Functions Class 11 Maths 2 Exercise 6.1 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 6 Functions Ex 6.1 Questions and Answers.

11th Maths Part 2 Functions Exercise 6.1 Questions And Answers Maharashtra Board

Question 1.
Check if the following relations are functions.
(a)
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q1 (a)
Solution:
Yes.
Reason: Every element of set A has been assigned a unique element in set B.

(b)
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q1 (b)
Solution:
No.
Reason: An element of set A has been assigned more than one element from set B.

(c)
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q1 (c)
Solution:
No.
Reason:
Not every element of set A has been assigned an image from set B.

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1

Question 2.
Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {-1, 0, 1, 2, 3}? Justify.
(i) {(1, 0), (3, 3), (2, -1), (4, 1), (2, 2)}
(ii) {(1, 2), (2, -1), (3, 1), (4, 3)}
(iii) {(1, 3), (4, 1), (2, 2)}
(iv) {(1, 1), (2, 1), (3, 1), (4, 1)}
Solution:
(i) {(1, 0), (3, 3), (2, -1), (4, 1), (2, 2)} does not represent a function.
Reason: (2, -1), (2, 2), show that element 2 ∈ A has been assigned two images -1 and 2 from set B.

(ii) {(1, 2), (2, -1), (3, 1), (4, 3)} represents a function.
Reason: Every element of set A has been assigned a unique image in set B.

(iii) {(1, 3), (4, 1), (2, 2)} does not represent a function.
Reason:
3 ∈ A does not have an image in set B.

(iv) {(1, 1), (2, 1), (3, 1), (4, 1)} represents a function
Reason: Every element of set A has been assigned a unique image in set B.

Question 3.
Check if the relation given by the equation represents y as function of x.
(i) 2x + 3y = 12
(ii) x + y2 = 9
(iii) x2 – y = 25
(iv) 2y + 10 = 0
(v) 3x – 6 = 21
Solution:
(i) 2x + 3y = 12
∴ y = \(\frac{12-2 x}{3}\)
∴ For every value of x, there is a unique value of y.
∴ y is a function of x.

(ii) x + y2 = 9
∴ y2 = 9 – x
∴ y = ±\(\sqrt{9-x}\)
∴ For one value of x, there are two values of y.
∴ y is not a function of x.

(iii) x2 – y = 25
∴ y = x2 – 25
∴ For every value of x, there is a unique value of y.
∴ y is a function of x.

(iv) 2y + 10 = 0
∴ y = -5
∴ For every value of x, there is a unique value of y.
∴ y is a function of x.

(v) 3x – 6 = 21
∴ x = 9
∴ x = 9 represents a point on the X-axis.
There is no y involved in the equation.
So the given equation does not represent a function.

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1

Question 4.
If f(m) = m2 – 3m + 1, find
(i) f(0)
(ii) f(-3)
(iii) f(\(\frac{1}{2}\))
(iv) f(x + 1)
(v) f(-x)
(vi) \(\left(\frac{\mathbf{f}(2+h)-f(2)}{h}\right)\), h ≠ 0.
Solution:
f(m) = m2 – 3m + 1
(i) f(0) = 02 – 3(0) + 1 = 1

(ii) f (-3) = (-3)2 – 3(-3) + 1
= 9 + 9 + 1
= 19

(iii) f(\(\frac{1}{2}\)) = \(\left(\frac{1}{2}\right)^{2}-3\left(\frac{1}{2}\right)+1\)
= \(\frac{1}{4}-\frac{3}{2}+1\)
= \(\frac{1-6+4}{4}\)
= \(-\frac{1}{4}\)

(iv) f(x + 1) = (x + 1)2 – 3(x + 1) + 1
= x2 + 2x + 1 – 3x – 3 + 1
= x2 – x – 1

(v) f(-x) = (-x)2 – 3(-x) + 1 = x2 + 3x + 1

(vi) \(\left(\frac{\mathbf{f}(2+h)-f(2)}{h}\right)\)
= \(\frac{(2+h)^{2}-3(2+h)+1-\left(2^{2}-3(2)+1\right)}{h}\)
= \(\frac{\mathrm{h}^{2}+\mathrm{h}}{\mathrm{h}}\)
= h + 1

Question 5.
Find x, if g(x) = 0 where
(i) g(x) = \(\frac{5 x-6}{7}\)
(ii) g(x) = \(\frac{18-2 x^{2}}{7}\)
(iii) g(x) = 6x2 + x – 2
(iv) g(x) = x3 – 2x2 – 5x + 6
Solution:
(i) g(x) = \(\frac{5 x-6}{7}\)
g(x) = 0
∴ \(\frac{5 x-6}{7}\) = 0
∴ x = \(\frac{6}{5}\)

(ii) g(x) = \(\frac{18-2 x^{2}}{7}\)
g(x) = 0
\(\frac{18-2 x^{2}}{7}\) = 0
∴ 18 – 2x2 = 0
∴ x2 = 9
∴ x = ±3

(iii) g(x) = 6x2 + x – 2
g(x) = 0
∴ 6x2 + x – 2 = 0
∴ (2x – 1) (3x + 2) = 0
∴ 2x – 1 = 0 or 3x + 2 = 0
∴ x = \(\frac{1}{2}\) or x = \(\frac{-2}{3}\)

(iv) g(x) = x3 – 2x2 – 5x + 6
= ( x- 1) (x2 – x – 6)
= (x – 1) (x + 2) (x – 3)
g(x) = 0
∴ (x – 1) (x + 2) (x – 3) = 0
∴ x – 1 = 0 or x + 2 = 0 or x – 3 = 0
∴ x = 1, -2, 3

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1

Question 6.
Find x, if f(x) = g(x) where
(i) f(x) = x4 + 2x2, g(x) = 11x2
(ii) f(x) = √x – 3, g(x) = 5 – x
Solution:
(i) f(x) = x4 + 2x2, g(x) = 11x2
f(x) = g(x)
∴ x4 + 2x2 = 11x2
∴ x4 – 9x2 = 0
∴ x2 (x2 – 9) = 0
∴ x2 = 0 or x2 – 9 = 0
∴ x = 0 or x2 = 9
∴ x = 0, ±3

(ii) f(x) = √x – 3, g(x) = 5 – x
f(x) = g(x)
∴ √x – 3 = 5 – x
∴ √x = 5 – x + 3
∴ √x = 8 – x
on squaring, we get
x = 64 + x2 – 16x
∴ x2 – 17x + 64 = 0
∴ x = \(\frac{17 \pm \sqrt{(-17)^{2}-4(64)}}{2}\)
∴ x = \(\frac{17 \pm \sqrt{289-256}}{2}\)
∴ x = \(\frac{17 \pm \sqrt{33}}{2}\)

Question 7.
If f(x) = \(\frac{a-x}{b-x}\), f(2) is undefined, and f(3) = 5, find a and b.
Solution:
f(x) = \(\frac{a-x}{b-x}\)
Given that,
f(2) is undefined
b – 2 = 0
∴ b = 2 …..(i)
f(3) = 5
∴ \(\frac{a-3}{b-3}\) = 5
∴ \(\frac{a-3}{2-3}\) = 5 ….. [From (i)]
∴ a – 3 = -5
∴ a = -2
∴ a = -2, b = 2

Question 8.
Find the domain and range of the following functions.
(i) f(x) = 7x2 + 4x – 1
Solution:
f(x) = 7x2 + 4x – 1
f is defined for all x.
∴ Domain of f = R (i.e., the set of real numbers)
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q8 (i)
∴ Range of f = [\(-\frac{11}{7}\), ∞)

(ii) g(x) = \(\frac{x+4}{x-2}\)
Solution:
g(x) = \(\frac{x+4}{x-2}\)
Function g is defined everywhere except at x = 2.
∴ Domain of g = R – {2}
Let y = g(x) = \(\frac{x+4}{x-2}\)
∴ (x – 2) y = x + 4
∴ x(y – 1) = 4 + 2y
∴ For every y, we can find x, except for y = 1.
∴ y = 1 ∉ range of function g
∴ Range of g = R – {1}

(iii) h(x) = \(\frac{\sqrt{x+5}}{5+x}\)
Solution:
h(x) = \(\frac{\sqrt{x+5}}{5+x}=\frac{1}{\sqrt{x+5}}\), x ≠ -5
For x = -5, function h is not defined.
∴ x + 5 > 0 for function h to be well defined.
∴ x > -5
∴ Domain of h = (-5, ∞)
Let y = \(\frac{1}{\sqrt{x+5}}\)
∴ y > 0
Range of h = (0, ∞) or R+

(iv) f(x) = \(\sqrt[3]{x+1}\)
Solution:
f(x) = \(\sqrt[3]{x+1}\)
f is defined for all real x and the values of f(x) ∈ R
∴ Domain of f = R, Range of f = R

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1

(v) f(x) = \(\sqrt{(x-2)(5-x)}\)
Solution:
f(x) = \(\sqrt{(x-2)(5-x)}\)
For f to be defined,
(x – 2)(5 – x) ≥ 0
∴ (x – 2)(x – 5) ≤ 0
∴ 2 ≤ x ≤ 5 ……[∵ The solution of (x – a) (x – b) ≤ 0 is a ≤ x ≤ b, for a < b]
∴ Domain of f = [2, 5]
(x – 2) (5 – x) = -x2 + 7x – 10
= \(-\left(x-\frac{7}{2}\right)^{2}+\frac{49}{4}-10\)
= \(\frac{9}{4}-\left(x-\frac{7}{2}\right)^{2} \leq \frac{9}{4}\)
∴ \(\sqrt{(x-2)(5-x)} \leq \sqrt{\frac{9}{4}} \leq \frac{3}{2}\)
Range of f = [0, \(\frac{3}{2}\)]

(vi) f(x) = \(\sqrt{\frac{x-3}{7-x}}\)
Solution:
f(x) = \(\sqrt{\frac{x-3}{7-x}}\)
For f to be defined,
\(\sqrt{\frac{x-3}{7-x}}\) ≥ 0, 7 – x ≠ 0
∴ \(\sqrt{\frac{x-3}{7-x}}\) ≤ 0 and x ≠ 7
∴ 3 ≤ x < 7
Let a < b, \(\frac{x-a}{x-b}\) ≤ 0 ⇒ a ≤ x < b
∴ Domain of f = [3, 7)
f(x) ≥ 0 … [∵ The value of square root function is non-negative]
∴ Range of f = [0, ∞)

(vii) f(x) = \(\sqrt{16-x^{2}}\)
Solution:
f(x) = \(\sqrt{16-x^{2}}\)
For f to be defined,
16 – x2 ≥ 0
∴ x2 ≤ 16
∴ -4 ≤ x ≤ 4
∴ Domain of f = [-4, 4]
Clearly, f(x) ≥ 0 and the value of f(x) would be maximum when the quantity subtracted from 16 is minimum i.e. x = 0
∴ Maximum value of f(x) = √16 = 4
∴ Range of f = [0, 4]

Question 9.
Express the area A of a square as a function of its
(a) side s
(b) perimeter P
Solution:
(a) area (A) = s2
(b) perimeter (P) = 4s
∴ s = \(\frac{\mathrm{P}}{4}\)
Area (A) = s2 = \(\left(\frac{\mathrm{P}}{4}\right)^{2}\)
∴ A = \(\frac{\mathrm{P}^{2}}{16}\)

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1

Question 10.
Express the area A of a circle as a function of its
(i) radius r
(ii) diameter d
(iii) circumference C
Solution:
(i) Area (A) = πr2

(ii) Diameter (d) = 2r
∴ r = \(\frac{\mathrm{d}}{2}\)
∴ Area (A) = πr2 = \(\frac{\pi \mathrm{d}^{2}}{4}\)

(iii) Circumference (C) = 2πr
∴ r = \(\frac{C}{2 \pi}\)
Area (A) = πr2 = \(\pi\left(\frac{\mathrm{C}}{2 \pi}\right)^{2}\)
∴ A = \(\frac{C^{2}}{4 \pi}\)

Question 11.
An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also, find its domain.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q11
Length of the box = 30 – 2x
Breadth of the box = 30 – 2x
Height of the box = x
Volume = (30 – 2x)2 x, x < 15, x ≠ 15, x > 0
= 4x(15 – x)2, x ≠ 15, x > 0
Domain (0, 15)

Question 12.
Let f be a subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z? Justify?
Solution:
f = {(ab, a + b): a, b ∈ Z}
Let a = 1, b = 1. Then, ab = 1, a + b = 2
∴ (1, 2) ∈ f
Let a = -1, b = -1. Then, ab = 1, a + b = -2
∴ (1, -2) ∈ f
Since (1, 2) ∈ f and (1, -2) ∈ f,
f is not a function as element 1 does not have a unique image.

Question 13.
Check the injectivity and surjectivity of the following functions.
(i) f : N → N given by f(x) = x2
Solution:
f: N → N given by f(x) = x2
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q13 (i)
∴ f is injective.
For every y = x2 ∈ N, there does not exist x ∈ N.
Example: 7 ∈ N (codomain) for which there is no x in domain N such that x2 = 7
∴ f is not surjective.

(ii) f : Z → Z given by f(x) = x2
Solution:
f: Z → Z given by f(x) = x2
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q13 (ii)
∴ f is not injective.
(Example: f(-2) = 4 = f(2). So, -2, 2 have the same image. So, f is not injective.)
Since x2 ≥ 0,
f(x) ≥ 0
Therefore all negative integers of codomain are not images under f.
∴ f is not surjective.

(iii) f : R → R given by f(x) = x2
Solution:
f : R → R given by f(x) = x2
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q13 (iii)
∴ f is not injective.
f(x) = x2 ≥ 0
Therefore all negative integers of codomain are not images under f.
∴ f is not surjective.

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1

(iv) f : N → N given by f(x) = x3
Solution:
f: N → N given by f(x) = x3
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q13 (iv)
∴ f is injective.
Numbers from codomain which are not cubes of natural numbers are not images under f.
∴ f is not surjective.

(v) f : R → R given by f(x) = x3
Solution:
f: R → R given by f(x) = x3
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q13 (v)
∴ For every y ∈ R, there is some x ∈ R.
∴ f is surjective.

