Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 2 Measures of Dispersion Ex 2.2 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2

Question 1.
Find the variance and S.D. for the following set of numbers.
7, 11, 2, 4, 9, 6, 3, 7, 11, 2, 5, 8, 3, 6, 8, 8, 2, 6
Solution:
Given data: 7, 11, 2, 4, 9, 6, 3, 7, 11, 2, 5, 8, 3, 6, 8, 8, 2, 6
The tabulated form of the above data is as given below:
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q1
We prepare the following table for the calculation of variance and S. D.
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q1.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q1.2

Question 2.
Find the variance and S.D. for the following set of numbers.
65, 77, 81, 98, 100, 80, 129
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q2.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2

Question 3.
Compute the variance and standard deviation for the following data:
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q3
Solution:
We prepare the following table for the calculation of variance and S.D.:
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q3.1

Question 4.
Compute the variance and S.D.
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q4
Solution:
We prepare the following table for the calculation of variance and S.D.:
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q4.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2

Question 5.
The following data gives the age of 100 students in a school. Calculate variance and S.D.
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q5
Solution:
We prepare the following table for the calculation of variance and S.D:
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q5.1

Question 6.
The mean and variance of 5 observations are 3 and 2 respectively. If three of the five observations are 1, 3, and 5, find the values of the other two observations.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q6
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q6.1
∴ (x4 – 4)(x4 – 2) = 0
∴ x4 = 4 or x4 = 2
From (i), we get
x5 = 2 or x5 = 4
∴ The two numbers are 2 and 4.

Question 7.
Obtain standard deviation for the following data:
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q7
Solution:
We prepare the following table for the calculation of standard deviation.
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q7.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2

Question 8.
The following distribution was obtained by change of origin and scale of variable X.
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q8
If it is given that mean and variance are 59.5 and 413 respectively, determine actual class intervals.
Solution:
Here, Mean = \(\bar{x}\) = 59.5, and
Var(X) = σ2 = 413
Let xi be a mid value of class and
d = \(\frac{x-a}{h}\), where a is assumed mean and h is class width.
We prepare the following table for calculation of mean and variance of di.
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q8.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q8.2
Now, Var(X) = h2. Var(D)
∴ 413 = h2 × 4.13
∴ h2 = 100
∴ h = 10
Substituting h = 10 in (i), we get
-0.1 × 10 + a = 59.5
∴ -1 + a = 59.5
∴ a = 59.5 + 1
∴ a = 60.5
We prepare the following table to determine actual class intervals for corresponding values of di.
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.2 Q8.3
∴ The actual class intervals are 15.5 – 25.5, 25.5 – 35.5, …….., 95.5 – 105.5

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 2 Measures of Dispersion Ex 2.1 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1

Question 1.
Find range of the following data:
575, 609, 335, 280, 729, 544, 852, 427, 967, 250
Solution:
Here, largest value (L) = 967, smallest value (S) = 250
∴ Range = L – S
= 967 – 250
= 717

Question 2.
The following data gives the number of typing mistakes done by Radha during a week. Find the range of the data.
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1 Q2
Solution:
Here, largest value (L) = 21, smallest value (S) = 10
∴ Range = L – S
= 21 – 10
= 11

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1

Question 3.
Find range for the following data:
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1 Q3
Solution:
Here, upper limit of the highest class (L) = 72, lower limit of the lowest class (S) = 62
∴ Range = L – S
= 72 – 62
= 10

Question 4.
Find the Q. D. for the following data.
3, 16, 8, 15, 19, 11, 5, 17, 9, 5, 3.
Solution:
The given data can be arranged in ascending order as follows:
3, 3, 5, 5, 8, 9, 11, 15, 16, 17, 19
Here, n = 11
Q1 = value of \(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of \(\left(\frac{11+1}{4}\right)^{\text {th }}\) observation
= value of 3rd observation
∴ Q1 = 5
Q3 = value of 3\(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of 3\(\left(\frac{11+1}{4}\right)^{\text {th }}\) observation
= value of (3 × 3)th observation
= value of 9th observation
= 16
∴ Q.D.= \(\frac{\mathrm{Q}_{3}-\mathrm{Q}_{1}}{2}\)
= \(\frac{16-5}{2}\)
= \(\frac{11}{2}\)
= 5.5

Question 5.
Given below are the prices of shares of a company for the last 10 days. Find Q.D.:
172, 164, 188, 214, 190, 237, 200, 195, 208, 230.
Solution:
The given data can be arranged in ascending order as follows:
164, 172, 188, 190, 195, 200, 208, 214, 230, 237
Here, n = 10
Q1 = value of \(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of \(\left(\frac{10+1}{4}\right)^{\text {th }}\) observation
= value of (2.75)th observation
= value of 2nd observation + 0.75(value of 3rd observation – value of 2nd observation)
= 172 + 0.75(188 – 172)
= 172 + 0.75(16)
= 172 + 12
= 184
∴ Q3 = value of 3\(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of 3\(\left(\frac{10+1}{4}\right)^{\text {th }}\) observation
= value of (3 × 2.75)th observation
= value of (8.25)th observation
= value of 8th observation + 0.25(value of 9th observation – value of 8th observation)
= 214 + 0.25(230 – 214)
= 214 + 0.25(16)
= 214 + 4
= 218
∴ Q.D. = \(\frac{\mathrm{Q}_{3}-\mathrm{Q}_{1}}{2}\)
= \(\frac{218-184}{2}\)
= \(\frac{34}{2}\)
= 17

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1

Question 6.
Calculate Q.D. for the following data.
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1 Q6
Solution:
Since the given data is arranged in ascending order, we construct less than cumulative frequency table as follows:
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1 Q6.1
Here, n = 30
Q1 = value of \(\left(\frac{\mathrm{n}+1}{4}\right)^{\mathrm{th}}\) observation
= value of \(\left(\frac{30+1}{4}\right)^{\text {th }}\) observation
= value of (7.75)th observation
Cumulative frequency which is just greater than (or equal to) 7.75 is 11.
∴ Q1 = 25
Q3 = value of \(\left[3\left(\frac{\mathrm{n}+1}{4}\right)\right]^{\mathrm{th}}\) observation
= value of \(\left[3\left(\frac{30+1}{4}\right)\right]^{\text {th }}\) observation
= value of (3 × 7.75)th observation
= value of (23.25)th observation
Cumulative frequency which is just greater than (or equal to) 23.25 is 27.
∴ Q3 = 29
∴ Q.D. = \(\frac{Q_{3}-Q_{1}}{2}\)
= \(\frac{29-25}{2}\)
∴ Q.D. = 2

Question 7.
Following data gives the age distribution of 240 employees of a firm. Calculate Q.D. of the distribution.
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1 Q7
Solution:
We construct the less than cumulative frequency table as follows:
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1 Q7.1
Here, N = 240
Q1 class = class containing \(\left(\frac{\mathrm{N}}{4}\right)^{\mathrm{th}}\) observation
∴ \(\frac{N}{4}=\frac{240}{4}\) = 60
Cumulative frequency which is just greater than (or equal to) 60 is 70.
∴ Q1 lies in the class 25 – 30.
∴ L = 25, c.f. = 30, f = 40, h = 5
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1 Q7.2
Cumulative frequency which is just greater than (or equal to) 180 is 180.
∴ Q3 lies in the class 35-40.
∴ L = 35, c.f. = 130, f = 50, h = 5
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1 Q7.3

Question 8.
Following data gives the weight of boxes. Calculate Q.D. for the data.
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1 Q8
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1 Q8.1
Here, N = 60
Q1 class = class containing \(\left(\frac{\mathrm{N}}{4}\right)^{\text {th }}\) observation
∴ \(\frac{\mathrm{N}}{4}=\frac{60}{4}\) = 15
Cumulative frequency which is just greater than (or equal to) 15 is 26.
∴ Q1 lies in the class 14 – 16.
∴ L = 14, c.f. = 10, f = 16, h = 2
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1 Q8.2
Cumulative frequency which is just greater than (or equal to) 45 is 58.
∴ Q3 lies in the class 18 – 20.
∴ L = 18, c.f. = 40, f = 18, h = 2
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Measures of Dispersion Ex 2.1 Q8.3

Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 1 Partition Values Ex 1.1 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1

Question 1.
Compute all the quartiles for the following series of observations:
16, 14.9, 11.5, 11.8, 11.1, 14.5, 14, 12, 10.9, 10.7, 10.6, 10.5, 13.5, 13, 12.6
Solution:
The given data can be arranged in ascending order as follows:
10.5, 10.6, 10.7, 10.9, 11.1, 11.5, 11.8, 12, 12.6, 13, 13.5, 14, 14.5, 14.9, 16
Here, n = 15
Q1 = value of \(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of \(\left(\frac{15+1}{4}\right)^{\text {th }}\) observation
= value of 4th observation
∴ Q1 = 10.9
Q2 = value of 2\(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of 2\(\left(\frac{15+1}{4}\right)^{\text {th }}\) observation
= value of (2 × 4)th observation
= value of 8th observation
∴ Q2 = 12
Q3 = value of 3\(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of 3\(\left(\frac{15+1}{4}\right)^{\text {th }}\) observation
= value of (3 × 4)th observation
= value of 12th observation
∴ Q3 = 14

