left(\frac{1}{2}\right) \cos 80^{\circ}+\frac{1}{2 \times 4}\left(2 \cos 80^{\circ} \cos 20^{\circ}\right)\)
= \(\frac{1}{8}\) cos 80° + \(\frac{1}{8}\)[cos (80° + 20°) + cos (80° — 20°)]
= \(\frac{1}{8}\)cos 80° + \(\frac{1}{8}\)(cos 100° + cos 60°)
= \(\frac{1}{8}\) cos 80° + \(\frac{1}{8}\)cos 100° + \(\frac{1}{8}\)cos 60°
= \(\frac{1}{8}\) cos 80° = \(\frac{1}{8}\) cos (180° – 80°) + \(\frac{1}{8} \times \frac{1}{2}\)
= \(\frac{1}{8}\) cos 80° – \(\frac{1}{8}\) cos 80° + \(\frac{1}{16}\) … [∵ cos (180 – θ) = – cos θ]
= \(\frac{1}{16}\) = R.H.S

Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.4

vi. sin 20° sin 40° sin 60° sin 80° = 3/16
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Trigonometry - II Ex 3.4 4

Maharashtra State Board 11th Maths Solutions