Question 14.
Show that if f : A → B and g : B → C are one-one, then gof is also one-one.
Solution:
f is a one-one function.
Let f(x1) = f(x2)
Then, x1 = x2 for all x1, x2 …..(i)
g is a one-one function.
Let g(y1) = g(y2)
Then, y1 = y2 for all y1, y2 …..(ii)
Let (gof) (x1) = (gof) (x2)
∴ g(f(x1)) = g(f(x2))
∴ g(y1) = g(y2),
where y1 = f(x1), y2 = f(x2) ∈ B
∴ y1 = y2 …..[From (ii)]
i.e., f(x1) = f(x2)
∴ x1 = x2 ….[From (i)]
∴ gof is one-one.

Question 15.
Show that if f : A → B and g : B → C are onto, then gof is also onto.
Solution:
Since g is surjective (onto),
there exists y ∈ B for every z ∈ C such that
g(y) = z …….(i)
Since f is surjective,
there exists x ∈ A for every y ∈ B such that
f(x) = y …….(ii)
(gof) x = g(f(x))
= g(y) ……[From (ii)]
= z …..[From(i)]
i.e., for every z ∈ C, there is x in A such that (gof) x = z
∴ gof is surjective (onto).

Question 16.
If f(x) = 3(4x+1), find f(-3).
Solution:
f(x) = 3(4x+1)
∴ f(-3) = 3(4-3+1)
= 3(4-2)
= \(\frac{3}{16}\)

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1

Question 17.
Express the following exponential equations in logarithmic form:
(i) 25 = 32
(ii) 540 = 1
(iii) 231 = 23
(iv) \(9^{\frac{3}{2}}\) = 27
(v) 3-4 = \(\frac{1}{81}\)
(vi) 10-2 = 0.01
(vii) e2 = 7.3890
(viii) \(e^{\frac{1}{2}}\) = 1.6487
(ix) e-x = 6
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q17
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q17.1
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q17.2

Question 18.
Express the following logarithmic equations in exponential form:
(i) log2 64 = 6
(ii) \(\log _{5} \frac{1}{25}\) = -2
(iii) log10 0.001 = -3
(iv) \(\log _{\frac{1}{2}}\)(8) = -3
(v) ln 1 = 0
(vi) ln e = 1
(vii) ln \(\frac{1}{2}\) = -0.693
Solution:
(i) log2 64 = 6
∴ 64 = 26, i.e., 26 = 64
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q18

Question 19.
Find the domain of
(i) f(x) = ln (x – 5)
(ii) f(x) = log10 (x2 – 5x + 6)
Solution:
(i) f(x) = ln (x – 5)
f is defined, when x – 5 > 0
∴ x > 5
∴ Domain of f = (5, ∞)

(ii) f(x) = log10 (x2 – 5x + 6)
x2 – 5x + 6 = (x – 2) (x – 3)
f is defined, when (x – 2) (x – 3) > 0
∴ x < 2 or x > 3
Solution of (x – a) (x – b) > 0 is x < a or x > b where a < b
∴ Domain of f = (-∞, 2) ∪ (3, ∞)

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1

Question 20.
Write the following expressions as sum or difference of logarithms:
(a) \(\log \left(\frac{p q}{r s}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q20 (i)

(b) \(\log (\sqrt{x} \sqrt[3]{y})\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q20 (ii)

(c) \(\ln \left(\frac{a^{3}(a-2)^{2}}{\sqrt{b^{2}+5}}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q20 (iii)

(d) \(\ln \left[\frac{\sqrt[3]{x-2}(2 x+1)^{4}}{(x+4) \sqrt{2 x+4}}\right]^{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q20 (iv)

Question 21.
Write the following expressions as a single logarithm.
(i) 5 log x + 7 log y – log z
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q21 (i)

(ii) \(\frac{1}{3}\) log(x – 1) + \(\frac{1}{2}\) log(x)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q21 (ii)

(iii) ln (x + 2) + ln (x – 2) – 3 ln (x + 5)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q21 (iii)

Question 22.
Given that log 2 = a and log 3 = b, write log √96 terms of a and b.
Solution:
log 2 = a and log 3 = b
log √96 = \(\frac{1}{2}\) log (96)
= \(\frac{1}{2}\) log (25 x 3)
= \(\frac{1}{2}\) (log 25 + log 3) …..[∵ log mn = log m + log n]
= \(\frac{1}{2}\) (5 log 2 + log 3) ……[∵ log mn = n log m]
= \(\frac{5 a+b}{2}\)

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1

Question 23.
Prove that:
(a) \(b^{\log _{b} a}=a\)
Solution:
We have to prove that \(b^{\log _{b} a}=a\)
i.e., to prove that (logb a) (logb b) = logb a
(Taking log on both sides with base b)
L.H.S. = (logb a) (logb b)
= logb a …..[∵ logb b = 1]
= R.H.S.

(b) \(\log _{b^{m}} a=\frac{1}{m} \log _{b} a\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q23 (b)

(c) \(a^{\log _{c} b}=b^{\log _{c} a}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q23 (c)

Question 24.
If f(x) = ax2 – bx + 6 and f(2) = 3 and f(4) = 30, find a and b.
Solulion:
f(x) = ax2 – bx + 6
f(2) = 3
∴ a(2)2 – b(2) + 6 = 3
∴ 4a – 2b + 6 = 3
∴ 4a – 2b + 3 = 0 …..(i)
f(4) = 30
∴ a(4)2 – b(4) + 6 = 30
∴ 16a – 4b + 6 = 30
∴ 16a – 4b – 24 = 0 …..(ii)
By (ii) – 2 × (i), we get
8a – 30 = 0
∴ a = \(\frac{30}{8}=\frac{15}{4}\)
Substiting a = \(\frac{15}{4}\) in (i), we get
4(\(\frac{15}{4}\)) – 2b + 3 = 0
∴ 2b = 18
∴ b = 9
∴ a = \(\frac{15}{4}\), b = 9

Question 25.
Solve for x:
(i) log 2 + log (x + 3) – log (3x – 5) = log 3
Solution:
log 2 + log (x + 3) – log (3x – 5) = log 3
∴ log 2(x + 3) – log(3x – 5) = log 3 …..[∵ log m + log n = log mn]
∴ log \(\frac{2(x+3)}{3 x-5}\) = log 3 …..[∵ log m – log n = log \(\frac{m}{n}\)]
∴ \(\frac{2(x+3)}{3 x-5}\) = 3
∴ 2x + 6 = 9x – 15
∴ 7x = 21
∴ x = 3

Check:
If x = 3 satisfies the given condition, then our answer is correct.
L.H.S. = log 2 + log (x + 3) – log (3x – 5)
= log 2 + log (3 + 3) – log (9 – 5)
= log 2 + log 6 – log 4
= log (2 × 6) – log 4
= log \(\frac{12}{4}\)
= log 3
= R.H.S.
Thus, our answer is correct.

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1

(ii) 2log10 x = 1 + \(\log _{10}\left(x+\frac{11}{10}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q25 (ii)
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q25 (ii).1
∴ x2 = 10x + 11
∴ x2 – 10x – 11 = 0
∴ (x – 11)(x + 1) = 0
∴ x = 11 or x = -1
But log of a negative numbers does not exist
∴ x ≠ -1
∴ x = 11

(iii) log2 x + log4 x + log16 x = \(\frac{21}{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q25 (iii)

(iv) x + log10 (1 + 2x) = x log10 5 + log10 6
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q25 (iv)
∴ a + a2 = 6
∴ a2 + a – 6 = 0
∴ (a + 3)(a – 2) = 0
∴ a + 3 = 0 or a – 2 = 0
∴ a = -3 or a = 2
Since 2x = -3 is not possible,
2x = 2 = 21
∴ x = 1

Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1

Question 26.
If log \(\left(\frac{x+y}{3}\right)\) = \(\frac{1}{2}\) log x + \(\frac{1}{2}\) log y, show that \(\frac{x}{y}+\frac{y}{x}\) = 7.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q26

Question 27.
If log\(\left(\frac{x-y}{4}\right)\) = log√x + log√y, show that (x + y)2 = 20xy.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q27

Question 28.
If x = logabc, y = logb ca, z = logc ab, then prove that \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\) = 1.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Functions Ex 6.1 Q28

11th Maths Practical Handbook Pdf 

Sets and Relations Class 11 Maths 2 Miscellaneous Exercise 5 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 5 Sets and Relations Miscellaneous Exercise 5 Questions and Answers.

11th Maths Part 2 Sets and Relations Miscellaneous Exercise 5 Questions And Answers Maharashtra Board

(I) Select the correct answer from the given alternative.

Question 1.
For the set A = {a, b, c, d, e} the correct statement is
(A) {a, b} ∈ A
(B) {a} ∈ A
(C) a ∈ A
(D) a ∉ A
Answer:
(C) a ∈ A

Question 2.
If aN = {ax : x ∈ N}, then set 6N ∩ 8N =
(A) 8N
(B) 48N
(C) 12N
(D) 24N
Answer:
(D) 24N
Hint:
6N = {6x : x ∈ N} = {6, 12, 18, 24, 30, ……}
8N = {8x : x ∈ N} = {8, 16, 24, 32, ……}
∴ 6N ∩ 8N = {24, 48, 72, …..}
= {24x : x ∈ N}
= 24N

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Miscellaneous Exercise 5

Question 3.
If set A is empty set then n[P[P[P(A)]]] is
(A) 6
(B) 16
(C) 2
(D) 4
Answer:
(D) 4
Hint:
A = Φ
∴ n(A) = 0
∴ n[P(A)] = 2n(A) = 20 = 1
∴ n[P[P(A)]] = 2n[P(A)] = 21 = 2
∴ n[P[P[P(A)]]] = 2n[P[P(A)]] = 22 = 4

Question 4.
In a city 20% of the population travels by car, 50% travels by bus and 10% travels by both car and bus. Then, persons travelling by car or bus are
(A) 80%
(B) 40%
(C) 60%
(D) 70%
Answer:
(C) 60%
Hint:
Let C = Population travels by car
B = Population travels by bus
n(C) = 20%, n(B) = 50%, n(C ∩ B) = 10%
n(C ∪ B) = n(C) + n(B) – n(C ∩ B)
= 20% + 50% – 10%
= 60%

Question 5.
If the two sets A and B are having 43 elements in common, then the number of elements common to each of the sets A × B and B × A is
(A) 432
(B) 243
(C) 4343
(D) 286
Answer:
(A) 432

Question 6.
Let R be a relation on the set N be defied by {(x, y) / x, y ∈ N, 2x + y = 41} Then R is
(A) Reflexive
(B) Symmetric
(C) Transitive
(D) None of these
Answer:
(D) None of these

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Miscellaneous Exercise 5

Question 7.
The relation “>” in the set of N (Natural number) is
(A) Symmetric
(B) Reflexive
(C) Transitive
(D) Equivalent relation
Answer:
(C) Transitive
Hint:
For any a ∈ N, a ≯ a
∴ (a, a) ∉ R
∴ > is not reflexive.
For any a, b ∈ N, if a > b, then b ≯ a.
∴ > is not symmetric.
For any a, b, c ∈ N,
if a > b and b > c, then a > c
∴ > is transitive.

Question 8.
A relation between A and B is
(A) only A × B
(B) An Universal set of A × B
(C) An equivalent set of A × B
(D) A subset of A × B
Answer:
(D) A subset of A × B

Question 9.
If (x, y) ∈ N × N, then xy = x2 is a relation that is
(A) Symmetric
(B) Reflexive
(C) Transitive
(D) Equivalence
Answer:
(D) Equivalence
Hint:
Let x ∈ R, then xx = x2
∴ x is related to x.
∴ Given relation is reflexive.
Letx = 0 and y = 2,
then xy = 0 × 2 = 0 = x2
∴ x is related to y.
Consider, yx = 2 × 0 = 0 ≠ y2
∴ y is not related to x.
∴ Given relation is not symmetric.
Let x be related to y and y be related to z.
∴ xy = x2 and yz = y2
∴ x = \(\frac{x^{2}}{y}\) and z = \(\frac{y^{2}}{y}\) = y …..[if y ≠ 0]
Consider, xz = \(\frac{x^{2}}{y}\) × y = x2
∴ x is related to z.
∴ Given relation is transitive.

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Miscellaneous Exercise 5

Question 10.
If A = {a, b, c}, The total no. of distinct relations in A × A is
(A) 3
(B) 9
(C) 8
(D) 29
Answer:
(D) 29

(II) Answer the following.