Question 2.
The heights (in cm.) of 10 students are given below:
148, 171, 158, 151, 154, 159, 152, 163, 171, 145
Calculate Q1 and Q3 for the above data.
Solution:
The given data can be arranged in ascending order as follows:
145, 148, 151, 152, 154, 158, 159, 163, 171, 171
Here, n = 10
Q1 = value of \(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of \(\left(\frac{10+1}{4}\right)^{\text {th }}\) observation
= value of (2.75)th observation
= value of 2nd observation + 0.75 (value of 3rd observation – value of 2nd observation)
= 148 + 0.75 (151 – 148)
= 148 + 0.75(3)
= 148 + 2.25
∴ Q1 = 150.25
Q3 = value of 3\(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of 3\(\left(\frac{10+1}{4}\right)^{\text {th }}\) observation
= value of (3 × 2.75)th observation
= value of (8.25)th observation
= value of 8th observation + 0.25 (value of 9th observation – value of 8th observation)
= 163 + 0.25(171 – 163)
= 163 + 0.25(8)
= 163 + 2
∴ Q3 = 165

Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1

Question 3.
The monthly consumption of electricity (in units) of families in a certain locality is given below:
205, 201, 190, 188, 195, 172, 210, 225, 215, 232, 260, 230
Calculate electricity consumption (in units) below which 25% of the families lie.
Solution:
To find the consumption of electricity below which 25% of the families lie, we have to find Q1.
Monthly consumption of electricity (in units) can be arranged in ascending order as follows:
172, 188, 190, 195, 201, 205, 210, 215, 225, 230, 232, 260.
Here, n = 12
Q1 = value of \(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of \(\left(\frac{12+1}{4}\right)^{\text {th }}\) observation
= value of (3.25)th observation
= value of 3rd observation + 0.25 (value of 4th observation – value of 3rd observation)
= 190 + 0.25(195 – 190)
= 190 + 0.25(5)
= 190 + 1.25
= 191.25
∴ the consumption of electricity below which 25% of the families lie is 191.25.

Question 4.
For the following data of daily expenditure of families (in ₹), compute the expenditure below which 75% of families include their expenditure.
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q4
Solution:
To find the expenditure below which 75% of families have their expenditure, we have to find Q3.
We construct the less than cumulative frequency table as given below:
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q4.1
Here, n = 100
Q3 = value of 3\(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of 3\(\left(\frac{100+1}{4}\right)^{\text {th }}\) observation
= value of (3 × 25.25)th observation
= value of (75.75)th observation
Cumulative frequency which is just greater than (or equal to) 75.75 is 87.
∴ Q3 = 650
∴ the expenditure below which 75% of families include their expenditure is ₹ 650.

Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1

Question 5.
Calculate all the quartiles for the following frequency distribution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q5
Solution:
We construct the less than cumulative frequency table as given below:
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q5.1
Here, n = 300
Q1 = value of \(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of \(\left(\frac{300+1}{4}\right)^{\text {th }}\) observation
= value of (75.25)th observation
Cumulative frequency which is just greater than (or equal to) 75.25 is 90.
∴ Q1 = 2
Q2 = value of 2\(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of 2\(\left(\frac{300+1}{4}\right)^{\text {th }}\) observation
= value of (2 × 75.25)th observation
= value of (150.50)th observation
∴ Cumulative frequency which is just greater than (or equal to) 150.50 is 185.
∴ Q2 = 3
Q3 = value of 3\(\left(\frac{n+1}{4}\right)^{\text {th }}\) observation
= value of 3\(\left(\frac{300+1}{4}\right)^{\text {th }}\) observation
= value of (3 × 75.25)th observation
= value of (225.75)th observation
Cumulative frequency which is just greater than (or equal to) 225.75 is 249.
∴ Q3 = 4

Question 6.
The following is the frequency distribution of heights of 200 male adults in a factory:
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q6
Find the central height.
Solution:
To find the central height, we have to find Q2.
We construct the less than cumulative frequency table as given below:
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q6.1
Here, N = 200
Q2 class = class containing \(\left(\frac{2 \mathrm{~N}}{4}\right)^{\mathrm{th}}\) observation
∴ \(\frac{2 \mathrm{~N}}{4}=\frac{2 \times 200}{4}\) = 100
Cumulative frequency which is just greater than (or equal to) 100 is 156.
∴ Q2 lies in the class 165 – 170.
∴ L = 165, h = 5, f = 64, c.f. = 92
Q2 = \(\mathrm{L}+\frac{\mathrm{h}}{\mathrm{f}}\left(\frac{2 \mathrm{~N}}{4}-\text { c.f. }\right)\)
= 165 + \(\frac{5}{64}\) (100 – 92)
= 165 + \(\frac{5}{64}\) × 8
= 165 + \(\frac{5}{8}\)
= 165 + 0.625
= 165.625
∴ Central height is 165.625 cm.

Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1

Question 7.
The following is the data of pocket expenditure per week of 50 students in a class. It is known that the median of the distribution is ₹ 120. Find the missing frequencies.
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q7
Solution:
Let a and b be the missing frequencies of class 50 – 100 and class 150 – 200 respectively.
We construct the less than cumulative frequency table as given below:
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q7.1
Here, N = 25 + a + b
Since, N = 50
∴ 25 + a + b = 50
∴ a + b = 25 …..(i)
Given, Median = Q2 = 120
∴ Q2 lies in the class 100 – 150.
∴ L = 100, h = 50, f = 15, \(\frac{2 \mathrm{~N}}{4}=\frac{2 \times 50}{4}\) = 25
∴ Q2 = \(\mathrm{L}+\frac{\mathrm{h}}{\mathrm{f}}\left(\frac{2 \mathrm{~N}}{4}-\text { c.f. }\right)\)
∴ 120 = 100 + \(\frac{50}{15}\) [25 – (7 + a)]
∴ 120 – 100 = \(\frac{10}{3}\) (25 – 7 – a)
∴ 20 = \(\frac{10}{3}\) (18 – a)
∴ \(\frac{60}{10}\) = 18 – a
∴ 6 = 18 – a
∴ a = 18 – 6 = 12
Substituting the value of a in equation (i), we get
12 + b = 25
∴ b = 25 – 12 = 13
∴ 12 and 13 are the missing frequencies of the class 50 – 100 and class 150 – 200 respectively.

Question 8.
The following is the distribution of 160 workers according to the wages in a certain factory:
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q8
Determine the values of all quartiles and interpret the results.
Solution:
The given table is a more than cumulative frequency.
We transform the given table into less than cumulative frequency.
We construct the less than cumulative frequency table as given below:
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q8.1
Here, N = 160
∴ Q1 class = class containing \(\left(\frac{\mathrm{N}}{4}\right)^{\text {th }}\) observation
∴ \(\frac{\mathrm{N}}{4}=\frac{160}{4}\) = 40
Cumulative frequency which is just greater than (or equal to) 40 is 69.
∴ Q1 lies in the class 10000 – 11000
∴ L = 10000, h = 1000, f = 46, c.f. = 23
Q1 = \(L+\frac{h}{f}\left(\frac{N}{4}-\text { c.f. }\right)\)
= 10000 + \(\frac{1000}{46}\) (40 – 23)
= 10000 + \(\frac{1000}{46}\) (17)
= 10000 + \(\frac{17000}{46}\)
= 10000 + 369.57
= 10369.57
Q2 class = class containing \(\left(\frac{2 \mathrm{~N}}{4}\right)^{\mathrm{th}}\) observation
∴ \(\frac{2 \mathrm{~N}}{4}=\frac{2 \times 160}{4}\) = 80
Cumulative frequency which is just greater than (or equal to) 80 is 103.
∴ Q2 lies in the class 11000 – 12000.
∴ L = 11000, h = 1000, f = 34, c.f. = 69
∴ Q2 = \(L+\frac{h}{f}\left(\frac{2 N}{4}-\text { c.f. }\right)\)
= 11000 + \(\frac{1000}{34}\)(80 – 69)
= 11000 + \(\frac{1000}{34}\)(11)
= 11000 + \(\frac{11000}{34}\)
= 11000 + 323.529
= 11323.529
Q3 class = class containing \(\left(\frac{3 \mathrm{~N}}{4}\right)^{\text {th }}\) observation
∴ \(\frac{3 \mathrm{~N}}{4}=\frac{3 \times 160}{4}\) = 120
Cumulative frequency which is just greater than (or equal to) 120 is 137.
∴ Q3 lies in the class 12000 – 13000.
∴ L = 12000, h = 1000, f = 34, c.f. = 103
∴ Q3 = \(\frac{h}{f}\left(\frac{3 N}{4}-c . f .\right)\)
= 12000 + \(\frac{1000}{34}\) (120 – 103)
= 12000 + \(\frac{1000}{34}\) (17)
= 12000 + \(\frac{1000}{2}\)
= 12000 + 500
= 12500
Interpretation:
Q1 < Q2 < Q3

Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1

Question 9.
Following is grouped data for the duration of fixed deposits of 100 senior citizens from a certain bank:
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q9
Calculate the limits of fixed deposits of central 50% senior citizens.
Solution:
We construct the less than cumulative frequency table as given below:
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q9.1
To find the limits of fixed deposits of central 50% senior citizens, we have to find Q1 and Q3.
Here, N = 100
Q1 class = class containing \(\left(\frac{\mathrm{N}}{4}\right)^{\text {th }}\) observation
∴ \(\frac{N}{4}=\frac{100}{4}\) = 25
Cumulative frequency which is just greater than (or equal to) 25 is 35.
∴ Q1 lies in the class 180 – 360.
∴ L = 180, h = 180, f = 20, c.f. = 15
∴ Q1 = \(L+\frac{h}{f}\left(\frac{N}{4}-c . f .\right)\)
= 180 + \(\frac{180}{20}\) (25 – 15)
= 180 + 9(10)
= 180 + 90
∴ Q1 = 270
Q3 class = class containing \(\left(\frac{3 \mathrm{N}}{4}\right)^{\text {th }}\) observation
∴ \(\frac{3 \mathrm{N}}{4}=\frac{3 \times 100}{4}\) = 75
Cumulative frequency which is just greater than (or equal to) 75 is 90.
∴ Q3 lies in the class 540 – 720.
∴ L = 540, h = 180, f = 30, c.f. = 60
∴ Q3 = \(L+\frac{h}{f}\left(\frac{3 N}{4}-c . f .\right)\)
= 540 + \(\frac{180}{30}\) (75 – 60)
= 540 + 6(15)
= 540 + 90
∴ Q3 = 630
∴ Limits of duration of fixed deposits of central 50% senior citizens is from 270 to 630.

Question 10.
Find the missing frequency given that the median of the distribution is 1504.
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q10
Solution:
Let x be the missing frequency of the class 1550 – 1750.
We construct the less than frequency table as given below:
Maharashtra Board 11th Commerce Maths Solutions Chapter 1 Partition Values Ex 1.1 Q10.1
Here, N = 199 + x
Given, Median (Q2) = 1504
∴ Q2 lies in the class 1350 – 1550.
∴ L = 1350, h = 200, f = 100, c.f. = 63,
\(\frac{2 \mathrm{~N}}{4}=\frac{199+x}{2}\)
∴ Q2 = \(L+\frac{h}{f}\left(\frac{2 N}{4}-c . f .\right)\)
∴ 1504 = 1350 + \(\frac{200}{100}\left(\frac{199+x}{2}-63\right)\)
∴ 1504 – 1350 = 2\(\left(\frac{199+x-126}{2}\right)\)
∴ 154 = 199 + x – 126
∴ 154 = x + 73
∴ x = 81

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 9 Differentiation Miscellaneous Exercise 9 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

I. Differentiate the following functions w.r.t.x.

Question 1.
x5
Solution:
Let y = x5
Differentiating w.r.t. x, we get
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x} x^{5}=5 x^{4}\)

Question 2.
x-2
Solution:
Let y = x-2
Differentiating w.r.t. x, we get
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{-2}\right)=-2 x^{-3}=\frac{-2}{x^{3}}\)

Question 3.
√x
Solution:
Let y = √x
Differentiating w.r.t. x, we get
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x} \sqrt{x}=\frac{1}{2 \sqrt{x}}\)

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 4.
x√x
Solution:
Let y = x√x
∴ y = \(x^{\frac{3}{2}}\)
Differentiating w.r.t. x, we get
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x} x^{\frac{3}{2}}=\frac{3}{2} x^{\frac{1}{2}}\)

Question 5.
\(\frac{1}{\sqrt{x}}\)
Solution:
Let y = \(\frac{1}{\sqrt{x}}\)
∴ y = \(x^{\frac{-1}{2}}\)
Differentiating w.r.t. x, we get
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-1}{2} x^{\frac{-3}{2}}=\frac{-1}{2 x^{\frac{3}{2}}}\)

Question 6.
7x
Solution:
Let y = 7x
Differentiating w.r.t. x, we get
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x} 7^{x}=7^{x} \log 7\)

II. Find \(\frac{d y}{d x}\) if

Question 1.
y = x2 + \(\frac{1}{x^{2}}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q1

Question 2.
y = (√x + 1)2
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q2

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 3.
y = \(\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q3
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q3.1

Question 4.
y = x3 – 2x2 + √x + 1
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q4

Question 5.
y = x2 + 2x – 1
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q5

Question 6.
y = (1 – x)(2 – x)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q6

Question 7.
y = \(\frac{1+x}{2+x}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q7
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q7.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 8.
y = \(\frac{(\log x+1)}{x}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q8

Question 9.
y = \(\frac{e^{x}}{\log x}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q9

Question 10.
y = x log x (x2 + 1)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q10

III. Solve the following:

Question 1.
The relation between price (P) and demand (D) of a cup of Tea is given by D = \(\frac{12}{P}\). Find
the rate at which the demand changes when the price is ₹ 2/-. Interpret the result.
Solution:
Demand, D = \(\frac{12}{P}\)
Rate of change of demand
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q1
When price P = 2,
Rate of change of demand,
\(\left(\frac{\mathrm{dD}}{\mathrm{dP}}\right)_{\mathrm{P}=2}=\frac{-12}{(2)^{2}}=-3\)
∴ When the price is 2, the rate of change of demand is -3.
∴ Here, the rate of change of demand is negative demand would fall when the price becomes ₹ 2.

Question 2.
The demand (D) of biscuits at price P is given by D = \(\frac{64}{P^{3}}\), find the marginal demand
when the price is ₹ 4/-.
Solution:
Given demand D = \(\frac{64}{P^{3}}\)
Now, marginal demand
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q2
When P = 4
Marginal demand
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q2.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 3.
The supply S of electric bulbs at price P is given by S = 2p3 + 5. Find the marginal supply when the price is ₹ 5/-. Interpret the result.
Solution:
Given, supply S = 2p3 + 5
Now, marginal supply
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q3
∴ When p = 5
Marginal supply = \(\left(\frac{\mathrm{dS}}{\mathrm{dp}}\right)_{\mathrm{p}=5}\)
= 6(5)2
= 150
Here, the rate of change of supply with respect to the price is positive which indicates that the supply increases.

Question 4.
The total cost of producing x items is given by C = x2 + 4x + 4. Find the average cost and the marginal cost. What is the marginal cost when x = 7?
Solution:
Total cost C = x2 + 4x + 4
Now. Average cost = \(\frac{C}{x}=\frac{x^{2}+4 x+4}{x}\)
= x + 4 + \(\frac{4}{x}\)
and Marginal cost = \(\frac{\mathrm{dC}}{\mathrm{d} x}=\frac{\mathrm{d}}{\mathrm{d} x}\)(x2 + 4x + 4)
= \(\frac{\mathrm{d}}{\mathrm{d} x}\) (x2) + 4\(\frac{\mathrm{d}}{\mathrm{d} x}\) (x) + \(\frac{\mathrm{d}}{\mathrm{d} x}\) (4)
= 2x + 4(1) + 0
= 2x + 4
∴ When x = 7,
Marginal cost = \(\left(\frac{\mathrm{d} \mathrm{C}}{\mathrm{d} x}\right)_{x=7}\)
= 2(7) + 4
= 14 + 4
= 18

Question 5.
The demand D for a price P is given as D = \(\frac{27}{P}\), find the rate of change of demand when the price is ₹ 3/-.
Solution:
Demand, D = \(\frac{27}{P}\)
Rate of change of demand = \(\frac{dD}{dP}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q5
When price P = 3,
Rate of change of demand,
\(\left(\frac{\mathrm{dD}}{\mathrm{dP}}\right)_{\mathrm{P}=3}=\frac{-27}{(3)^{2}}=-3\)
∴ When price is 3, Rate of change of demand is -3.

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 6.
If for a commodity; the price demand relation is given as D = \(\left(\frac{P+5}{P-1}\right)\). Find the marginal demand when price is ₹ 2/-
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q6

Question 7.
The price function P of a commodity is given as P = 20 + D – D2 where D is demand. Find the rate at which price (P) is changing when demand D = 3.
Solution:
Given, P = 20 + D – D2
Rate of change of price = \(\frac{dP}{dD}\)
= \(\frac{d}{dD}\)(20 + D – D2)
= 0 + 1 – 2D
= 1 – 2D
Rate of change of price at D = 3 is
\(\left(\frac{\mathrm{dP}}{\mathrm{dD}}\right)_{\mathrm{D}=3}\) = 1 – 2(3) = -5
∴ Price is changing at a rate of -5, when demand is 3.