Question 1.
Write down the following sets in set builder form:
(i) {10, 20, 30, 40, 50}
(ii) {a, e, i, o, u}
(iii) {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}
Solution:
(i) Let A = {10, 20, 30, 40, 50}
∴ A = {x/x = 10n, n ∈ N and n ≤ 5}

(ii) Let B = {a, e, i, o, u}
∴ B = {x/x is a vowel of English alphabets}

(iii) Let C = {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}
∴ C = {x/x is a day of a week}

Question 2.
If U = {x/x ∈ N, 1 ≤ x ≤ 12}, A = {1,4, 7,10}, B = {2, 4, 6, 7, 11}, C = {3, 5, 8, 9, 12}. Write down the sets.
(i) A ∪ B
(ii) B ∩ C
(iii) A – B
(iv) B ∩ C’
(v) A ∪ B ∪ C
(vi) A ∩ (B ∪ C)
Solution:
U = {x/x ∈ N, 1 ≤ x ≤ 12} = {1, 2, 3, …., 12}
A = {1, 4, 7, 10}, B = {2, 4, 6, 7, 11}, C = {3, 5, 8, 9, 12}
(i) A ∪ B = {1, 2, 4, 6, 7, 10, 11}

(ii) B ∩ C = {}

(iii) A – B = {1, 10}

(iv) C’ = {1, 2, 4, 6, 7, 10, 11}
∴ B ∩ C’ = {2, 4, 6, 7, 11}

(v) A ∪ B ∪ C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

(vi) B ∪ C = {2, 3, 4, 5, 6, 7, 8, 9, 11, 12}
∴ A ∩ (B ∪ C) = {4, 7}

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Miscellaneous Exercise 5

Question 3.
In a survey of 425 students in a school, it was found that 115 drink apple juice, 160 drink orange juice, and 80 drink both apple as well as orange juice. How many drinks neither apple juice nor orange juice?
Solution:
Let A = set of students who drink apple juice
B = set of students who drink orange juice
X = set of all students
∴ n(X) = 425, n(A) = 115, n(B) = 160, n(A ∩ B) = 80
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Miscellaneous Exercise 5 Q3
No. of students who neither drink apple juice nor orange juice = n(A’ ∩ B’) = n(A ∪ B)’
= n(X) – n(A ∪ B)
= 425 – [n(A) + n(B) – n(A ∩ B)]
= 425 – (115 + 160 – 80)
= 230

Question 4.
In a school, there are 20 teachers who teach Mathematics or Physics. Of these, 12 teach Mathematics and 4 teach both Physics and Mathematics. How many teachers teach Physics?
Solution:
Let A = set of teachers who teach Mathematics
B = set of teachers who teach Physics
∴ n(A ∪ B) = 20, n(A) = 12, n(A ∩ B) = 4
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Miscellaneous Exercise 5 Q4
Since n(A ∪ B) = n(A) + n(B) – n(A ∩ B),
20 = 12 + n(B) – 4
∴ n(B) = 12
∴ Number of teachers who teach physics = 12

Question 5.
(i) If A = {1, 2, 3} and B = {2, 4}, state the elements of A × A, A × B, B × A, B × B, (A × B) ∩ (B × A).
(ii) If A = {-1, 1}, find A × A × A.
Solution:
(i) A = {1, 2, 3} and B = {2, 4}
A × A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}
A × B = {(1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (3, 4)}
B × A = {(2, 1), (2, 2), (2, 3), (4, 1), (4, 2), (4, 3)}
B × B = {(2, 2), (2, 4), (4, 2), (4, 4)}
∴ (A × B) ∩ (B × A) = {(2, 2)}

(ii) A = {-1, 1}
∴ A × A × A = {(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)}

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Miscellaneous Exercise 5

Question 6.
If A = {1, 2, 3}, B = {4, 5, 6}, check if the following are relations from A to B. Also, write its domain and range.
(i) R1 = {(1, 4), (1, 5), (1, 6)}
(ii) R2 = {(1, 5), (2, 4), (3, 6)}
(iii) R3 = {(1, 4), (1, 5), (3, 6), (2, 6), (3, 4)}
(iv) R4 = {(4, 2), (2, 6), (5, 1), (2, 4)}
Solution:
A = {1, 2, 3}, B = {4, 5, 6}
∴ A × B = {(1, 4), (1, 5), (1, 6), (2,4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}
(i) R1 = {(1, 4), (1, 5), (1, 6)}
Since R1 ⊆ A × B,
R1 is a relation from A to B.
Domain (R1) = Set of first components of R1 = {1}
Range (R1) = Set of second components of R1 = {4, 5, 6}

(ii) R2 = {(1, 5),(2, 4),(3, 6)}
Since R2 ⊆ A × B,
R2 is a relation from A to B.
Domain (R2) = Set of first components of R2 = {1, 2, 3}
Range (R2) = Set of second components of R2 = {4, 5, 6}

(iii) R3 = {(1, 4), (1, 5), (3, 6), (2, 6), (3, 4)}
Since R3 ⊆ A × B,
R3 is a relation from A to B.
Domain (R3) = Set of first components of R3 = {1, 2, 3}
Range (R3) = Set of second components of R3 = {4, 5, 6}

(iv) R4 = {(4, 2), (2, 6), (5, 1), (2, 4)}
Since (4, 2) ∈ R4, but (4, 2) ∉ A × B,
R4 ⊄ A × B
∴ R4 is not a relation from A to B.

Question 7.
Determine the domain and range of the following relations.
(i) R = {(a, b) / a ∈ N, a < 5, b = 4}
(ii) R = {(a, b) / b = |a – 1|, a ∈ Z, |a| < 3}
Solution:
(i) R = {(a, b) / a ∈ N, a < 5, b = 4}
∴ Domain (R) = {a / a ∈ N, a < 5} = {1, 2, 3, 4}
Range (R) = {b / b = 4} = {4}

(ii) R = {(a, b) / b = |a – 1|, a ∈ Z, |a| < 3}
Since a ∈ Z and |a| < 3,
a < 3 and a > -3
∴ -3 < a < 3
∴ a = -2, -1, 0, 1, 2
b = |a – 1|
When a = -2, b = 3
When a = -1, b = 2
When a = 0, b = 1
When a = 1, b = 0
When a = 2, b = 1
Domain (R) = {-2, -1, 0, 1, 2}
Range (R) = {0, 1, 2, 3}

Question 8.
Find R : A → A when A = {1, 2, 3, 4} such that
(i) R = {(a, b) / a – b = 10}
(ii) R = {(a, b) / |a – b| ≥ 0}
Solution:
R : A → A, A = {1, 2, 3,4}
(i) R = {(a, b)/a – b = 10} = { }

(ii) R = {(a, b) / |a – b| ≥ 0}
= {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)}
A × A = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)}
∴ R = A × A

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Miscellaneous Exercise 5

Question 9.
R : {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)}. Check if R is
(i) reflexive
(ii) symmetric
(iii) transitive
Solution:
R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)}
(i) Here, (x, x) ∈ R, for x ∈ {1, 2, 3}
∴ R is reflexive.

(ii) Here, (1, 2) ∈ R, but (2, 1) ∉ R.
∴ R is not symmetric.

(iii) Here, (1, 2), (2, 3) ∈ R,
But (1, 3) ∉ R.
∴ R is not transitive.

Question 10.
Check if R : Z → Z, R = {(a, b) | 2 divides a – b} is an equivalence relation.
Solution:
(i) Since 2 divides a – a,
(a, a) ∈ R
∴ R is reflexive. .

(ii) Let (a, b) ∈ R
Then 2 divides a – b
∴ 2 divides b – a
∴ (b, a) ∈ R
∴ R is symmetric.

(iii) Let (a, b) ∈ R, (b, c) ∈ R
Then a – b = 2m, b – c = 2n,
∴ a – c = 2(m + n), where m, n are integers.
∴ 2 divides a – c
∴ (a, c) ∈ R
∴ R is transitive.
Thus, R is an equivalence relation.

Question 11.
Show that the relation R in the set A = {1, 2, 3, 4, 5} Given by R = {(a, b) / |a – b| is even} is an equivalence relation.
Solution:
(i) Since |a – a| is even,
∴ (a, a) ∈ R
∴ R is reflexive.

(ii) Let (a, b) ∈ R
Then |a – b| is even
∴ |b – a| is even
∴ (b, a) ∈ R
∴ R is symmetric.

(iii) Let (a, b), (b, c) ∈ R
Then a – b = ±2m, b – c = ±2n
∴ a – c = ±2(m + n), where m, n are integers.
∴ (a, c) ∈ R
∴ R is transitive
Thus, R is an equivalence relation.

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Miscellaneous Exercise 5

Question 12.
Show that the following are equivalence relations:
(i) R in A is set of all books given by R = {(x, y) / x and y have same number of pages}
(ii) R in A = {x ∈ Z | 0 ≤ x ≤ 12} given by R = {(a, b) / |a – b| is a multiple of 4}
(iii) R in A = (x ∈ N/x ≤ 10} given by R = {(a, b) | a = b}
Solution:
(i) a. Clearly (x, x) ∈ R
∴ R is reflexive.

b. If (x, y) ∈ R then (y, x) ∈ R.
∴ R is symmetric.

c. Let (x, y) ∈ R, (y, x) ∈ R.
Then x, y, and z are 3 books having the same number of pages.
∴ (x, z) ∈ R as x, z has the same number of pages.
∴ R is transitive.
Thus, R is an equivalence relation.

(ii) a. Since |a – a| is a multiple of 4,
(a, a) ∈ R
∴ R is reflexive.

b. Let (a, b) ∈ R
Then a – b = ±4m,
∴ b – a = ±4m, where m is an integer
∴ (b, a) ∈ R
∴ R is symmetric.

c. Let (a, b), (b, c) ∈ R
a – b = ± 4m, b – c = ± 4n,
∴ a – c = ±4(m + n), where m, n are integers
∴ (a, c) ∈ R
∴ R is transitive
Thus, R is an equivalence relation.

(iii) a. Since a = a
∴ (a, a) ∈ R
∴ R is reflexive.

b. Let (a, b) ∈ R Then a = b
∴ b = a
∴ (b, a) ∈ R
∴ R is symmetric.

c. Let (a, b), (b, c) ∈ R
Then, a = b, b = c
∴ a = c
∴ (a, c) ∈ R
∴ R is transitive.
Thus, R is an equivalence relation.

State Board 11th Maths Book Answers 

Sets and Relations Class 11 Maths 2 Exercise 5.2 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 5 Sets and Relations Ex 5.2 Questions and Answers.

11th Maths Part 2 Sets and Relations Exercise 5.2 Questions And Answers Maharashtra Board

Question 1.
If (x – 1, y + 4) = (1, 2), find the values of x and y.
Solution:
(x – 1, y + 4) = (1, 2)
By the definition of equality of ordered pairs, we have
x – 1 = 1 and y + 4 = 2
∴ x = 2 and y = -2

Question 2.
If \(\left(x+\frac{1}{3}, \frac{y}{3}-1\right)=\left(\frac{1}{2}, \frac{3}{2}\right)\), find x and y.
Solution:
\(\left(x+\frac{1}{3}, \frac{y}{3}-1\right)=\left(\frac{1}{2}, \frac{3}{2}\right)\)
By the definition of equality of ordered pairs, we have
x + \(\frac{1}{3}\) = \(\frac{1}{2}\) and \(\frac{y}{3}\) – 1 = \(\frac{3}{2}\)
∴ x = \(\frac{1}{2}\) – \(\frac{1}{3}\) and \(\frac{y}{3}\) = \(\frac{3}{2}\) + 1
∴ x = \(\frac{1}{6}\) and y = \(\frac{15}{2}\)

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.2

Question 3.
If A = {a, b, c}, B = {x, y}, find A × B, B × A, A × A, B × B.
Solution:
A = (a, b, c}, B = {x, y}
A × B = {(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)}
B × A = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)}
A × A = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}
B × B = {(x, x), (x, y), (y, x), (y, y)}

Question 4.
If P = {1, 2, 3} and Q = {1, 4}, find sets P × Q and Q × P.
Solution:
P = {1, 2, 3}, Q = {1, 4}
∴ P × Q = {(1, 1), (1, 4), (2, 1), (2, 4), (3, 1), (3, 4)}
and Q × P = {(1, 1), (1, 2), (1, 3), (4, 1), (4, 2), (4, 3)}

Question 5.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Verify,
(i) A × (B ∩ C) = (A × B) ∩ (A × C)
(ii) A × (B ∪ C) = (A × B) ∪ (A × C)
Solution:
A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}
(i) B ∩ C = {5, 6}
A × (B ∩ C) = = {(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)}
A × B = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6)}
A × C = {(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)}
∴ (A × B) ∩ (A × C) = {(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)}
∴ A × (B ∩ C) = (A × B) ∩ (A × C)

(ii) B ∪ C = {4, 5, 6}
A × (B ∪ C) = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3,4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6)}
A × B = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6)}
A × C = {(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)}
∴ (A × B) ∪ (A × C) = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6)}
∴ A × (B ∪ C) = (A × B) ∪ (A × C)

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.2

Question 6.
Express {(x, y) / x2 + y2 = 100, where x, y ∈ W} as a set of ordered pairs.
Solution:
{(x, y) / x2 + y2 = 100, where x, y ∈ W}
We have, x2 + y2 = 100
When x = 0 and y = 10,
x2 + y2 = 02 + 102 = 100
When x = 6 and y = 8,
x2 + y2 = 62 + 82 = 100
When x = 8 and y = 6,
x2 + y2 = 82 + 62 = 100
When x = 10 and y = 0,
x2 + y2 = 102 + 02 = 100
∴ Set of ordered pairs = {(0, 10), (6, 8), (8, 6), (10, 0)}

Question 7.
Let A = {6, 8} and B = {1, 3, 5}. Show that R1 = {(a, b) / a ∈ A, b ∈ B, a – b is an even number} is a null relation, R2 = {(a, b) / a ∈ A, b ∈ B, a + b is an odd number} is a universal relation.
Solution:
A = {6, 8}, B = {1, 3, 5}
R1 = {(a, b)/ a ∈ A, b ∈ B, a – b is an even number}
a ∈ A
∴ a = 6, 8
b ∈ B
∴ b = 1, 3, 5
When a = 6 and b = 1, a – b = 5, which is odd
When a = 6 and b = 3, a – b = 3, which is odd
When a = 6 and b = 5, a – b = 1, which is odd
When a = 8 and b = 1, a – b = 7, which is odd
When a = 8 and b = 3, a – b = 5, which is odd
When a = 8 and b = 5, a – b = 3, which is odd
Thus, no set of values of a and b gives a – b as even.
∴ R1 has a null relation from A to B.
A × B = {(6, 1), (6, 3), (6, 5), (8, 1), (8, 3), (8, 5)}
When a = 6 and b = 1, a + b = 7, which is odd
When a = 6 and b = 3, a + b = 9, which is odd
When a = 6 and b = 5, a + b = 11, which is odd
When a = 8 and b = 1, a + b = 9, which is odd
When a = 8 and b = 3, a + b = 11, which is odd
When a = 8 and b = 5, a + b = 13, which is odd
∴ R2 = {(6, 1), (6, 3), (6, 5), (8, 1), (8, 3), (8, 5)}
Here, R2 = A × B
∴ R2 has a universal relation from A to B.