Question 8.
If the total cost function is given by C = 5x3 + 2x2 + 1; find the average cost and the marginal cost when x = 4.
Solution:
Total cost function C = 5x3 + 2x2 + 1
Average cost = \(\frac{C}{x}\)
= \(\frac{5 x^{3}+2 x^{2}+1}{x}\)
= 5x2 + 2x + \(\frac{1}{x}\)
When x = 4,
Average cost = 5(4)2 + 2(4) + \(\frac{1}{4}\)
= 80 + 8 + \(\frac{1}{4}\)
= \(\frac{320+32+1}{4}\)
= \(\frac{353}{4}\)
Marginal cost = \(\frac{\mathrm{dC}}{\mathrm{d} x}\)
= \(\frac{d}{dx}\) (5x3 + 2x2 + 1)
= 5\(\frac{d}{dx}\) (x3) + 2 \(\frac{d}{dx}\) (x2) + \(\frac{d}{dx}\) (1)
= 5(3x2) + 2(2x) + 0
= 15x2 + 4x
When x = 4, marginal cost = \(\left(\frac{\mathrm{dC}}{\mathrm{d} x}\right)_{x=4}\)
= 15(4)2 + 4(4)
= 240 + 16
= 256
∴ The average cost and marginal cost at x = 4 are \(\frac{353}{4}\) and 256 respectively.

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 9.
The supply S for a commodity at price P is given by S = P2 + 9P – 2. Find the marginal supply when the price is 7/-.
Solution:
Given, S = P2 + 9P – 2
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q9
∴ The marginal supply is 23, at P = 7.

Question 10.
The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find the marginal cost when x = 10. Find x for which the marginal cost equals the average cost.
Solution:
Given, cost C = x2 + 15x + 81
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q10
If marginal cost = average cost, then
2x + 15 = x + 15 + \(\frac{81}{x}\)
∴ x = \(\frac{81}{x}\)
∴ x2 = 81
∴ x = 9 …..[∵ x > 0]

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 9 Differentiation Ex 9.2 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2

I. Differentiate the following functions w.r.t. x.

Question 1.
\(\frac{x}{x+1}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q1
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q1.1

Question 2.
\(\frac{x^{2}+1}{x}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q2

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 3.
\(\frac{1}{e^{x}+1}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q3

Question 4.
\(\frac{e^{x}}{e^{x}+1}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q4
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q4.1

Question 5.
\(\frac{x}{\log x}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q5

Question 6.
\(\frac{2^{x}}{\log x}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q6

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 7.
\(\frac{\left(2 e^{x}-1\right)}{\left(2 e^{x}+1\right)}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q7
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q7.1

Question 8.
\(\frac{(x+1)(x-1)}{\left(e^{x}+1\right)}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q8

II. Solve the following examples:

Question 1.
The demand D for a price P is given as D = \(\frac{27}{P}\), find the rate of change of demand when the price is 3.
Solution:
Demand, D = \(\frac{27}{P}\)
Rate of change of demand = \(\frac{dD}{dP}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q1
When price P = 3,
Rate of change of demand,
\(\left(\frac{\mathrm{dD}}{\mathrm{dP}}\right)_{\mathrm{P}=3}=\frac{-27}{(3)^{2}}=-3\)
∴ When price is 3, Rate of change of demand is -3.

Question 2.
If for a commodity; the price-demand relation is given as D = \(\frac{P+5}{P-1}\). Find the marginal demand when the price is 2.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q2

Question 3.
The demand function of a commodity is given as P = 20 + D – D2. Find the rate at which price is changing when demand is 3.
Solution:
Given, P = 20 + D – D2
Rate of change of price = \(\frac{dP}{dD}\)
= \(\frac{d}{dD}\)(20 + D – D2)
= 0 + 1 – 2D
= 1 – 2D
Rate of change of price at D = 3 is
\(\left(\frac{\mathrm{dP}}{\mathrm{dD}}\right)_{\mathrm{D}=3}\) = 1 – 2(3) = -5
∴ Price is changing at a rate of -5, when demand is 3.

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 4.
If the total cost function is given by; C = 5x3 + 7x2 + 7; find the average cost and the marginal cost when x = 4.
Solution:
Total cost function, C = 5x3 + 7x2 + 7
Average cost = \(\frac{C}{x}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q4
When x = 4, Marginal cost = \(\left(\frac{\mathrm{dC}}{\mathrm{d} x}\right)_{x=4}\)
= 15(4)2 + 4(4)
= 240 + 16
= 256
∴ the average cost and marginal cost at x = 4 are \(\frac{359}{4}\) and 256 respectively.

Question 5.
The total cost function of producing n notebooks is given by
C = 1500 – 75n + 2n2 + \(\frac{n^{3}}{5}\)
Find the marginal cost at n = 10.
Solution:
The total cost function,
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q5
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q5.1
∴ Marginal cost at n = 10 is 25.

Question 6.
The total cost of ‘t’ toy cars is given by C = 5(2t) + 17. Find the marginal cost and average cost at t = 3.
Solution:
Total cost of ‘t’ toy cars, C = 5(2t) + 17
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q6
∴ at t = 3, the Marginal cost is 40 log 2 and the Average cost is 19.

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 7.
If for a commodity; the demand function is given by, D = \(\sqrt{75-3 P}\). Find the marginal demand function when P = 5.
Solution:
Demand function, D = \(\sqrt{75-3 P}\)
Now, Marginal demand = \(\frac{dD}{dP}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q7
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q7.1

Question 8.
The total cost of producing x units is given by C = 10e2x, find its marginal cost and average cost when x = 2.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q8

Question 9.
The demand function is given as P = 175 + 9D + 25D2. Find the revenue, average revenue, and marginal revenue when demand is 10.
Solution:
Given, P = 175 + 9D + 25D2
Total revenue, R = P.D
= (175 + 9D + 25D2)D
= 175D + 9D2 + 25D3
Average revenue = P = 175 + 9D + 25D2
Marginal revenue = \(\frac{dR}{dD}\)
= \(\frac{d}{dD}\) (175D + 9D2 + 25D3)
= 175 \(\frac{d}{dD}\) (D) + 9 \(\frac{d}{dD}\) (D2) + 25 \(\frac{d}{dD}\) (D3)
= 175(1) + 9(2D) + 25(3D2)
= 175 + 18D + 75D2
When D = 10,
Total revenue = 175(10) + 9(10)2 + 25(10)3
= 1750 + 900 + 25000
= 27650
Average revenue = 175 + 9(10) + 25(10)2
= 175 + 90 + 2500
= 2765
Marginal revenue = 175 + 18(10) + 75(10)2
= 175 + 180 + 7500
= 7855
∴ When Demand = 10,
Total revenue = 27650, Average revenue = 2765, Marginal revenue = 7855.

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 10.
The supply S for a commodity at price P is given by S = P2 + 9P – 2. Find the marginal supply when the price is 7.
Solution:
Given, S = P2 + 9P – 2
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q10
∴ The marginal supply is 23, at P = 7.

Question 11.
The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find marginal cost when x = 10. Find x for which the marginal cost equals the average cost.
Solution:
Given, cost C = x2 + 15x + 81
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q11
If marginal cost = average cost, then
2x + 15 = x + 15 + \(\frac{81}{x}\)
∴ x = \(\frac{81}{x}\)
∴ x2 = 81
∴ x = 9 …..[∵ x > 0]

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.3

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 5 Locus and Straight Line Ex 5.3 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.3

Question 1.
Write the equation of the line:
(a) parallel to the X-axis and at a distance of 5 units from it and above it.
(b) parallel to the Y-axis and at a distance of 5 units from it and to the left of it.
(c) parallel to the X-axis and at a distance of 4 units from the point (-2, 3).
Solution:
(a) Equation of a line parallel to the X-axis is y = k.
Since the line is at a distance of 5 units above the X-axis.
∴ k = 5
∴ the equation of the required line is y = 5.

(b) Equation of a line parallel to the Y-axis is x = h.
Since the line is at a distance of 5 units to the left of the Y-axis.
∴ h = -5
∴ the equation of the required line is x = -5.

(c) Equation of a line parallel to the X-axis is of the form y = k (k > 0 or k < 0).
Since, the line is at a distance of 4 units from the point (-2, 3).
∴ k = 3 + 4 = 7 or k = 3 – 4 = -1
∴ the equation of the required line is y = 7 or y = -1.
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.3 Q1

Question 2.
Obtain the equation of the line:
(a) parallel to the X-axis and making an intercept of 3 units on the Y-axis.
(b) parallel to the Y-axis and making an intercept of 4 units on the X-axis.
Solution:
(a) Equation of a line parallel to X-axis with y-intercept ‘k’ is y = k.
Here, y-intercept = 3
∴ the equation of the required line is y = 3.

(b) Equation of a line parallel to Y-axis with x-intercept ‘h’ is x = h.
Here, x-intercept = 4
∴ the equation of the required line is x = 4.

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.3

Question 3.
Obtain the equation of the line containing the point:
(a) A(2, -3) and parallel to the Y-axis.
(b) B(4, -3) and parallel to the X-axis.
Solution:
(a) Equation of a line parallel to the Y-axis is of the form x = h.
Since, the line passes through A(2, -3).
∴ h = 2
∴ the equation of the required line is x = 2.

(b) Equation of a line parallel to the X-axis is of the form y = k.
Since, the line passes through B(4, -3)
∴ k = -3
∴ the equation of the required line is y = -3.