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.2

Question 8.
Write the relation in the Roster form. State its domain and range.
(i) R1 = {(a, a2) / a is a prime number less than 15}
(ii) R2 = {(a, \(\frac{1}{a}\)) / 0 < a ≤ 5, a ∈ N}
(iii) R3 = {(x, y / y = 3x, y ∈ {3, 6, 9, 12}, x ∈ {1, 2, 3}}
(iv) R4 = {(x, y) / y > x + 1, x = 1, 2 and y = 2, 4, 6}
(v) R5 = {(x, y) / x + y = 3, x, y ∈ {0, 1, 2, 3}}
(vi) R6 = {(a, b) / a ∈ N, a < 6 and b = 4}
(vii) R7 = {(a, b) / a, b ∈ N, a + b = 6}
(viii) R8 = {(a, b)/ b = a + 2, a ∈ Z, 0 < a < 5}
Solution:
(i) R1 = {(a, a2) / a is a prime number less than 15}
∴ a = 2, 3, 5, 7, 11, 13
∴ a2 = 4, 9, 25, 49, 121, 169
∴ R1 = {(2, 4), (3, 9), (5, 25), (7, 49), (11, 121), (13, 169)}
∴ Domain (R1) = {a/a is a prime number less than 15}
= {2, 3, 5, 7, 11, 13}
Range (R1) = {a2/a is a prime number less than 15}
= {4, 9, 25, 49, 121, 169}

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.2 Q8 (ii)

(iii) R3 = {(x, y) / y = 3x, x ∈ {1, 2, 3}, y ∈ {3, 6, 9, 12}}
Here y = 3x
When x = 1, y = 3(1) = 3
When x = 2, y = 3(2) = 6
When x = 3, y = 3(3) = 9
∴ R3 = {(1, 3), (2, 6), (3, 9)}
∴ Domain (R3) ={1, 2, 3}
∴ Range (R3) = {3, 6, 9}

(iv) R4 = {(x, y) / y > x + 1, x = 1, 2 and y = 2, 4, 6}
Here, y > x + 1
When x = 1 and y = 2, 2 ≯  1 + 1
When x = 1 and y = 4, 4 > 1 + 1
When x = 1 and y = 6, 6 > 1 + 1
When x = 2 and y = 2, 2 ≯  2 + 1
When x = 2 and y = 4, 4 > 2 + 1
When x = 2 and y = 6, 6 > 2 + 1
∴ R4 = {(1, 4), (1, 6), (2, 4), (2, 6)}
Domain (R4) = {1, 2}
Range (R4) = {4, 6}

(v) R5 = {{x, y) / x + y = 3, x, y ∈ (0, 1, 2, 3)}
Here, x + y = 3
When x = 0, y = 3
When x = 1, y = 2
When x = 2, y = 1
When x = 3, y = 0
∴ R5 = {(0, 3), (1, 2), (2, 1), (3, 0)}
Domain (R5) = {0, 1, 2, 3}
Range (R5) = {3, 2, 1, 0}

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.2

(vi) R6 = {(a, b)/ a ∈ N, a < 6 and b = 4}
a ∈ N and a < 6
∴ a = 1, 2, 3, 4, 5 and b = 4
R6 = {(1, 4), (2, 4), (3, 4), (4, 4), (5, 4)}
Domain (R6) = {1, 2, 3, 4, 5}
Range (R6) = {4}

(vii) R7 = {(a, b) / a, b ∈ N, a + b = 6}
Here, a + b = 6
When a = 1, b = 5
When a = 2, b = 4
When a = 3, b = 3
When a = 4, b = 2
When a = 5, b = 1
∴ R7 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}
Domain (R7) = {1, 2, 3, 4, 5}
Range (R7) = {5, 4, 3, 2, 1}

(viii) R8 = {(a, b) / b = a + 2, a ∈ Z, 0 < a < 5}
Here, b = a + 2
When a = 1, b = 3
When a = 2, b = 4
When a = 3, b = 5
When a = 4, b = 6
∴ R8 = {(1, 3), (2, 4), (3, 5), (4, 6)}
Domain (R8) = {1, 2, 3, 4}
Range (R8) = {3, 4, 5, 6}

Question 9.
Identify which of the following relations are reflexive, symmetric, and transitive.
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.2 Q9
Solution:
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.2 Q9.1

(i) Given, R = {(a, b): a, b ∈ Z, a – b is an integer}
Let a ∈ Z, then a – a ∈ Z
∴ (a, a) ∈ R
∴ R is reflexive.
Let (a, b) ∈ R
∴ a – b ∈ Z
∴ -(a – b) ∈ Z, i.e., b – a ∈ Z
∴ (b, a) ∈ R
∴ R is symmetric.
Let (a, b) and (b, c) ∈ R
∴ a – b ∈ Z and b – c ∈ Z
∴ (a – b) + (b – c) ∈ Z
∴ a – c ∈ Z
∴ (a, c) ∈ R
∴ R is transitive.

(ii) Given, R = {(a, b) : a, b ∈ N, a + b is even}
Let a ∈ N, then a + a = 2a, which is even.
∴ (a, a) ∈ R
∴ R is reflexive.
Let (a, b) ∈ R
∴ a + b is even
∴ b + a is even
∴ (b, a) ∈ R
∴ R is symmetric.
Let (a, b) and (b, c) ∈ R
∴ a + b and b + c is even
Let a + b = 2x and b + c = 2y for x, y ∈ N
∴ (a + b) + (b + c) = 2x + 2y
∴ a + 2b + c = 2(x + y)
∴ a + c = 2(x + y) – 2b = 2(x + y – b)
∴ a + c is even ……..[∵ x, y, b ∈ N, x + y – b ∈ N]
∴ (a, c) ∈ R
∴ R is transitive.

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.2

(iii) Given, R = {(a, b) : a, b ∈ N, a divides b}
Let a ∈ N, then a divides a.
∴ (a, a) ∈ R
∴ R is reflexive.
Let a = 2 and b = 8, then 2 divides 8
∴ (a, b) ∈ R
But 8 does not divide 2.
∴ (b, a) ∉ R
∴ R is not symmetric.
Let (a, b) and (b, c) ∈ R
∴ a divides b and b divides c.
Let b = ax and c = by for x, y ∈ N.
∴ c = (ax) y = a(xy)
i.e., a divides c.
∴ (a, c) ∈ R
∴ R is transitive.

(iv) Given, R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0}
Let a ∈ N, then a2 – 4aa + 3a2 = a2 – 4a2 + 3a2 = 0
∴ (a, a) ∈ R
∴ R is reflexive.
Let a = 3 and b = 1,
then a2 – 4ab + 3b2 = 9 – 12 + 3 = 0
∴ (a, b) ∈ R
Consider, b2 – 4ba + 3a2 = 1 – 12 + 9 = -2 ≠ 0
∴ (b, a) ∉ R
∴ R is not symmetric.
Let a = 3, b = 1 and c = \(\frac{1}{3}\),
then a2 – 4ab + 3b2 = 9 – 12 + 3 = 0 and
b2 – 4bc + 3c2 = 1 – \(\frac{4}{3}\) + \(\frac{1}{3}\) = 1 – 1 = 0
∴ we get (a, b) and (b, c) ∈ R.
Consider, a2 – 4ac + 3c2 = 9 – 4 + \(\frac{1}{3}\) = \(\frac{16}{3}\) ≠ 0
∴ (a, c) ∉ R
∴ R is not transitive.

(v) Given, R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls}
Let a ∈ G, then ‘a’ cannot be a sister of herself.
∴ (a, a) ∉ R
∴ R is not reflexive.
Let (a, b) ∈ R
∴ ‘a’ is a sister of ‘b’.
∴ ‘b’ is a sister of ‘a’.
∴ (b, c) ∈ R
∴ R is symmetric.
Let (a, b) and (b, c) ∈ R
∴ ‘a’ is a sister of ‘b’ and ‘b’ is a sister of ‘c’
∴ ‘a’ is a sister of ‘c’.
∴ (a, c) ∈ R
∴ R is transitive.

(vi) Given, R = {(a, b) : Line a is perpendicular to line b in a plane}
Let a be any line in the plane, then a cannot be perpendicular to itself.
∴ (a, a) ∉ R
∴ R is not reflexive.
Let (a, b) ∈ R
∴ a is perpendicular to b.
∴ b is perpendicular to a.
∴ (b, a) ∈ R.
∴ R is symmetric.
Let (a, b) and (b, c) ∈ R.
∴ a is perpendicular to b and b is perpendicular to c.
∴ a is parallel to c.
∴ (a, c) ∉ R
∴ R is not transitive.

(vii) Given, R = {(a, b) : a, b ∈ R, a < b}
Let a ∈ R, then a ≮ a.
∴ (a, a) ∉ R
∴ R is not reflexive.
Let a = 1 and b = 2, then 1 < 2
∴ (a, b) ∈ R
But 2 ≮ 1
∴ (b, a) ∉ R
∴ R is not symmetric.
Let (a, b) and (b, c) ∈ R
∴ a < b and b < c
∴ a < c
∴ (a, c) ∈ R
∴ R is transitive.

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.2

(viii) Given, R = {(a, b) : a, b ∈ R, a ≤ b3}
Let a = -3, then a3 = -27.
Here, a ≮ a
∴ (a, a) ∉ R
∴ R is not reflexive.
Let a = 2 and b = 9, then b3 = 729
Here, a < b3
∴ (a, b) ∈ R
Consider, a3 = 8
Here, b ≮ a3
∴ (b, a) ∉ R
∴ R is not symmetric.
Let a = 10, b = 3, c = 2,
then b3 = 27 and c3 = 8
Here, a < b3 and b < c3.
∴ (a, b) and (b, c) ∈ R
But a ≮ c3
∴ (a, c) ∉ R.
∴ R is not transitive.

State Board 11th Maths Book Answers 

Sets and Relations Class 11 Maths 2 Exercise 5.1 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 5 Sets and Relations Ex 5.1 Questions and Answers.

11th Maths Part 2 Sets and Relations Exercise 5.1 Questions And Answers Maharashtra Board

Question 1.
Describe the following sets in Roster form:
(i) A = {x/x is a letter of the word ‘MOVEMENT’}
(ii) B = {x/x is an integer, –\(\frac{3}{2}\) < x < \(\frac{9}{2}\)>
(iii) C = {x/x = 2n + 1, n ∈ N}
Solution:
(i) A = {M, O, V, E, N, T}
(ii) B = {-1, 0, 1, 2, 3, 4}
(iii) C = {3, 5, 7, 9, … }

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 2.
Describe the following sets in Set-Builder form:
(i) {0}
(ii) {0, ±1, ±2, ±3}
(iii) \(\left\{\frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \frac{4}{17}, \frac{5}{26}, \frac{6}{37}, \frac{7}{50}\right\}\)
(iv) {0, -1, 2, -3, 4, -5, 6,…}
Solution:
(i) Let A = {0}
0 is a whole number but it is not a natural number.
∴ A = {x / x ∈ W, x ∉ N}

(ii) Let B = {0, ±1, ±2, ±3}
B is the set of elements which belongs to Z from -3 to 3.
∴ B = {x /x ∈ Z, -3 ≤ x ≤ 3}

(iii) Let C = \(\left\{\frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \frac{4}{17}, \frac{5}{26}, \frac{6}{37}, \frac{7}{50}\right\}\)
∴ C = {x / x = \(\frac{n}{n^{2}+1}\), n ∈ N, n ≤ 7}

(iv) Let D = {0, -1, 2, -3, 4, -5, 6, …}
∴ D = {x/x = (-1)n-1 × (n – 1), n ∈ N}

Question 3.
If A = {x / 6x2 + x – 15 = 0}, B = {x / 2x2 – 5x – 3 = 0}, C = {x / 2x2 – x – 3 = 0}, then find
(i) (A ∪ B ∪ C)
(ii) (A ∩ B ∩ C)
Solution:
A = [x/6x2 + x – 15 = 0)
6x2 + x – 15 = 0
6x2 + 10x – 9x – 15 = 0
2x(3x + 5) – 3(3x + 5) = 0
(3x + 5) (2x – 3) = 0
3x + 5 = 0 or 2x – 3 = 0
x = \(\frac{-5}{3}\) or x = \(\frac{3}{2}\)
A = {\(\frac{-5}{3}\), \(\frac{3}{2}\)}

B = {x/2x2 – 5x – 3 = 0}
2x2 – 5x – 3 = 0
2x2 – 6x + x – 3 = 0
2x(x – 3) + 1(x – 3) = 0
(x – 3)(2x + 1) = 0
x – 3 = 0 or 2x + 1 = 0
x = 3 or x = \(\frac{-1}{2}\)
B = (\(\frac{-1}{2}\), 3)

C = {x/2x2 – x – 3 = 0}
2x2 – x – 3 = 0
2x2 – 3x + 2x – 3 = 0
x(2x – 3) + 1(2x – 3) = 0
(2x – 3) (x + 1) = 0
2x – 3 = 0 or x + 1 = 0
x = \(\frac{3}{2}\) or x = -1
C = {-1, \(\frac{3}{2}\)}

(i) A ∪ B ∪ C = \(\left\{-\frac{5}{3}, \frac{3}{2}\right\} \cup\left\{\frac{-1}{2}, 3\right\} \cup\left\{-1, \frac{3}{2}\right\}\) = \(\left\{\frac{-5}{3},-1, \frac{-1}{2}, \frac{3}{2}, 3\right\}\)

(ii) A ∩ B ∩ C = { }

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 4.
If A, B, C are the sets for the letters in the words ‘college’, ‘marriage’ and ‘luggage’ respectively, then verify that [A – (B ∪ C)] = [(A – B) ∩ (A – C)].
Solution:
A = {c, o, l, g, e}
B = {m, a, r, i, g, e}
C = {l, u, g, a, e}
B ∪ C = {m, a, r, i, g, e, l, u}
A – (B ∪ C) = {c, o}
A – B = {c, o, l}
A – C = {c, o}
∴ [(A – B) ∩ (A – C)] = {c, o} = A – (B ∪ C)
∴ [A -( B ∪ C)] = [(A – B) ∩ (A – C)]

Question 5.
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {4, 5, 6, 7, 8} and universal set X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then verify the following:
(i) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
(ii) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
(iii) (A ∪ B)’ = A’ ∩ B’
(iv) (A ∩ B)’ = A’ ∪ B’
(v) A = (A ∩ B) ∪ (A ∩ B’)
(vi) B = (A ∩ B) ∪ (A’ ∩ B)
(vii) (A ∪ B) = (A – B) ∪ (A ∩ B) ∪ (B – A)
(viii) A ∩ (B ∆ C) = (A ∩ B) ∆ (A ∩ C)
(ix) n(A ∪ B) = n(A) + n(B) – n(A ∩ B)
(x) n(B) = n (A’ ∩ B) + n (A ∩ B)
Solution:
A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {4, 5, 6, 7, 8},
X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
(i) B ∩ C = {4, 5, 6}
∴ A ∪ (B ∩ C) = {1, 2, 3, 4, 5, 6} …..(i)
A ∪ B = {1, 2, 3, 4, 5, 6}
A ∪ C = {1, 2, 3, 4, 5, 6, 7, 8}
∴ (A ∪ B) ∩ (A ∪ C) = {1, 2, 3, 4, 5, 6} …….(ii)
From (i) and (ii), we get
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

(ii) B ∪ C = {3, 4, 5, 6, 7, 8}
∴ A ∩ (B ∪ C) = {3, 4} ………(i)
A ∩ B = {3, 4}
A ∩ C = {4}
∴ (A ∩ B) ∪ (A∩ C) = {3, 4} ……..(ii)
From (i) and (ii), we get
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

(iii) A ∪ B = {1, 2, 3, 4, 5, 6}
∴ (A ∪ B)’ = {7, 8, 9, 10} ………(i)
A’ = {5, 6, 7, 8, 9, 10},
B’ = {1, 2, 7, 8, 9,10}
∴ A’ ∩ B’ = {7, 8, 9, 10} …….(ii)
From (i) and (ii), we get
(A ∪ B)’ = A’ ∩ B’

(iv) A ∩ B = {3, 4}
(A ∩ B)’= {1, 2, 5, 6, 7, 8, 9, 10} …….(i)
A’ = {5, 6, 7, 8, 9, 10}
B’ = {1, 2, 7, 8, 9, 10}
∴ A’ ∪ B’ = {1, 2, 5, 6, 7, 8, 9, 10} …….(ii)
From (i) and (ii), we get
(A ∩ B)’ = A’ ∪ B’

(v) A = {1, 2, 3, 4} ……(i)
A ∩ B = {3, 4}
B’ = {1, 2, 7, 8, 9, 10}
A ∩ B’ = {1, 2}
∴ (A ∩ B) ∪ (A ∩ B’) = {1, 2, 3, 4} …..(ii)
From (i) and (ii), we get
A = (A ∩ B) ∪ (A ∩ B’)

(vi) B = {3, 4, 5, 6} …..(i)
A ∩ B = {3, 4}
A’ = {5, 6, 7, 8, 9, 10}
A’ ∩ B = {5, 6}
∴ (A ∩ B) ∪ (A’ ∩ B) = {3, 4, 5, 6} …..(ii)
From (i) and (ii), we get
B = (A ∩ B) ∪ (A’ ∩ B)

(vii) A ∪ B = {1, 2, 3, 4, 5, 6} …….(i)
A – B = {1, 2}
A ∩ B = {3, 4}
B – A = {5, 6}
∴ (A – B) ∪ (A ∩ B) ∪ (B – A) = {1, 2, 3, 4, 5, 6} ……(ii)
From (i) and (ii), we get
A ∪ B = (A – B) ∪ (A ∩ B) ∪ (B – A)

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

(viii) B – C = {3}
C – B = {7, 8}
B Δ C = (B – C) ∪ (C – B) = {3, 7, 8}
∴ A ∩ (B Δ C) = {3} ……(i)
A ∩ B = {3, 4}
A ∩ C = {4}
∴ (A ∩ B) Δ (A ∩ C) = [(A ∩ B) – (A ∩ C)] ∪ [(A ∩ C) – (A ∩ B)] = {3} …..(ii)
From (i) and (ii), we get
A ∩ (B Δ C) = (A ∩ B) Δ (A ∩ C)

(ix) A = {1, 2, 3, 4}, B = {3, 4, 5, 6}
A ∩ B = {3, 4}, A ∪ B = {1, 2, 3, 4, 5, 6}
∴ n(A) = 4, n(B) = 4,
n(A ∩ B) = 2, n(A ∪ B) = 6 ……(i)
∴ n(A) + n(B) – n(A ∩ B) = 4 + 4 – 2
∴ n(A) + n(B) – n(A ∩ B) = 6 …..(ii)
From (i) and (ii), we get
n(A ∪ B) = n(A) + n(B) – n(A ∩ B)

(x) B = {3, 4, 5, 6}
∴ n(B) = 4 …..(i)
A’ = {5, 6, 7, 8, 9, 10}
A’ ∩ B = {5, 6}
∴ n(A’ ∩ B) = 2
A ∩ B = {3, 4}
∴ n(A ∩ B) = 2
∴ n(A’ ∩ B) + n(A ∩ B) = 2 + 2 = 4 …..(ii)
From (i) and (ii), we get
n(B) = n(A’ ∩ B) + n (A ∩ B)

Question 6.
If A and B are subsets of the universal set X and n(X) = 50, n(A) = 35, n(B) = 20, n(A’ ∩ B’) = 5, find
(i) n(A ∪ B)
(ii) n(A ∩ B)
(iii) n(A’ ∩ B)
(iv) n(A ∩ B’)
Solution:
n(X) = 50, n(A) = 35, n(B) = 20, n(A’ ∩ B’) = 5
(i) n(A ∪ B) = n(X) – [n(A ∪ B)’]
= n(X) – n(A’ ∩ B’)
= 50 – 5
= 45

(ii) n(A ∩ B) = n(A) + n(B) – n(A ∪ B)
= 35 + 20 – 45
= 10

(iii) n(A’ ∩ B) = n(B) – n(A ∩ B)
= 20 – 10
= 10

(iv) n(A ∩ B’) = n(A) – n(A ∩ B)
= 35 – 10
= 25

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 7.
In a class of 200 students who appeared in certain examinations, 35 students faded in CET, 40 in NEET and 40 in JEE, 20 faded in CET and NEET, 17 in NEET and JEE, 15 in CET and JEE and 5 faded in ad three examinations. Find how many students
(i) did not fail in any examination.
(ii) faded in NEET or JEE entrance.
Solution:
Let A = set of students who failed in CET
B = set of students who failed in NEET
C = set of students who failed in JEE
X = set of all students
∴ n(X) = 200, n(A) = 35, n(B) = 40, n(C) = 40, n(A ∩ B) = 20, n(B ∩ C) = 17, n(A ∩ C) = 15, n(A ∩ B ∩ C) = 5
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1 Q7

(i) n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)
= 35 + 40 + 40 – 20 – 17 – 15 + 5
= 68
∴ No. of students who did not fail in any exam = n(X) – n(A ∪ B ∪ C)
= 200 – 68
= 132

(ii) No. of students who failed in NEET or JEE entrance = n(B ∪ C)
= n(B) + n(C) – n(B ∩ C)
= 40 + 40 – 17
= 63

Question 8.
From amongst 2000 Uterate individuals of a town, 70% read Marathi newspapers, 50% read English newspapers and 32.5% read both Marathi and English newspapers. Find the number of individuals who read
(i) at least one of the newspapers.
(ii) neither Marathi nor English newspaper.
(iii) only one of the newspapers.
Solution:
Let M = set of individuals who read Marathi newspapers
E = set of individuals who read English newspapers
X = set of all literate individuals
∴ n(X) = 2000,
n(M) = \(\frac{70}{100}\) × 2000 = 1400
n(E) = \(\frac{50}{100}\) × 2000 = 1000
n(M ∩ E) = \(\frac{32.5}{100}\) × 2000 = 650
(i) n(M ∪ E) = n(M) + n(E) – n(M ∩ E)
= 1400 + 1000 – 650
= 1750
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1 Q8
No. of individuals who read at least one of the newspapers = n(M ∪ E) = 1750.

(ii) No. of individuals who read neither Marathi nor English newspaper = n(M’ ∩ E’)
= n(M ∪ E)’
= n(X) – n(M ∪ E)
= 2000 – 1750
= 250

(iii) No. of individuals who read only one of the newspapers = n(M ∩ E’) + n(M’ ∩ E)
= n(M ∪ E) – n(M ∩ E)
= 1750 – 650
= 1100

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 9.
In a hostel, 25 students take tea, 20 students take coffee, 15 students take milk, 10 students take both tea and coffee, 8 students take both milk and coffee. None of them take tea and milk both and everyone takes atleast one beverage, find the total number of students in the hostel.
Solution:
Let T = set of students who take tea
C = set of students who take coffee
M = set of students who take milk
∴ n(T) = 25, n(C) = 20, n(M) = 15, n(T ∩ C) = 10, n(M ∩ C) = 8, n(T ∩ M) = 0, n(T ∩ M ∩ C) = 0
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1 Q9
∴ Total number of students in the hostel = n(T ∪ C ∪ M)
= n(T) + n(C) + n(M) – n(T ∩ C) – n(M ∩ C) – n(T ∩ M) + n(T ∩ M ∩ C)
= 25 + 20 + 15 – 10 – 8 – 0 + 0
= 42

Question 10.
There are 260 persons with skin disorders. If 150 had been exposed to the chemical A, 74 to the chemical B, and 36 to both chemicals A and B, find the number of persons exposed to
(i) Chemical A but not Chemical B
(ii) Chemical B but not Chemical A
(iii) Chemical A or Chemical B
Solution:
Let A = set of persons exposed to chemical A
B = set of persons exposed to chemical B
X = set of all persons
∴ n(X) = 260, n(A) = 150, n(B) = 74, n(A ∩ B) = 36
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1 Q10

(i) No. of persons exposed to chemical A but not to chemical B = n(A ∩ B’)
= n(A) – n(A ∩ B)
= 150 – 36
= 114

(ii) No. of persons exposed to chemical B but not to chemical A = n(A’ ∩ B)
= n(B) – n(A ∩ B)
= 74 – 36
= 38

(iii) No. of persons exposed to chemical A or chemical B = n(A ∪ B)
= n(A) + n(B) – n(A ∩ B)
= 150 + 74 – 36
= 188

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 11.
Write down the power set of A = {1, 2, 3}.
Solution:
A = {1, 2, 3}
The power set of A is given by
P(A) = {{Φ}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}

Question 12.
Write the following intervals in Set-Builder form:
(i) (-3, 0)
(ii) [6, 12]
(iii) (6, ∞)
(iv) (-∞, 5]
(v) (2, 5]
(vi) [-3, 4)
Solution:
(i) (-3, 0) = {x / x ∈ R, -3 < x < 0}

(ii) [6, 12] = {x / x ∈ R, 6 ≤ x ≤ 12}

(iii) (6, ∞) = {x / x ∈ R, x > 6}

(iv) (-∞, 5] = {x / x ∈ R, x ≤ 5}

(v) (2, 5] = {x / x ∈ R, 2 < x ≤ 5}

(vi) [-3, 4) = {x / x ∈ R, -3 ≤ x < 4}

Question 13.
A college awarded 38 medals in volleyball, 15 in football, and 20 in basketball. The medals were awarded to a total of 58 players and only 3 players got medals in all three sports. How many received medals in exactly two of the three sports?
Solution:
Let A = Set of students who received medals in volleyball
B = Set of students who received medals in football
C = Set of students who received medals in basketball
n(A) = 38, n(B) = 15, n(C) = 20, n(A ∪ B ∪ C) = 58, n(A ∩ B ∩ C) = 3
n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)
58 = 38 + 15 + 20 – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + 3
∴ n(A ∩ B) + n(B ∩ C) + n(A ∩ C) = 18 ……(i)
Number of players who got exactly two medals = p + q + r
Here, s = n(A ∩ B ∩ C) = 3
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1 Q13
n(A ∩ B) + n(B ∩ C) + n(A ∩ C) = 18 …..[From (i)]
∴ p + s + s + r + q + s = 18
∴ p + q + r + 3s = 18
∴ p + q + r + 3(3) = 18
∴ p + q + r = 18 – 9 = 9
∴ Number of players who received exactly two medals = 9.

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 14.
Solve the following inequalities and write the solution set using interval notation.
(i) -9 < 2x + 7 ≤ 19
(ii) x2 – x > 20
(iii) \(\frac{2 x}{x-4}\) ≤ 5
(iv) 6x2 + 1 ≤ 5x
Solution:
(i) -9 < 2x + 7 ≤ 19
∴ -16 < 2x ≤ 12
∴ -8< x ≤ 6
∴ x ∈ (-8, 6]

(ii) x2 – x > 20
∴ x2 – x – 20 > 0
∴ x2 – 5x + 4x – 20 > 0
∴ (x – 5) (x + 4) > 0
∴ either x – 5 > 0 and x + 4 > 0 or x – 5 < 0 and x + 4 < 0

Case I: x – 5 > 0 and x + 4 > 0
∴ x > 5 and x > -4
∴ x > 5 ….(i)

Case II:
x – 5 < 0 and x + 4 < 0
∴ x < 5 and x < -4
∴ x < -4 …..(ii)
From (i) and (ii), we get
x ∈ (-∞, – 4) ∪ (5, ∞)

(iii) \(\frac{2 x}{x-4}\) ≤ 5
∴ \(\frac{2 x}{x-4}\) – 5 ≤ 0
∴ \(\frac{2 x-5 x+20}{x-4}\) ≤ 0
∴ \(\frac{20-3 x}{x-4}\) ≤ 0
When \(\frac{a}{b}\) ≤ 0,
a ≥ 0 and b < 0 or a ≤ 0 and b > 0
∴ either 20 – 3x ≥ 0 and x – 4 < 0 or 20 – 3x ≤ 0 and x – 4 > 0
Case I:
20 – 3x ≥ 0 and x – 4 < 0
∴ x ≤ \(\frac{20}{3}\) and x < 4
∴ x < 4 ……(I)

Case II: 20 – 3x ≤ 0 and x – 4 > 0
∴ x ≥ \(\frac{20}{3}\) and x > 4
∴ x ≥ \(\frac{20}{3}\) ……(ii)
From (i) and (ii), we get
x ∈ (-∞, 4) ∪ [\(\frac{20}{3}\), ∞)

(iv) 6x2 + 1 ≤ 5x
6x2 – 5x + 1 ≤ 0
6x2 – 3x – 2x + 1 ≤ 0
(3x – 1) (2x – 1) ≤ 0
either 3x – 1 ≤ 0 and 2x – 1 ≥ 0 or 3x – 1 ≥ 0 and 2x – 1 ≤ 0
Case I:
3x – 1 ≤ 0 and 2x – 1 ≥ 0
∴ x ≤ \(\frac{1}{3}\) and x ≥ \(\frac{1}{2}\), which is not possible.