Question 4.
Find the equation of the line passing through the points A(2, 0) and B(3, 4).
Solution:
The required line passes through the points A(2, 0) = (x1, y1) and B(3, 4) = (x2, y2) say.
Equation of the line in two-point form is
\(\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}\)
∴ the equation of the required line is
∴ \(\frac{y-0}{4-0}=\frac{x-2}{3-2}\)
∴ \(\frac{y}{4}=\frac{x-2}{1}\)
∴ y = 4(x – 2)
∴ y = 4x – 8
∴ 4x – y – 8 = 0

Check:
If the points A(2, 0) and B(3, 4) satisfy 4x – y – 8 = 0, then our answer is correct.
For point A(2, 0),
L.H.S. = 4x – y – 8
= 4(2) – 0 – 8
= 8 – 8
= 0
= R.H.S.
For point B(3, 4),
L.H.S. = 4x – y – 8
= 4(3) – 4 – 8
= 12 – 12
= 0
= R.H.S.
Thus, our answer is correct.

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.3

Question 5.
Line y = mx + c passes through the points A(2, 1) and B(3, 2). Determine m and c.
Solution:
Given, A(2, 1) and B(3, 2).
Equation of a line in two-point form is
\(\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}\)
∴ the equation of the passing through A and B line is
∴ \(\frac{y-1}{2-1}=\frac{x-2}{3-2}\)
∴ \(\frac{y-1}{1}=\frac{x-2}{1}\)
∴ y – 1 = x – 2
∴ y = x – 1
Comparing this equation with y = mx + c, we get
m = 1 and c = -1

Alternate method:
Points A(2, 1) and B(3, 2) lie on the line y = mx + c.
∴ They must satisfy the equation.
∴ 2m + c = 1 ……..(i)
and 3m + c = 2 ……(ii)
equation (ii) – equation (i) gives m = 1
Substituting m = 1 in (i), we get
2(1) – c = 1
∴ c = 1 – 2 = -1

Question 6.
The vertices of a triangle are A(3, 4), B(2, 0), and C(-1, 6). Find the equations of
(a) side BC
(b) the median AD
(c) the midpoints of sides AB and BC.
Solution:
Vertices of ∆ABC are A(3, 4), B(2, 0) and C(-1, 6).
(a) Equation of a line in two-point form is
\(\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}\)
∴ the equation of the side BC is
\(\frac{y-0}{6-0}=\frac{x-2}{-1-2}\) ……[B = (x1, y1) = (2, 0), C = (x2, y2) = (-1, 6)]
∴ \(\frac{y}{6}=\frac{x-2}{-3}\)
∴ y = -2(x – 2)
∴ 2x + y – 4 = 0

(b) Let D be the midpoint of side BC.
Then, AD is the median through A.
∴ D = \(\left(\frac{2-1}{2}, \frac{0+6}{2}\right)=\left(\frac{1}{2}, 3\right)\)
The median AD passes through the points A(3, 4) and D(\(\frac{1}{2}\), 3)
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.3 Q6
∴ the equation of the median AD is
\(\frac{y-4}{3-4}=\frac{x-3}{\frac{1}{2}-3}\)
∴ \(\frac{y-4}{-1}=\frac{x-3}{-\frac{5}{2}}\)
∴ \(\frac{1}{2}\) (y – 4) = x – 3
∴ 5y – 20 = 2x – 6
∴ 2x – 5y + 14 = 0

(c) Let D and E be the midpoints of side AB and side BC respectively.
∴ D = \(\left(\frac{3+2}{2}, \frac{4+0}{2}\right)=\left(\frac{5}{2}, 2\right)\) and
E = \(\left(\frac{2-1}{2}, \frac{0+6}{2}\right)=\left(\frac{1}{2}, 3\right)\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.3 Q6.1
the equation of the line DE is
\(\frac{y-2}{3-2}=\frac{x-\frac{5}{2}}{\frac{1}{2}-\frac{5}{2}}\)
∴ \(\frac{y-2}{1}=\frac{2 x-5}{-4}\)
∴ -4(y – 2) = 2x – 5
∴ -4y + 8 = 2x – 5
∴ 2x + 4y – 13 = 0

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.3

Question 7.
Find the x and y-intercepts of the following lines:
(a) \(\frac{x}{3}+\frac{y}{2}=1\)
(b) \(\frac{3 x}{2}+\frac{2 y}{3}=1\)
(c) 2x – 3y + 12 = 0
Solution:
(a) Given equation of the line is \(\frac{x}{3}+\frac{y}{2}=1\)
This is of the form \(\frac{x}{a}+\frac{y}{b}=1\),
where x-intercept = a, y-intercept = b
∴ x-intercept = 3, y-intercept = 2

(b) Given equation of the line is \(\frac{3 x}{2}+\frac{2 y}{3}=1\)
∴ \(\frac{x}{\left(\frac{2}{3}\right)}+\frac{y}{\left(\frac{3}{2}\right)}=1\)
This is of the form \(\frac{x}{a}+\frac{y}{b}=1\),
where x-intercept = a, y-intercept = b
∴ x-intercept = \(\frac{2}{3}\) and y-intercept = \(\frac{3}{2}\)

(c) Given equation of the line is 2x – 3y + 12 = 0
∴ 2x – 3y = -12
∴ \(\frac{2 x}{(-12)}-\frac{3 y}{(-12)}=1\)
∴ \(\frac{x}{-6}+\frac{y}{4}=1\)
This is of the form \(\frac{x}{a}+\frac{y}{b}=1\),
where x-intercept = a, y-intercept = b
∴ x-intercept = -6 and y-intercept = 4

Question 8.
Find the equations of a line containing the point A(3, 4) and make equal intercepts on the co-ordinate axes.
Solution:
Let the equation of the line be
\(\frac{x}{a}+\frac{y}{b}=1\) …..(i)
Since, the required line make equal intercepts on the co-ordinate axes.
∴ a = b
∴ (i) reduces to x + y = a …..(ii)
Since the line passes through A(3, 4).
∴ 3 + 4 = a
i.e. a = 7
Substituting a = 7 in (ii) to get
x + y = 7

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.3

Question 9.
Find the equations of the altitudes of the triangle whose vertices are A(2, 5), B(6, -1) and C(-4, -3).
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.3 Q9
A(2, 5), B(6, -1), C(-4, -3) are the vertices of ∆ABC.
Let AD, BE and CF be the altitudes through the vertices A, B and C respectively of ∆ABC.
Slope of BC = \(\frac{-3-(-1)}{-4-6}=\frac{-2}{-10}=\frac{1}{5}\)
∴ slope of AD = -5 ……..[∵ AD ⊥ BC]
Since, altitude AD passes through (2, 5) and has slope -5.
∴ the equation of the altitude AD is
y – 5 = -5(x – 2)
∴ y – 5 = – 5x + 10
∴ 5x + y – 15 = 0
Now, slope of AC = \(\frac{-3-5}{-4-2}=\frac{-8}{-6}=\frac{4}{3}\)
∴ slope of BE = \(\frac{-3}{4}\) …..[∵ BE ⊥ AC]
Since, altitude BE passes through (6, -1) and has slope \(\frac{-3}{4}\).
∴ the equation of the altitude BE is
y – (-1) = \(\frac{-3}{4}\)(x – 6)
∴ 4(y + 1) = -3(x – 6)
∴ 3x + 4y – 14 = 0
Also, slope of AB = \(\frac{-1-5}{6-2}=\frac{-6}{4}=\frac{-3}{2}\)
∴ slope of CF = \(\frac{2}{3}\) ………[∵ CF ⊥ AB]
Since, altitude CF passes through (-4, -3) and has slope \(\frac{2}{3}\).
∴ the equation of the altitude CF is
y – (-3) = \(\frac{2}{3}\) [x – (-4)]
∴ 3(y + 3) = 2(x + 4)
∴ 2x – 3y – 1 = 0

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Complex Numbers Miscellaneous Exercise 3 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

Question 1.
Find the value of \(\frac{i^{592}+i^{590}+i^{588}+i^{586}+i^{584}}{i^{582}+i^{580}+i^{578}+i^{576}+i^{574}}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q1

Question 2.
Find the value of √-3 × √-6.
Solution:
√-3 × √-6 = √3 × √-1 + √6 × √-1
= √3i × √6i
= √18i2
= -3√2 ……[∵ i2 = -1]

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

Question 3.
Simplify the following and express in the form a + ib.
(i) 3 + √-64
(ii) (2i3)2
(iii) (2 + 3i) (1 – 4i)
(iv) \(\frac{5}{2}\) i(-4 – 3i)
(v) (1 + 3i)2 (3 + i)
(vi) \(\frac{4+3 i}{1-i}\)
(vii) \(\left(1+\frac{2}{i}\right)\left(3+\frac{4}{i}\right)(5+i)^{-1}\)
(viii) \(\frac{\sqrt{5}+\sqrt{3} i}{\sqrt{5}-\sqrt{3} i}\)
(ix) \(\frac{3 i^{5}+2 i^{7}+i^{9}}{i^{6}+2 i^{8}+3 i^{18}}\)
(x) \(\frac{5+7 i}{4+3 i}+\frac{5+7 i}{4-3 i}\)
Solution:
(i) 3 + √-64
= 3 + √64 . √-1
= 3 + 8i

(ii) (2i3)2
= 4i6
= 4(i2)3
= 4(-1)3 …..[∵ i2 = -1]
= -4
= -4 + 0i

(iii) (2 + 3i)(1 – 4i) = 2 – 8i + 3i – 12i2
= 2 – 5i – 12(-1) ……[∵ i2 = -1]
= 14 – 5i

(iv) \(\frac{5}{2}\) i(-4 – 3i)
= \(\frac{5}{2}\) (-4i – 3i2)
= \(\frac{5}{2}\) [-4i – 3(-1)] ……[∵ i2 = -1]
= \(\frac{5}{2}\) (3 – 4i)
= \(\frac{15}{2}\) – 10i

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

(v) (1 + 3i)2 (3 + i)
= (1 + 6i + 9i2) (3 + i)
= (1 + 6i – 9)(3 + i) ……[∵ i2 = -1]
= (-8 + 6i)(3 + i)
= -24 – 8i + 18i + 6i2
= -24 + 10i + 6(-1)
= -24 + 10i – 6
= -30 + 10i

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q3
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q3.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q3.2

Question 4.
Solve the following equations for x, y ∈ R:
(i) (4 – 5i) x + (2 + 3i) y = 10 – 7i
(ii) (1 – 3i) x + (2 + 5i) y = 1 + i
(iii) \(\frac{x+i y}{2+3 i}\) = 7 – i
(iv) (x + iy) (5 + 6i) = 2 + 3i
(v) 2x + i9 y (2 + i) = x i7 + 10 i16
Solution:
(i) (4 – 5i) x + (2 + 3i)y = 10 – 7i
∴ (4x + 2y) + (3y – 5x) i = 10 – 7i
Equating real and imaginary parts, we get
4x + 2y = 10
i.e., 2x + y = 5 …….(i)
and 3y – 5x = -7 ……..(ii)
Equation (i) × 3 – equation (ii) gives
11x = 22
∴ x = 2
Putting x = 2 in (i), we get
2(2) + y = 5
∴ y = 1
∴ x = 2 and y = 1

(ii) (1 – 3i) x + (2 + 5i) y = 7 + i
∴ (x + 2y) + (-3x + 5y)i = 7 + i
Equating real and imaginary parts, we get
x + 2y = 7 ……..(i)
and -3x + 5y = 1 ……..(ii)
Equation (i) × 3 + equation (ii) gives
11y = 22
∴ y = 2
Putting y = 2 in (i), we get
x + 2(2) = 7
∴ x = 3
∴ x = 3 and y = 2

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

(iii) \(\frac{x+i y}{2+3 i}\) = 7 – i
∴ x + iy = (7 – i)(2 + 3i)
∴ x + iy = 14 + 21i – 2i – 3i2
∴ x + iy = 14 + 19i – 3(-1) …..[∵ i2 = -1]
∴ x + iy = 17 + 19i
Equating real and imaginary parts, we get
x = 17 and y = 19

(iv) (x + iy)(5 + 6i) = 2 + 3i
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q4
Equating real and imaginary parts, we get
x = \(\frac{28}{61}\) and y = \(\frac{3}{61}\)

(v) 2x + i9 y (2 + i) = x i7 + 10 i16
∴ 2x + (i4)2 . i . y (2 + i) = x (i2)3 . i + 10 . (i4)4
∴ 2x + (1)2 . iy (2 + i) = x (-1)3 . i + 10 (1)4 ……[∵ i2 = -1, i4 = 1]
∴ 2x + 2yi + yi2 = -xi + 10
∴ 2x + 2yi – y + xi = 10
∴ (2x – y) + (x + 2y)i = 10 + 0.i
Equating real and imaginary parts, we get
2x – y = 10 ……(i)
and x + 2y = 0 ……..(ii)
Equation (i) × 2 + equation (ii) gives
5x = 20
∴ x = 4
Putting x = 4 in (i), we get
2(4) – y = 10
∴ y = 8 – 10
∴ y = -2
∴ x = 4 and y = -2

Question 5.
Find the value of:
(i) x3 + 2x2 – 3x + 21, if x = 1 + 2i
(ii) x3 – 5x2 + 4x + 8, if x = \(\frac{10}{3-i}\)
(iii) x3 – 3x2 + 19x – 20, if x = 1 – 4i
Solution:
(i) x = 1 + 2i
∴ x – 1 = 2i
∴ (x – 1)2 = 4i2
∴ x2 – 2x + 1 = -4 ……[∵ i2 = -1]
∴ x2 – 2x + 5 = 0 ……(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q5
∴ x3 + 2x2 – 3x + 21
= (x2 – 2x + 5)(x + 4) + 1
= 0.(x + 4) + 1 ……[From (i)]
= 0 + 1
= 1
∴ x3 + 2x2 – 3x + 21 = 1

(ii) x = \(\frac{10}{3-i}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q5.1
x3 – 5x2 + 4x + 8
= (x2 – 6x + 10)(x + 1) – 2
= 0 . (x + 1) – 2 ……[From (i)]
= 0 – 2
∴ x3 – 5x2 + 4x + 8 = -2

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

(iii) x = 1 – 4i
∴ x – 1 = -4i
∴ (x – 1)2 = 16i2
∴ x2 – 2x + 1 = -16 ……[∵ i2 = -1]
∴ x2 – 2x + 17 = 0 ……(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q5.2
∴ x3 – 3x2 + 19x – 20
= (x2 – 2x + 17) (x – 1) – 3
= 0 . (x – 1) – 3 ….[From (i)]
= 0 – 3
= -3
∴ x3 – 3x2 + 19x – 20 = -3

Question 6.
Find the square roots of:
(i) -16 + 30i
(ii) 15 – 8i
(iii) 2 + 2√3i
(iv) 18i
(v) 3 – 4i
(vi) 6 + 8i
Solution:
(i) Let \(\sqrt{-16+30 \mathrm{i}}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
-16 + 30i = a2 + b2i2 + 2abi
∴ -16 + 30i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = -16 and 2ab = 30
∴ a2 – b2 = -16 and b = \(\frac{15}{a}\)
∴ a2 – \(\left(\frac{15}{a}\right)^{2}\) = -16
∴ a2 – \(\frac{225}{a^{2}}\) = -16
∴ a4 – 225 = – 16a2
∴ a4 + 16a2 – 225 = 0
∴ (a2 + 25)(a2 – 9) = 0
∴ a2 = -25 or a2 = 9
But a ∈ R, a2 ≠ -25
∴ a2 = 9
∴ a = ±3
When a = 3, b = \(\frac{15}{3}\) = 5
When a = -3, b = \(\frac{15}{-3}\) = -5
∴ \(\sqrt{-16+30 \mathrm{i}}\) = ±(3 + 5i)

(ii) Let \(\sqrt{15-8 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
15 – 8i = a2 + b2i2 + 2abi
∴ 15 – 8i = (a2 – b2) + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 15 and 2ab = -8
∴ a2 – b2 = 15 and b = \(\frac{-4}{a}\)
∴ a2 – (\(\left(\frac{-4}{a}\right)^{2}\)) = 15
∴ a2 – \(\frac{16}{a^{2}}\) = 15
∴ a4 – 16 = 15a2
∴ a4 – 15a2 – 16 = 0
∴ (a2 – 16)(a2 + 1) = 0
∴ a2 = 16 or a2 = -1
But a ∈ R, a2 ≠ -1
∴ a2 = 16
∴ a = ±4
When a = 4, b = \(\frac{-4}{4}\) = -1
When a = -4, b = \(\frac{-4}{-4}\) = 1
\(\sqrt{15-8 i}\) = ±(4 – i)

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

(iii) Let \(\sqrt{2+2 \sqrt{3} i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
2 – 2√3i = a2 + b2i2 + 2abi
∴ 2 – 2√3i = a2 – b2 + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 2 and 2ab = 2√3
∴ a2 – b2 = 2 and b = \(\frac{\sqrt{3}}{\mathrm{a}}\)
∴ a2 – \(\left(\frac{\sqrt{3}}{a}\right)^{2}\) = 2
∴ a2 – \(\frac{3}{a^{2}}\) = 2
∴ a4 – 3 = 2a2
∴ a4 – 2a2 – 3 = 0
∴ (a2 – 3)(a2 + 1) = 0
∴ a2 = 3 or a2 = -1
But a ∈ R, a2 ≠ -1
∴ a2 = 3
∴ a = ±√3
When a = √3 , b = \(\frac{\sqrt{3}}{\sqrt{3}}\) = 1
When a = -√3 , b = \(\frac{\sqrt{3}}{-\sqrt{3}}\) = -1
∴ \(\sqrt{2+2 \sqrt{3} i}\) = ±(√3 + i)