Case II:
3x – 1 ≥ 0 and 2x – 1 ≤ 0
∴ x ≥ \(\frac{1}{3}\) and x ≤ \(\frac{1}{2}\)
∴ x ∈ [\(\frac{1}{3}\), \(\frac{1}{2}\)]

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 15.
If A = (-7, 3], B = [2, 6] and C = [4, 9], then find
(i) A ∪ B
(ii) B ∪ C
(iii) A ∪ C
(iv) A ∩ B
(v) B ∩ C
(vi) A ∩ C
(vii) A’ ∩ B
(viii) B’ ∩ C’
(ix) B – C
(x) A – B
Solution:
A = (-7, 3], B = [2, 6], C = [4, 9]
(i) A ∪ B = (-7, 6]

(ii) B ∪ C = [2, 9]

(iii) A ∪ C = (-7, 3] ∪ [4, 9]

(iv) A ∩ B = [2, 3]

(v) B ∩ C = [4, 6]

(vi) A ∩ C = { }

(vii) A’ = (-∞, – 7] ∪ (3, ∞)
∴ A’ ∩ B = (3, 6]

(viii) B’ = (-∞, 2) ∪ (6, ∞)
C’ = (-∞, 4) ∪ (9, ∞)
∴ B’ ∩ C’ = (-∞, 2) ∪ (9, ∞)

(ix) B – C = [2, 4)

(x) A – B = (-7, 2)

State Board 11th Maths Book Answers 

Binomial Distribution Class 12 Maths 2 Miscellaneous Exercise 8 Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 8 Binomial Distribution Miscellaneous Exercise 8 Questions and Answers.

12th Maths Part 2 Binomial Distribution Miscellaneous Exercise 8 Questions And Answers Maharashtra Board

(I) Choose the correct option from the given alternatives:

Question 1.
The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is
(a) √50
(b) 5
(c) 25
(d) 10
Answer:
(b) 5

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8

Question 2.
The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probablity of 2 successes is
(a) \(\frac{128}{256}\)
(b) \(\frac{219}{256}\)
(c) \(\frac{37}{256}\)
(d) \(\frac{28}{256}\)
Answer:
(d) \(\frac{28}{256}\)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 I Q2

Question 3.
For a binomial distribution, n = 5. If P(X = 4) = P(X = 3) then p = ___________
(a) \(\frac{1}{3}\)
(b) \(\frac{3}{4}\)
(c) 1
(d) \(\frac{2}{3}\)
Answer:
(d) \(\frac{2}{3}\)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 I Q3

Question 4.
In a binomial distribution, n = 4. If 2 P(X = 3) = 3 P(X = 2) then p = ___________
(a) \(\frac{4}{13}\)
(b) \(\frac{5}{13}\)
(c) \(\frac{9}{13}\)
(d) \(\frac{6}{13}\)
Answer:
(c) \(\frac{9}{13}\)

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8

Question 5.
If X ~ B (4, p) and P (X = 0) = \(\frac{16}{81}\), then P (X = 4) = ___________
(a) \(\frac{1}{16}\)
(b) \(\frac{1}{81}\)
(c) \(\frac{1}{27}\)
(d) \(\frac{1}{8}\)
Answer:
(b) \(\frac{1}{81}\)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 I Q5

Question 6.
The probability of a shooter hitting a target is \(\frac{3}{4}\). How many minimum numbers of times must he fie so that the probability of hitting the target at least once is more than 0·99?
(a) 2
(b) 3
(c) 4
(d) 5
Answer:
(c) 4
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 I Q6

Question 7.
If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ___________
(a) 36
(b) 54
(c) 18
(d) 27
Answer:
(b) 54
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 I Q7

(II) Solve the following:

Question 1.
Let X ~ B(10, 0.2). Find
(i) P(X = 1)
(ii) P(X ≥ 1)
(iii) P(X ≤ 8).
Solution:
X ~ B(10, 0.2)
∴ n = 10, p = 0.2
∴ q = 1 – p = 1 – 0.2 = 0.8
The p,m.f. of X is given by
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q1

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8

Question 2.
Let X ~ B(n, p).
(i) If n = 10, E(X) = 5, find p and Var(X).
(ii) If E(X) = 5 and Var(X) = 2.5, find n and p.
Solution:
X ~ B(n, p)
(i) Given: n = 10 and E(X) = 5
But E(X) = np
∴ np = 5.
∴ 10p = 5
∴ p = \(\frac{1}{2}\)
∴ q = 1 – p = 1 – \(\frac{1}{2}\) = \(\frac{1}{2}\)
Var(X) = npq = 10(\(\frac{1}{2}\))(\(\frac{1}{2}\)) = 2.5.
Hence, p = \(\frac{1}{2}\) and Var(X) = 2.5

(ii) Given: E(X) = 5 and Var(X) = 2.5
∴ np = 5 and npq = 2.5
∴ \(\frac{n p q}{n p}=\frac{2.5}{5}\)
∴ q = 0.5 = \(\frac{5}{10}=\frac{1}{2}\)
∴ p = 1 – q = 1 – \(\frac{1}{2}\) = \(\frac{1}{2}\)
Substituting p = \(\frac{1}{2}\) in np = 5, we get
n(\(\frac{1}{2}\)) = 5
∴ n = 10
Hence, n = 10 and p = \(\frac{1}{2}\)

Question 3.
If a fair coin is tossed 10 times and the probability that it shows heads (i) 5 times (ii) in the first four tosses and tail in the last six tosses.
Solution:
Let X = number of heads.
p = probability that coin tossed shows a head
∴ p = \(\frac{1}{2}\)
q = 1 – p = 1 – \(\frac{1}{2}\) = \(\frac{1}{2}\)
Given: n = 10
∴ X ~ B(10, \(\frac{1}{2}\))
The p.m.f. of X is given by
P(X = x) = \({ }^{n} C_{x} P^{x} q^{n-x}\)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q3

(i) P(coin shows heads 5 times) = P[X = 5]
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q3.1
Hence, the probability that can shows heads exactly 5 times = \(\frac{63}{256}\)

(ii) P(getting heads in first four tosses and tails in last six tosses) = P(X = 4)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q3.2
Hence, the probability that getting heads in first four tosses and tails in last six tosses = \(\frac{105}{512}\).

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8

Question 4.
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 2 will miss the target.
Solution:
Let X = the number of bombs hitting the target.
p = probability that bomb will hit the target
∴ p = 0.8 = \(\frac{8}{10}=\frac{4}{5}\)
∴ q = 1 – p = 1 – \(\frac{4}{5}\) = \(\frac{1}{5}\)
Given: n = 10
∴ X ~ B(10, \(\frac{4}{5}\))
The p.m.f. of X is given as:
P[X = x] = \({ }^{n} \mathrm{C}_{x} p^{x} q^{n-x}\)
i.e.p(x) = \({ }^{10} \mathrm{C}_{x}\left(\frac{4}{5}\right)^{x}\left(\frac{1}{5}\right)^{10-x}\)
P(exactly 2 bombs will miss the target) = P(exactly 8 bombs will hit the target)
= P[X = 8]
= p(8)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q4
Hence, the probability that exactly 2 bombs will miss the target = 45\(\left(\frac{2^{16}}{5^{10}}\right)\)

Question 5.
The probability that a mountain bike travelling along a certain track will have a tire burst is 0.05. Find the probability that among 17 riders:
(i) exactly one has a burst tyre
(ii) at most three have a burst tyre
(iii) two or more have burst tyres.
Solution:
Let X = number of burst tyres.
p = probability that a mountain bike travelling along a certain track will have a tyre burst.
∴ p = 0.05
∴ q = 1 – p = 1 – 0.05 = 0.95
Given: n = 17
∴ X ~ B(17, 0.05)
The p.m.f. of X is given by
P(X = x) = \({ }^{n} \mathrm{C}_{x} P^{x} q^{n-x}\)
i.e.(x) = \({ }^{17} \mathrm{C}_{x}(0.05)^{x}(0.95)^{17-x}\), x = 0, 1, 2, ……, 17
(i) P(exactly one has a burst tyre)
P(X = 1) = p(1) = \({ }^{17} \mathrm{C}_{1}\) (0.05)1 (0.95)17-1
= 17(0.05) (0.95)16
= 0.85(0.95)16
Hence, the probability that riders has exactly one burst tyre = (0.85)(0.95)16

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8

(ii) P(at most three have a burst tyre) = P(X ≤ 3)
= P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)
= p(0) + p(1) + p(2) + p(3)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q5
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q5.1
Hence, the probability that at most three riders have burst tyre = (2.0325)(0.95)14.

(iii) P(two or more have tyre burst) = P(X ≥ 2)
= 1 – P(X < 2)
= 1 – [P(X = 0) + P(X = 1)]
= 1 – [p(0) + p(1)]
= 1 – [\({ }^{17} \mathrm{C}_{0}\) (0.05)0 (0.95)17 + \({ }^{17} \mathrm{C}_{1}\) (0.05)(0.95)16]
= 1 – [1(1)(0.95)17 + 17(0.05)(0.95)16]
= 1 – (0.95)16[0.95 + 0.85]
= 1 – (1.80)(0.95)16
= 1 – (1.8)(0.95)16
Hence, the probability that two or more riders have tyre burst = 1 – (1.8)(0.95)16.

Question 6.
The probability that a lamp in a classroom will be burnt out is 0.3. Six such lamps are fitted in the classroom. If it is known that the classroom is unusable if the number of lamps burning in it is less than four, find the probability that the classroom cannot be used on a random occasion.
Solution:
Let X = number of lamps burnt out in the classroom.
p = probability of a lamp in a classroom will be burnt
∴ p = 0.3 = \(\frac{3}{10}\)
∴ q = 1 – p = 1 – \(\frac{3}{10}\) = \(\frac{7}{10}\)
Given: n = 6
∴ X ~ B(6, \(\frac{3}{10}\))
The p.m.f. of X is given as:
P[X = x] = \({ }^{n} \mathrm{C}_{x} p^{x} q^{n-x}\)
i.e., p(x) = \({ }^{6} \mathrm{C}_{x}\left(\frac{3}{10}\right)^{x}\left(\frac{7}{10}\right)^{6-x}\)
Since the classroom is unusable if the number of lamps burning in it is less than four, therefore
P(classroom cannot be used) = P[X < 4]
= P[X = 0] + P[X = 1] + P[X = 2] + P[X = 3]
= p(0) + p(1) + p(2) + p(3)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q6
Hence, the probability that the classroom cannot be used on a random occasion is 0.92953.

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8

Question 7.
A lot of 100 items contain 10 defective items. Five items are selected at random from the lot and sent to the retail store. What is the probability that the store will receive at most one defective item?
Solution:
Let X = number of defective items.
p = probability that item is defective
∴ p = \(\frac{10}{100}=\frac{1}{10}\)
∴ q = 1 – p = 1 – \(\frac{1}{10}\) = \(\frac{9}{10}\)
Given: n = 5
∴ X ~ B(5, \(\frac{1}{10}\))
The p.m.f. of X is given as:
P[X = x] = \({ }^{n} \mathrm{C}_{x} p^{x} q^{n-x}\)
i.e., p(x) = \({ }^{5} C_{x}\left(\frac{1}{10}\right)^{x}\left(\frac{9}{10}\right)^{5-x}\)
P (store will receive at most one defective item) = P[X ≤ 1]
=P[X = 0] + P[X = 1]
= p(0) + p(1)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q7
Hence, the probability that the store will receive at most one defective item is (1.4)(0.9)4.

Question 8.
A large chain retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 3%. The inspector of the retailer picks 20 items from a shipment. What is the probability that the store will receive at most one defective item?
Solution:
Let X = number of defective electronic devices.
p = probability that device is defective
∴ p = 3% = \(\frac{3}{100}\)
∴ q = 1 – p = 1 – \(\frac{3}{100}\) = \(\frac{97}{100}\)
Given: n = 20
∴ X ~ B(20, \(\frac{3}{100}\))
The p.m.f. of X is given as:
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q8
Hence, the probability that the store will receive at most one defective item = (1.57)(0.97)19.

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8

Question 9.
The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 tested components tested survive.
Solution:
Let X = number of tested components survive.
p = probability that the component survives the check test
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q9
Hence, the probability that exactly 2 of the 4 tested components survive is 0.3456.

Question 10.
An examination consists of 10 multiple choice questions, in each of which a candidate has to deduce which one of five suggested answers is correct. A completely unprepared student guesses each answer completely randomly. What is the probability that this student gets 8 or more questions correct? Draw the appropriate moral.
Solution:
Let X = number of correct answers.
p = probability that student gets correct answer
∴ p = \(\frac{1}{5}\)
∴ q = 1 – p = 1 – \(\frac{1}{5}\) = \(\frac{4}{5}\)
Given: n = 10 (number of total questions)
∴ X ~ B(10, \(\frac{1}{5}\))
The p.m.f. of X is given by
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q10
Hence, the probability that student gets 8 or more questions correct = \(\frac{30.44}{5^{8}}\)

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8

Question 11.
The probability that a machine will produce all bolts in a production run within specification is 0.998. A sample of 8 machines is taken at random. Calculate the probability that (i) all 8 machines (ii) 7 or 8 machines (iii) at most 6 machines will produce all bolts within specification.
Solution:
Let X = number of machines which produce the bolts within specification.
p = probability that a machine produce bolts within specification
p = 0.998 and q = 1 – p = 1 – 0.998 = 0.002
Given: n = 8
∴ X ~ B(8, 0.998)
The p.m.f. of X is given by
P(X = x) = \({ }^{n} \mathrm{C}_{x} p^{x} q^{n-x}\)
i.e. p(x) = \({ }^{8} \mathrm{C}_{x}(0.998)^{x}(0.002)^{8-x}\), x = 0, 1, 2, …, 8
(i) P(all 8 machines will produce all bolts within specification) = P[X = 8]
= p(8)
= \({ }^{8} \mathrm{C}_{8}\) (0.998)8 (0.002)8-8
= 1(0.998)8 . (1)
= (0.998)8
Hence, the probability that all 8 machines produce all bolts with specification = (0.998)8.

(ii) P(7 or 8 machines will produce all bolts within i specification) = P (X = 7) + P (X = 8)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q11
Hence, the probability that 7 or 8 machines produce all bolts within specification = (1.014)(0.998)7.

(iii) P(at most 6 machines will produce all bolts with specification) = P[X ≤ 6]
= 1 – P[x > 6]
= 1 – [P(X = 7) + P(X = 8)]
= 1 – [P(7) + P(8)]
= 1 – (1.014)(0.998)7
Hence, the probability that at most 6 machines will produce all bolts with specification = 1 – (1.014)(0.998)7.

Question 12.
The probability that a machine develops a fault within the first 3 years of use is 0.003. If 40 machines are selected at random, calculate the probability that 38 or more will develop any faults within the first 3 years of use.
Solution:
Let X = the number of machines who develop a fault.
p = probability that a machine develops a fait within the first 3 years of use
∴ p = 0.003 and q = 1 – p = 1 – 0.003 = 0.997
Given: n = 40
∴ X ~ B(40, 0.003)
The p.m.f. of X is given by
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q12
Hence, the probability that 38 or more machines will develop the fault within 3 years of use = (775.44)(0.003)38.

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8

Question 13.
A computer installation has 10 terminals. Independently, the probability that anyone terminal will require attention during a week is 0.1. Find the probabilities that (i) 0 (ii) 1 (iii) 2 (iv) 3 or more, terminals will require attention during the next week.
Solution:
Let X = number of terminals which required attention during a week.
p = probability that any terminal will require attention during a week
∴ p = 0.1 and q = 1 – p = 1 – 0.1 = 0.9
Given: n = 10
∴ X ~ B(10, 0.1)
The p.m.f. of X is given by
P(X = x) = \({ }^{n} \mathrm{C}_{x} p^{x} q^{n-x}\)
i.e. p(x) = \({ }^{10} C_{x}(0.1)^{x}(0.9)^{10-x}\), x = 0, 1, 2, …, 10
(i) P(no terminal will require attention) = P(X = 0)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q13
Hence, the probability that no terminal requires attention = (0.9)10

(ii) P(1 terminal will require attention)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q13.1
Hence, the probability that 1 terminal requires attention = (0.9)9.

(iii) P(2 terminals will require attention)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q13.2
Hence, the probability that 2 terminals require attention = (0.45)(0.9)8.

(iv) P(3 or more terminals will require attention)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q13.3
Hence, the probability that 3 or more terminals require attention = 1 – (2.16) × (0.9)8.

Question 14.
In a large school, 80% of the pupil like Mathematics. A visitor to the school asks each of 4 pupils, chosen at random, whether they like Mathematics.
(i) Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils.
(ii) Find the probability that the visitor obtains answer yes from at least 2 pupils:
(a) when the number of pupils questioned remains at 4.
(b) when the number of pupils questioned is increased to 8.
Solution:
Let X = number of pupils like Mathematics.
p = probability that pupils like Mathematics
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q14

(i) The probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of pupils are P(X = 0), P(X = 1), P(X = 2), P(X = 3) and P(X = 4) respectively
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q14.1

(ii) (a) P(visitor obtains the answer yes from at least 2 pupils when the number of pupils questioned remains at 4) = P(X ≥ 2)
= P(X = 2) + P(X = 3) + P(X = 4)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q14.2

(b) P(the visitor obtains the answer yes from at least 2 pupils when number of pupils questioned is increased to 8)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q14.3

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8

Question 15.
It is observed that it rains 12 days out of 30 days. Find the probability that
(i) it rains exactly 3 days of the week.
(ii) it will rain at least 2 days of a given week.
Solution:
Let X = the number of days it rains in a week.
p = probability that it rains
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q15

(i) P(it rains exactly 3 days of week) = P(X = 3)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q15.1
Hence, the probability that it rains exactly 3 days of week = 0.2903.

(ii) P(it will rain at least 2 days of the given week)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q15.2
Hence, the probability that it rains at least 2 days of a given week = 0.8414

Question 16.
If the probability of success in a single trial is 0.01. How many trials are required in order to have a probability greater than 0.5 of getting at least one success?
Solution:
Let X = number of successes.
p = probability of success in a single trial
∴ p = 0.01
and q = 1 – p = 1 – 0.01 = 0.99
∴ X ~ B(n, 0.01)
The p.m.f. of X is given by
P(X = x) = \({ }^{n} \mathrm{C}_{x} p^{x} q^{n-x}\)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q16
Hence, the number of trials required in order to have a probability greater than 0.5 of getting at least one success is \(\frac{\log 0.5}{\log 0.99}\) or 68.

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8

Question 17.
In binomial distribution with five Bernoulli’s trials, the probability of one and two success are 0.4096 and 0.2048 respectively. Find the probability of success.
Solution:
Given: X ~ B(n = 5, p)
The probability of X success is
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q17
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Miscellaneous Exercise 8 II Q17.1
Hence, the probability of success is \(\frac{1}{5}\).

12th Maharashtra State Board Maths Solutions Pdf Part 2

Binomial Distribution Class 12 Maths 2 Exercise 8.1 Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 8 Binomial Distribution Ex 8.1 Questions and Answers.

12th Maths Part 2 Binomial Distribution Exercise 8.1 Questions And Answers Maharashtra Board

Question 1.
A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of
(i) 5 successes
(ii) at least 5 successes
(iii) at most 5 successes.
Solution:
Let X = number of successes, i.e. number of odd numbers.
p = probability of getting an odd number in a single throw of a die
∴ p = \(\frac{3}{6}=\frac{1}{2}\) and q = 1 – p = 1 – \(\frac{1}{2}\) = \(\frac{1}{2}\)
Given: n = 6
∴ X ~ B(6, \(\frac{1}{2}\))
The p.m.f. of X is given by
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q1
Hence, the probability of 5 successes is \(\frac{3}{32}\).

(ii) P(at least 5 successes) = P[X ≥ 5]
= p(5) + p(6)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q1.1
Hence, the probability of at least 5 successes is \(\frac{7}{64}\).

(iii) P(at most 5 successes) = P[X ≤ 5]
= 1 – P[X > 5]
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q1.2
Hence, the probability of at most 5 successes is \(\frac{63}{64}\).

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1

Question 2.
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
Solution:
Let X = number of doublets.
p = probability of getting a doublet when a pair of dice is thrown
∴ p = \(\frac{6}{36}=\frac{1}{6}\) and
q = 1 – p = 1 – \(\frac{1}{6}\) = \(\frac{5}{6}\)
Given: n = 4
∴ X ~ B(4, \(\frac{1}{6}\))
The p.m.f. of X is given by
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q2
Hence, the probability of two successes is \(\frac{25}{216}\).

Question 3.
There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?
Solution:
Let X = number of defective items.
p = probability of defective item
∴ p = 5% = \(\frac{5}{100}=\frac{1}{20}\)
and q = 1 – p = 1 – \(\frac{1}{20}\) = \(\frac{19}{20}\)
∴ X ~ B(10, \(\frac{1}{20}\))
The p.m.f. of X is given by
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q3
P(sample of 10 items will include not more than one defective item) = P[X ≤ 1]
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q3.1
Hence, the probability that a sample of 10 items will include not more than one defective item = 29\(\left(\frac{19^{9}}{20^{10}}\right)\).

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1

Question 4.
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards, find the probability that
(i) all the five cards are spades
(ii) only 3 cards are spades
(iii) none is a spade.
Solution:
Let X = number of spade cards.
p = probability of drawing a spade card from a pack of 52 cards.
Since there are 13 spade cards in the pack of 52 cards.
∴ p = \(\frac{13}{52}=\frac{1}{4}\) and
q = 1 – p = 1 – \(\frac{1}{4}\) = \(\frac{3}{4}\)
Given: n = 5
∴ X ~ B(5, \(\frac{1}{4}\))
The p.m.f. of X is given by
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q4
(i) P(all five cards are spade)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q4.1
Hence, the probability of all the five cards are spades = \(\frac{1}{1024}\)

(ii) P(only 3 cards are spade) = P[X = 3]
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q4.2
Hence, the probability of only 3 cards are spades = \(\frac{45}{512}\)

(iii) P(none of cards is spade) = P[X = 0]
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q4.3
Hence, the probability of none of the cards is a spade = \(\frac{243}{1024}\)

Question 5.
The probability of a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.
Solution:
Let X = number of fuse bulbs.
p = probability of a bulb produced by a factory will fuse after 150 days of use.
∴ p = 0.05
and q = 1 – p = 1 – 0.05 = 0.95
Given: n = 5
∴ X ~ B(5, 0.05)
The p.m.f. of X is given by
P(X = x) = \({ }^{n} \mathrm{C}_{x} p^{x} q^{n-x}\)
i.e. p(x) = \({ }^{5} C_{x}(0.05)^{x}(0.95)^{5-x}\), x = 0, 1, 2, 3, 4, 5
(i) P(none of a bulb produced by a factory will fuse after 150 days of use) = P[X = 0]
= p(0)
= \({ }^{5} \mathrm{C}_{0}(0.05)^{0}(0.95)^{5-0}\)
= 1 × 1 × (0.95)5
= (0.95)5
Hence, the probability that none of the bulbs will fuse after 150 days = (0.95)5.

(ii) P(not more than one bulb will fuse after 150 days of j use) = P[X ≤ 1]
= p(0) + p(1)
= \({ }^{5} \mathrm{C}_{0} \cdot(0.05)^{0}(0.95)^{5-0}+{ }^{5} \mathrm{C}_{1}(0.05)^{1}(0.95)^{4}\)
= 1 × 1 × (0.95)5 + 5 × (0.05) × (0.95)4
= (0.95)4 [0.95 + 5(0.05)]
= (0.95)4 (0.95 + 0.25)
= (0.95)4 (1.20)
= (1.2) (0.95)4
Hence, the probability that not more than one bulb will fuse after 150 days = (1.2)(0.95)4.

(iii) P(more than one bulb fuse after 150 days)
= P[X > 1]
= 1 – P[X ≤ 1]
= 1 – (1.2)(0.95)4
Hence, the probability that more than one bulb fuse after 150 days = 1 – (1.2)(0.95)4.

(iv) P(at least one bulb fuse after 150 days)
= P[X ≥ 1]
= 1 – P[X = 0]
= 1 – p(0)
= 1 – \({ }^{5} C_{0}(0.05)^{0}(0.95)^{5-0}\)
= 1 – 1 × 1 × (0.95)5
= 1 – (0.95)5
Hence, the probability that at least one bulb fuses after 150 days = 1 – (0.95)5.

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1

Question 6.
A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?
Solution:
Let X = number of balls marked with digit 0.
p = probability of drawing a ball from 10 balls marked with the digit 0.
∴ p = \(\frac{1}{10}\)
and q = 1 – p = 1 – \(\frac{1}{10}\) = \(\frac{9}{10}\)
The p.m.f. of X is given by
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q6
P(none of the ball marked with digit 0) = P(X = 0)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q6.1
Hence, the probability that none of the bulb marked with digit 0 is \(\left(\frac{9}{10}\right)^{4}\)

Question 7.
On a multiple-choice examination with three possible answers for each of the five questions. What is the probability that a candidate would get four or more correct answers just by guessing?
Solution:
Let X = number of correct answers.
p = probability that a candidate gets a correct answer from three possible answers.
∴ p = \(\frac{1}{3}\) and q = 1 – p = 1 – \(\frac{1}{3}\) = \(\frac{2}{3}\)
Given: n = 5
∴ X ~ B(5, \(\frac{1}{3}\))
The p.m.f. of X is given by
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q7
P(four or more correct answers) = P[X ≥ 4]
= p(4) + p(5)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q7.1
Hence, the probability of getting four or more correct answers = \(\frac{11}{243}\).

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1

Question 8.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \(\frac{1}{100}\), find the probability that he will win a prize
(i) at least once
(ii) exactly once
(iii) at least twice.
Solution:
Let X = number of winning prizes.
p = probability of winning a prize
∴ p = \(\frac{1}{100}\)
and q = 1 – p = 1 – \(\frac{1}{100}\) = \(\frac{99}{100}\)
Given: n = 50
∴ X ~ B(50, \(\frac{1}{100}\))
The p.m.f. of X is given by
\(P(X=x)={ }^{n} C_{x} p^{x} q^{n-x}\)
i.e., p(x) = \({ }^{50} \mathrm{C}_{x}\left(\frac{1}{100}\right)^{x}\left(\frac{99}{100}\right)^{50-x}\), x = 0, 1, 2,… 50
(i) P(a person wins a prize at least once)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q8
Hence, probability of winning a prize at least once = 1 – \(\left(\frac{99}{100}\right)^{50}\)

(ii) P(a person wins exactly one prize) = P[X = 1] = p(1)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q8.1
Hence, probability of winning a prize exactly once = \(\frac{1}{2}\left(\frac{99}{100}\right)^{49}\)

(iii) P(a persons wins the prize at least twice) = P[X ≥ 2]
= 1 – P[X < 2]
= 1 – [p(0) + p(1)]
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q8.2
Hence, the probability of winning the prize at least twice = 1 – 149\(\left(\frac{99^{49}}{100^{50}}\right)\).

Question 9.
In a box of floppy discs, it is known that 95% will work. A sample of three of the discs is selected at random. Find the probability that (i) none (ii) 1 (iii) 2 (iv) all 3 of the sample will work.
Solution:
Let X = number of working discs.
p = probability that a floppy disc works
∴ p = 95% = \(\frac{95}{100}=\frac{19}{20}\)
and q = 1 – p = 1 – \(\frac{19}{20}\) = \(\frac{1}{20}\)
Given: n = 3
∴ X ~ B(3, \(\frac{19}{20}\))
The p.m.f. of X is given by
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q9
(i) P(none of the floppy discs work) = P(X = 0)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q9.1
Hence, the probability that none of the floppy disc will work = \(\frac{1}{20^{3}}\).

(ii) P(exactly one floppy disc works) = P(X = 1)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q9.2
Hence, the probability that exactly one floppy disc works = 3\(\left(\frac{19}{20^{3}}\right)\)

(iii) P(exactly two floppy discs work) = P(X = 2)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q9.3
Hence, the probability that exactly 2 floppy discs work = 3\(\left(\frac{19^{2}}{20^{3}}\right)\)

(iv) P(all 3 floppy discs work) = P(X = 3)
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q9.4
Hence, the probability that all 3 floppy discs work = \(\left(\frac{19}{20}\right)^{3}\).