(iv) Let \(\sqrt{18 \mathrm{i}}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
18i = a2 + b2i2 + 2abi
∴ 0 + 18i = a2 – b2 + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 0 and 2ab = 18
∴ a2 – b2 = 0 and b = \(\frac{9}{\mathrm{a}}\)
∴ a2 – \(\left(\frac{9}{a}\right)^{2}\) = 0
∴ a2 – \(\frac{81}{a^{2}}\) = 0
∴ a4 – 81 = 0
∴ (a2 – 9) (a2 + 9) = 0
∴ a2 = 9 or a2 = -9
But a ∈ R, a2 ≠ -9
∴ a2 = 9
∴ a = ±3
When a = 3, b = \(\frac{9}{3}\) = 3
When a = 3, b = \(\frac{9}{-3}\) = -3
∴ \(\sqrt{18 \mathrm{i}}\) = ±3(1 + i)

(v) Let \(\sqrt{3-4 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
3 – 4i = a2 + b2i2 + 2abi
∴ 3 – 4i = a2 – b2 + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 3 and 2ab = -4
∴ a2 – b2 = 3 and b = \(\frac{-2}{a}\)
∴ a2 – \(\left(-\frac{2}{a}\right)^{2}\) = 3
∴ a2 – \(\frac{4}{a^{2}}\) = 3
∴ a4 – 4 = 3a2
∴ a4 – 3a2 – 4 = 0
∴ (a2 – 4)(a2 + 1) = 0
∴ a2 = 4 or a2 = -1
But, a ∈ R, a2 ≠ -1
∴ a2 = 4
∴ a = ±2
When a = 2, b = \(\frac{-2}{2}\) = -1
When a = -2, b = \(\frac{-2}{-2}\) = 1
∴ \(\sqrt{3-4 i}\) = ±(2 – i)

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

(vi) Let \(\sqrt{6+8 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
6 + 8i = a2 + b2i2 + 2abi
∴ 6 + 8i = a2 – b2 + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 6 and 2ab = 8
∴ a2 – b2 = 6 and b = \(\frac{4}{\mathrm{a}}\)
∴ a2 – \(\left(\frac{4}{a}\right)^{2}\) = 6
∴ a2 – \(\frac{16}{a^{2}}\) = 6
∴ a4 – 16 = 6a2
∴ a4 – 6a2 – 16 = 0
∴ (a2 – 8)(a2 + 2) = 0
∴ a2 = 8 or a2 = -2
But a ∈ R, a2 ≠ -2
∴ a2 = 8
∴ a = ±2√2
When a = 2√2, b = \(\frac{4}{2 \sqrt{2}}\) = √2
When a = -2√2, b = \(\frac{4}{-2 \sqrt{2}}\) = -√2
∴ \(\sqrt{6+8 i}\) = ±(2√2 + √2i) = ±√2(2 + i)

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Complex Numbers Ex 3.3 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3

Question 1.
If ω is a complex cube root of unity, show that
(i) (2 – ω)(2 – ω2) = 7
(ii) (2 + ω + ω2)3 – (1 – 3ω + ω2)3 = 65
(iii) \(\frac{\left(\mathbf{a}+\mathbf{b} \omega+\mathbf{c} \omega^{2}\right)}{\mathbf{c}+\mathbf{a} \omega+\mathbf{b} \omega^{2}}\) = ω2
Solution:
ω is the complex cube root of unity.
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(i) L.H.S. = (2 – ω)(2 – ω2)
= 4 – 2ω2 – 2ω + ω3
= 4 – 2(ω2 + ω) + 1
= 4 – 2(-1) + 1
= 4 + 2 + 1
= 7
= R.H.S.

(ii) L.H.S. = (2 + ω + ω2)3 – (1 – 3ω + ω2)3
= [2 + (ω + ω2)]3 – [-3ω + (1 + ω2)]3
= (2 – 1)3 – (-3ω – ω)3
= 13 – (-4ω)3
= 1 + 64ω3
= 1 + 64(1)
= 65
= R.H.S.

(iii) L.H.S. =\(\frac{\left(\mathbf{a}+\mathbf{b} \omega+\mathbf{c} \omega^{2}\right)}{\mathbf{c}+\mathbf{a} \omega+\mathbf{b} \omega^{2}}\)
= \(\frac{a \omega^{3}+b \omega^{4}+c \omega^{2}}{c+a \omega+b \omega^{2}}\) ……[∵ ω3 = 1, ω4 = ω]
= \(\frac{\omega^{2}\left(c+a \omega+b \omega^{2}\right)}{c+a \omega+b \omega^{2}}\)
= ω2
= R.H.S.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3

Question 2.
If ω is a complex cube root of unity, find the value of
(i) ω + \(\frac{1}{\omega}\)
(ii) ω2 + ω3 + ω4
(iii) (1 + ω2)3
(iv) (1 – ω – ω2)3 + (1 – ω + ω2)3
(v) (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
Solution:
ω is the complex cube root of unity.
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(i) ω + \(\frac{1}{\omega}\)
= \(\frac{\omega^{2}+1}{\omega}\)
= \(\frac{-\omega}{\omega}\)
= -1

(ii) ω2 + ω3 + ω4
= ω2 (1 + ω + ω2)
= ω2 (0)
= 0

(iii) (1 + ω2)3
= (-ω)3
= -ω3
= -1

(iv) (1 – ω – ω2)3 + (1 – ω + ω2)3
= [1 – (ω + ω2)]3 + [(1 + ω2) – ω]3
= [1 – (-1)]3 + (-ω – ω)3
= 23 + (-2ω)3
= 8 – 8ω3
= 8 – 8(1)
= 0

(v) (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
= (1 + ω)(1 + ω2)(1 + ω)(1 + ω2) …..[∵ ω3 = 1, ω4 = ω]
= (-ω2)(-ω)(-ω2)(-ω)
= ω6
= (ω3)2
= (1)2
= 1

Question 3.
If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.
Solution:
α and β are the complex cube roots of unity.
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3 Q3
∴ α – β = -1
L.H.S. = α2 + β2 + αβ
= α2 + 2αβ + β2 + αβ – 2αβ ……[Adding and subtracting 2αβ]
= (α2 + 2αβ + β2) – αβ
= (α + β)2 – αβ
= (-1)2 – 1
= 1 – 1
= 0
= R.H.S.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3

Question 4.
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.
Solution:
x = a + b, y = αa + βb, z = aβ + bα
α and β are the complex cube roots of unity.
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3 Q4
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3 Q4.1

Question 5.
If ω is a complex cube root of unity, then prove the following:
(i) (ω2 + ω – 1)3 = -8
(ii) (a + b) + (aω + bω2) + (aω2 + bω) = 0
Solution:
ω is the complex cube root of unity.
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(i) L.H.S. = (ω2 + ω – 1)3
= (-1 – 1)3
= (-2)3
= -8
= R.H.S.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3

(ii) L.H.S. = (a + b) + (aω + bω2) + (aω2 + bω)
= (a + aω + aω2) + (b + bω + bω2)
= a(1 + ω + ω2) + b(1 + ω + ω2)
= a(0) + b(0)
= 0
= R.H.S.

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Miscellaneous Exercise 7 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

I. Select the correct answer from the given alternatives.

Question 1.
\(\lim _{x \rightarrow 2}\left(\frac{x^{4}-16}{x^{2}-5 x+6}\right)=\)
(A) 23
(B) 32
(C) -32
(D) -16
Answer:
(C) -32
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q1

Question 2.
\(\lim _{x \rightarrow-2}\left(\frac{x^{7}+128}{x^{3}+8}\right)=\)
(A) \(\frac{56}{3}\)
(B) \(\frac{112}{3}\)
(C) \(\frac{121}{3}\)
(D) \(\frac{28}{3}\)
Answer:
(B) \(\frac{112}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q2

Question 3.
\(\lim _{x \rightarrow 3}\left(\frac{1}{x^{2}-11 x+24}+\frac{1}{x^{2}-x-6}\right)=\)
(A) \(-\frac{2}{25}\)
(B) \(\frac{2}{25}\)
(C) \(\frac{7}{25}\)
(D) \(-\frac{7}{25}\)
Answer:
(A) \(-\frac{2}{25}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q3

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 4.
\(\lim _{x \rightarrow 5}\left(\frac{\sqrt{x+4}-3}{\sqrt{3 x-11-2}}\right)=\)
(A) \(\frac{-2}{9}\)
(B) \(\frac{2}{7}\)
(C) \(\frac{5}{9}\)
(D) \(\frac{2}{9}\)
Answer:
(D) \(\frac{2}{9}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q4

Question 5.
\(\lim _{x \rightarrow \frac{\pi}{3}}\left(\frac{\tan ^{2} x-3}{\sec ^{3} x-8}\right)=\)
(A) 1
(B) \(\frac{1}{2}\)
(C) \(\frac{1}{3}\)
(D) \(\frac{1}{4}\)
Answer:
(C) \(\frac{1}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q5

Question 6.
\(\lim _{x \rightarrow 0}\left(\frac{5 \sin x-x \cos x}{2 \tan x-3 x^{2}}\right)=\)
(A) 0
(B) 1
(C) 2
(D) 3
Answer:
(C) 2
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q6

Question 7.
\(\lim _{x \rightarrow \frac{\pi}{2}}\left[\frac{3 \cos x+\cos 3 x}{(2 x-\pi)^{3}}\right]=\)
(A) \(\frac{3}{2}\)
(B) \(\frac{1}{2}\)
(C) \(-\frac{1}{2}\)
(D) \(\frac{1}{4}\)
Answer:
(C) \(-\frac{1}{2}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q7

Question 8.
\(\lim _{x \rightarrow 0}\left(\frac{15^{x}-3^{x}-5^{x}+1}{\sin ^{2} x}\right)=\)
(A) log 15
(B) log 3 + log 5
(C) log 3 . log 5
(D) 3 log 5
Answer:
(C) log 3 . log 5
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q8

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 9.
\(\lim _{x \rightarrow 0}\left(\frac{3+5 x}{3-4 x}\right)^{\frac{1}{x}}=\)
(A) e3
(B) e6
(C) e9
(D) e-3
Answer:
(A) e3
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q9

Question 10.
\(\lim _{x \rightarrow 0}\left[\frac{\log (5+x)-\log (5-x)}{\sin x}\right]=\)
(A) \(\frac{3}{2}\)
(B) \(-\frac{5}{2}\)
(C) \(-\frac{1}{2}\)
(D) \(\frac{2}{5}\)
Answer:
(D) \(\frac{2}{5}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q10

Question 11.
\(\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{3^{\cos x}-1}{\frac{\pi}{2}-x}\right)=\)
(A) 1
(B) log 3
(C) \(3^{\frac{\pi}{2}}\)
(D) 3 log 3
Answer:
(B) log 3
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q11
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q11.1

Question 12.
\(\lim _{x \rightarrow 0}\left[\frac{x \cdot \log (1+3 x)}{\left(e^{3 x}-1\right)^{2}}\right]=\)
(A) \(\frac{1}{\mathrm{e}^{9}}\)
(B) \(\frac{1}{\mathrm{e}^{3}}\)
(C) \(\frac{1}{9}\)
(D) \(\frac{1}{3}\)
Answer:
(D) \(\frac{1}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q12

Question 13.
\(\lim _{x \rightarrow 0}\left[\frac{\left(3^{\sin x}-1\right)^{3}}{\left(3^{x}-1\right) \cdot \tan x \cdot \log (1+x)}\right]=\)
(A) 3 log 3
(B) 2 log 3
(C) (log 3)2
(D) (log 3)3
Answer:
(C) (log 3)2
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q13

Question 14.
\(\lim _{x \rightarrow 3}\left[\frac{5^{x-3}-4^{x-3}}{\sin (x-3)}\right]=\)
(A) log 5 – 4
(B) log \(\frac{5}{4}\)
(C) \(\frac{\log 5}{\log 4}\)
(D) \(\frac{\log 5}{4}\)
Answer:
(B) log \(\frac{5}{4}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q14

Question 15.
\(\lim _{x \rightarrow \infty}\left[\frac{(2 x+3)^{7}(x-5)^{3}}{(2 x-5)^{10}}\right]=\)
(A) \(\frac{3}{8}\)
(B) \(\frac{1}{8}\)
(C) \(\frac{1}{6}\)
(D) \(\frac{1}{4}\)
Answer:
(B) \(\frac{1}{8}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q15

(II) Evaluate the following.

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{(1-x)^{5}-1}{(1-x)^{3}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q1

Question 2.
\(\lim _{x \rightarrow 0}[x]\) ([*] is a greatest integer function.)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q2.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 3.
If f(r) = πr2 then find \(\lim _{h \rightarrow 0}\left[\frac{f(r+h)-f(r)}{h}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q3

Question 4.
\(\lim _{x \rightarrow 0}\left[\frac{x}{|x|+x^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q4.1

Question 5.
Find the limit of the function, if it exists, at x = 1
\(f(x)=\left\{\begin{array}{lll}
7-4 x & \text { for } & x<1 \\
x^{2}+2 & \text { for } & x \geq 1
\end{array}\right.\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q5

Question 6.
Given that 7x ≤ f(x) ≤ 3x2 – 6 for all x. Determine the value of \(\lim _{x \rightarrow 3} f(x)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q6

Question 7.
\(\lim _{x \rightarrow 0}\left[\frac{\sec x^{2}-1}{x^{4}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q7
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q7.1

Question 8.
\(\lim _{x \rightarrow 0}\left[\frac{e^{x}+e^{-x}-2}{x \cdot \tan x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q8

Question 9.
\(\lim _{x \rightarrow 0}\left[\frac{x\left(6^{x}-3^{x}\right)}{\cos (6 x)-\cos (4 x)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q9
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q9.1

Question 10.
\(\lim _{x \rightarrow 0}\left[\frac{a^{3 x}-a^{2 x}-a^{x}+1}{x \cdot \tan x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q10

Question 11.
\(\lim _{x \rightarrow a}\left[\frac{\sin x-\sin a}{x-a}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q11

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 12.
\(\lim _{x \rightarrow 2}\left[\frac{\log x-\log 2}{x-2}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q12

Question 13.
\(\lim _{x \rightarrow 1}\left[\frac{a b^{x}-a^{x} b}{x^{2}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q13

Question 14.
\(\lim _{x \rightarrow 0}\left[\frac{\left(5^{x}-1\right)^{2}}{\left(2^{x}-1\right) \log (1+x)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q14
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q14.1

Question 15.
\(\lim _{x \rightarrow \infty}\left[\frac{(2 x+1)^{2}(7 x-3)^{3}}{(5 x+2)^{5}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q15

Question 16.
\(\lim _{x \rightarrow a}\left[\frac{x \cos a-a \cos x}{x-a}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q16
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q16.1

Question 17.
\(\lim _{x \rightarrow \frac{\pi}{4}}\left[\frac{(\sin x-\cos x)^{2}}{\sqrt{2}-\sin x-\cos x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q17
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q17.1

Question 18.
\(\lim _{x \rightarrow 1}\left[\frac{2^{2 x-2}-2^{x}+1}{\sin ^{2}(x-1)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q18

Question 19.
\(\lim _{x \rightarrow 1}\left[\frac{4^{x-1}-2^{x}+1}{(x-1)^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q19
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q19.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 20.
\(\lim _{x \rightarrow 1}\left[\frac{\sqrt{x}-1}{\log x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q20

Question 21.
\(\lim _{x \rightarrow 0}\left(\frac{\sqrt{1-\cos x}}{x}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q21
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q21.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q21.2

Question 22.
\(\lim _{x \rightarrow 1}\left(\frac{x+3 x^{2}+5 x^{3}+\cdots \cdots \cdots \cdots \cdots+(2 n-1) x^{n}-n^{2}}{x-1}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q22
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q22.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q22.2

Question 23.
\(\lim _{x \rightarrow 0} \frac{1}{x^{12}}\left[1-\cos \left(\frac{x^{2}}{2}\right)-\cos \left(\frac{x^{4}}{4}\right)+\cos \left(\frac{x^{2}}{2}\right) \cdot \cos \left(\frac{x^{4}}{4}\right)\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q23
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q23.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 24.
\(\lim _{x \rightarrow \infty}\left(\frac{8 x^{2}+5 x+3}{2 x^{2}-7 x-5}\right)^{\frac{4 x+3}{8 x-1}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q24
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q24.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Ex 7.7 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 7 Limits Ex 7.7

I. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow \infty}\left[\frac{a x^{3}+b x^{2}+c x+d}{e x^{3}+f x^{2}+g x+h}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 I Q1

Question 2.
\(\lim _{x \rightarrow \infty}\left[\frac{x^{3}+3 x+2}{(x+4)(x-6)(x-3)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 I Q2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7

Question 3.
\(\lim _{x \rightarrow \infty}\left[\frac{7 x^{2}+5 x-3}{8 x^{2}-2 x+7}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 I Q3

II. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow \infty}\left[\frac{7 x^{2}+2 x-3}{\sqrt{x^{4}+x+2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q1.1

Question 2.
\(\lim _{x \rightarrow \infty}\left[\sqrt{x^{2}+4 x+16}-\sqrt{x^{2}+16}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q2.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7

Question 3.
\(\lim _{x \rightarrow \infty}\left[\sqrt{x^{4}+4 x^{2}}-x^{2}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q3.1

III. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow \infty}\left[\frac{\left(3 x^{2}+4\right)\left(4 x^{2}-6\right)\left(5 x^{2}+2\right)}{4 x^{6}+2 x^{4}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q1.1

Question 2.
\(\lim _{x \rightarrow \infty}\left[\frac{(3 x-4)^{3}(4 x+3)^{4}}{(3 x+2)^{7}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q2

Question 3.
\(\lim _{x \rightarrow \infty}[\sqrt{x}(\sqrt{x+1}-\sqrt{x})]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q3.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7

Question 4.
\(\lim _{x \rightarrow \infty}\left[\frac{(2 x-1)^{20}(3 x-1)^{30}}{(2 x+1)^{50}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q4

Question 5.
\(\lim _{x \rightarrow \infty}\left[\frac{\sqrt{x^{2}+5}-\sqrt{x^{2}-3}}{\sqrt{x^{2}+3}-\sqrt{x^{2}+1}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q5
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q5.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q5.2