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1

Question 10.
Find the probability of throwing at most 2 sixes in 6 throws of a single die.
Solution:
Let X = number of sixes.
p = probability that a die shows six in a single throw
∴ p = \(\frac{1}{6}\)
and q = 1 – p = 1 – \(\frac{1}{6}\) = \(\frac{5}{6}\)
Given: n = 6
∴ X ~ B(6, \(\frac{1}{6}\))
The p.m.f. of X is given by
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q10
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q10.1
Hence, probability of throwing at most 2 sixes = \(\frac{7}{3}\left(\frac{5}{6}\right)^{5}\).

Question 11.
It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?
Solution:
Let X = number of defective articles.
p = probability of defective articles.
∴ p = 10% = \(\frac{10}{100}=\frac{1}{10}\)
and q = 1 – p = 1 – \(\frac{1}{10}\) = \(\frac{9}{10}\)
Given: n = 12
∴ X ~ B(12, \(\frac{1}{10}\))
The p.m.f. of X is given by
Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1 Q11
Hence, the probability of getting 9 defective articles = \(22\left(\frac{9^{3}}{10^{11}}\right)\)

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1

Question 12.
Given X ~ B(n, P)
(i) If n = 10 and p = 0.4, find E(x) and Var(X).
(ii) If p = 0.6 and E(X) = 6, find n and Var(X).
(iii) If n = 25, E(X) = 10, find p and SD(X).
(iv) If n = 10, E(X) = 8, find Var(X).
Solution:
(i) Given: n = 10 and p = 0.4
∴ q = 1 – p = 1 – 0.4 = 0.6
∴ E(X) = np = 10(0.4) = 4
Var(X) = npq = 10(0.4)(0.6) = 2.4
Hence, E(X) = 4, Var(X) = 2.4.

(ii) Given: p = 0.6, E (X) = 6
E(X) = np
6 = n(0.6)
n = \(\frac{6}{0.6}\) = 10
Now, q = 1 – p = 1 – 0.6 = 0.4
∴ Var(X) = npq = 10(0.6)(0.4) = 2.4
Hence, n = 10 and Var(X) = 2.4.

(iii) Given: n = 25, E(X) = 10
E(X) = np
10 = 25p
p = \(\frac{10}{25}=\frac{2}{5}\)
∴ q = 1 – p = 1 – \(\frac{2}{5}\) = \(\frac{3}{5}\)
Var(X) = npq = \(25 \times \frac{2}{5} \times \frac{3}{5}\) = 6
∴ SD(X) = √Var(X) = √6
Hence, p = \(\frac{2}{5}\) and S.D.(X) = √6.

Maharashtra Board 12th Maths Solutions Chapter 8 Binomial Distribution Ex 8.1

(iv) Given: n = 10, E(X) = 8
E(X) = np
8 = 10p
p = \(\frac{8}{10}=\frac{4}{5}\)
q = 1 – p = 1 – \(\frac{4}{5}\) = \(\frac{1}{5}\)
Var(X) = npq = \(10\left(\frac{4}{5}\right)\left(\frac{1}{5}\right)=\frac{8}{5}\)
Hence, Var(X) = \(\frac{8}{5}\).

12th Maharashtra State Board Maths Solutions Pdf Part 2

Probability Distributions Class 12 Maths 2 Miscellaneous Exercise 7 Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 7 Probability Distributions Miscellaneous Exercise 7 Questions and Answers.

12th Maths Part 2 Probability Distributions Miscellaneous Exercise 7 Questions And Answers Maharashtra Board

(I) Choose the correct option from the given alternatives:

Question 1.
P.d.f. of a c.r.v. X is f(x) = 6x(1 – x), for 0 ≤ x ≤ 1 and = 0, otherwise (elsewhere) If P(X < a) = P(X > a), then a =
(a) 1
(b) \(\frac{1}{2}\)
(c) \(\frac{1}{3}\)
(d) \(\frac{1}{4}\)
Answer:
(b) \(\frac{1}{2}\)

Question 2.
If the p.d.f. of a c.r.v. X is f(x) = 3(1 – 2x2), for 0 < x < 1 and = 0, otherwise (elsewhere), then the c.d.f. of X is F(x) =
(a) 2x – 3x2
(b) 3x – 4x3
(c) 3x – 2x3
(d) 2x3 – 3x
Answer:
(c) 3x – 2x3

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7

Question 3.
If the p.d.f. of a c.r.v. X is f(x) = \(\frac{x^{2}}{18}\), for -3 < x < 3 and = 0, otherwise, then P(|X| < 1) =
(a) \(\frac{1}{27}\)
(b) \(\frac{1}{28}\)
(c) \(\frac{1}{29}\)
(d) \(\frac{1}{26}\)
Answer:
(a) \(\frac{1}{27}\)

Question 4.
If p.m.f. of a d.r.v. X takes values 0, 1, 2, 3, … which probability P(X = x) = k(x +1) . 5-x, where k is a constant, then P(X = 0) =
(a) \(\frac{7}{25}\)
(b) \(\frac{16}{25}\)
(c) \(\frac{18}{25}\)
(d) \(\frac{19}{25}\)
Answer:
(b) \(\frac{16}{25}\)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 I Q4

Question 5.
If p.m.f. of a d.r.v. X is P(X = x) = \(\frac{\left({ }^{5} \mathrm{C}_{x}\right)}{2^{5}}\), for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise. If a = P(X ≤ 2) and b = P(X ≥ 3), then
(a) a < b
(b) a > b
(c) a = b
(d) a + b
Answer:
(c) a = b

Question 6.
If p.m.f. of a d.r.v. X is P(X = x) = \(\frac{x}{n(n+1)}\), for x = 1, 2, 3, ……, n and = 0, otherwise, then E(X) =
(a) \(\frac{n}{1}+\frac{1}{2}\)
(b) \(\frac{n}{3}+\frac{1}{6}\)
(c) \(\frac{n}{2}+\frac{1}{5}\)
(d) \(\frac{n}{1}+\frac{1}{3}\)
Answer:
(b) \(\frac{n}{3}+\frac{1}{6}\)

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7

Question 7.
If p.m.f. of a d.r.v. X is P(x) = \(\frac{c}{x^{3}}\), for x = 1, 2, 3 and = 0, otherwise (elsewhere), then E(X) =
(a) \(\frac{343}{297}\)
(b) \(\frac{294}{251}\)
(c) \(\frac{297}{294}\)
(d) \(\frac{294}{297}\)
Answer:
(b) \(\frac{294}{251}\)

Question 8.
If the d.r.v. X has the following probability distribution:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 I Q8
then P(X = -1) =
(a) \(\frac{1}{10}\)
(b) \(\frac{2}{10}\)
(c) \(\frac{3}{10}\)
(d) \(\frac{4}{10}\)
Answer:
(a) \(\frac{1}{10}\)

Question 9.
If the d.r.v. X has the following probability distribution:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 I Q9
then k =
(a) \(\frac{1}{7}\)
(b) \(\frac{1}{8}\)
(c) \(\frac{1}{9}\)
(d) \(\frac{1}{10}\)
Answer:
(d) \(\frac{1}{10}\)

Question 10.
Find the expected value of X for the following p.m.f.
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 I Q10
(a) 0.85
(b) -0.35
(c) 0.15
(d) -0.15
Answer:
(b) -0.35

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7

(II) Solve the following:

Question 1.
Identify the random variable as either discrete or continuous in each of the following. If the random variable is discrete, list its possible values:
(i) An economist is interested in the number of unemployed graduates in the town of population 1 lakh.
(ii) Amount of syrup prescribed by a physician.
(iii) The person on a high protein diet is interesting to gain weight in a week.
(iv) 20 white rats are available for an experiment. Twelve rats are males. A scientist randomly selects 5 rats, the number of female rats selected on a specific day.
(v) A highway-safety group is interested in studying the speed (in km/hr) of a car at a checkpoint.
Solution:
(i) Let X = number of unemployed graduates in a town.
Since the population of the town is 1 lakh, X takes the finite values.
∴ random variable X is discrete.
Range = {0, 1, 2, …, 99999, 100000}.

(ii) Let X = amount of syrup prescribed by a physician.
Then X takes uncountable infinite values.
∴ random variable X is continuous.

(iii) Let X = gain of weight in a week
Then X takes uncountable infinite values
∴ random variable X is continuous.

(iv) Let X = number of female rats selected on a specific day.
Since the total number of rats is 20 which includes 12 males and 8 females, X takes the finite values.
∴ random variable X is discrete.
Range = {0, 1, 2, 3, 4, 5}

(v) Let X = speed of .the car in km/hr.
Then X takes uncountable infinite values
∴ random variable X is continuous.

Question 2.
The probability distribution of discrete r.v. X is as follows:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q2
(i) Determine the value of k.
(ii) Find P(X ≤ 4), P(2 < X < 4), P(X ≥ 3).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q2.1
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q2.2

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7

Question 3.
The following is the probability distribution of X:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q3
Find the probability that
(i) X is positive
(ii) X is non-negative
(iii) X is odd
(iv) X is even.
Solution:
(i) P(X is positive) = P(X = 1) + P(X = 2) + P(X = 3)
= 0.25 + 0.15 + 0.1
= 0.50

(ii) P(X is non-negative)
= P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)
= 0.20 + 0.25 + 0.15 + 0.1
= 0.70

(iii) P(X is odd)
= P(X = -3) + P(X = -1) + P(X = 1) + P(X = 3)
= 0.05 + 0.15 + 0.25 + 0.1
= 0.55

(iv) P(X is even)
= P(X = -2) + P(X = 0) + P(X = 2)
= 0.10 + 0.20 + 0.15
= 0.45.

Question 4.
The p.m.f. of a r.v. X is given by P(X = x) = x = \(\frac{{ }^{5} \mathrm{C}_{\mathrm{x}}}{2^{5}}\), for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise. Then show that P(X ≤ 2) = P(X ≥ 3).
Solution:
P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)
= \(\frac{{ }^{5} \mathrm{C}_{0}}{2^{5}}+\frac{{ }^{5} \mathrm{C}_{1}}{2^{5}}+\frac{{ }^{5} \mathrm{C}_{2}}{2^{5}}\)
= \(\frac{{ }^{5} \mathrm{C}_{5}}{2^{5}}+\frac{{ }^{5} \mathrm{C}_{4}}{2^{5}}+\frac{{ }^{5} \mathrm{C}_{3}}{2^{5}}\) ………[latex]{ }^{n} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{n-r}[/latex]
= P(X = 5) + P(X = 4) + P(X = 3)
= P(X ≥ 3)
∴ P(X ≤ 2) = P(X ≥ 3).

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7

Question 5.
In the p.m.f. of r.v. X
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q5
Find a and obtain c.d.f. of X.
Solution:
For p.m.f. of a r.v. X
\(\sum_{i=1}^{5} P(X=x)=1\)
∴ P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) = 1
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q5.1
Let F(x) be the c.d.f. of X.
Then F(x) = P(X ≤ x)
∴ F(1) = P(X ≤ 1) = P(X = 1) = \(\frac{1}{20}\)
F(2) = P(X ≤ 2) = P(X = 1) + P (X = 2)
\(=\frac{1}{20}+\frac{3}{20}=\frac{4}{20}=\frac{1}{5}\)
P(3) = P(X ≤ 3) = P(X = 1) + P(X = 2) + P(X = 3)
\(=\frac{1}{20}+\frac{3}{20}+\frac{5}{20}=\frac{9}{20}\)
F(4) = P(X ≤ 4) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)
\(=\frac{1}{20}+\frac{3}{20}+\frac{5}{20}+\frac{10}{20}=\frac{19}{20}\)
F(5) = P(X ≤ 5) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)
\(=\frac{1}{20}+\frac{3}{20}+\frac{5}{20}+\frac{10}{20}+\frac{1}{20}=\frac{20}{20}=1\)
Hence, the c.d.f. of the random variable X is as follows:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q5.2

Question 6.
A fair coin is tossed 4 times. Let X denote the number of heads obtained. Write down the probability distribution of X. Also, find the formula for p.m.f. of X.
Solution:
When a fair coin is tossed 4 times then the sample space is
S = {HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTHT, HTTH, THHT, THTH, TTHH, HTTT, THTT, TTHT, TTTH, TTTT}
∴ n(S) = 16
X denotes the number of heads.
∴ X can take the value 0, 1, 2, 3, 4
When X = 0, then X = {TTTT}
∴ n (X) = 1
∴ P(X = 0) = \(\frac{n(X)}{n(S)}=\frac{1}{16}=\frac{{ }^{4} \mathrm{C}_{0}}{16}\)
When X = 1, then
X = {HTTT, THTT, TTHT, TTTH}
∴ n(X) = 4
∴ P(X = 1) = \(\frac{n(X)}{n(S)}=\frac{4}{16}=\frac{{ }^{4} C_{1}}{16}\)
When X = 2, then
X = {HHTT, HTHT, HTTH, THHT, THTH, TTHH}
∴ n(X) = 6
∴ P(X = 2) = \(\frac{n(X)}{n(S)}=\frac{6}{16}=\frac{{ }^{4} \mathrm{C}_{2}}{16}\)
When X = 3, then
X = {HHHT, HHTH, HTHH, THHH}
∴ n(X) = 4
∴ P(X = 3) = \(\frac{n(X)}{n(S)}=\frac{4}{16}=\frac{{ }^{4} C_{3}}{16}\)
When X = 4, then X = {HHHH}
∴ n(X) = 1
∴ P(X = 4) = \(\frac{n(X)}{n(S)}=\frac{1}{16}=\frac{{ }^{4} \mathrm{C}_{4}}{16}\)
∴ the probability distribution of X is as follows:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q6
Also, the formula for p.m.f. of X is
P(x) = \(\frac{{ }^{4} \mathrm{C}_{x}}{16}\), x = 0, 1, 2, 3, 4 and = 0, otherwise.

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7

Question 7.
Find the probability distribution of the number of successes in two tosses of a die, where success is defined as
(i) number greater than 4
(ii) six appear on at least one die.
Solution:
When a die is tossed two times, we obtain (6 × 6) = 36 number of observations.
Let X be the random variable, which represents the number of successes.
Here, success refers to the number greater than 4.
P(X = 0) = P(number less than or equal to 4 on both the tosses)
= \(\frac{4}{6} \times \frac{4}{6}=\frac{16}{36}=\frac{4}{9}\)
P(X = 1) = P(number less than or equal to 4 on first toss and greater than 4 on second toss) + P(number greater than 4 on first toss and less than or equal to 4 on second toss)
= \(\frac{4}{6} \times \frac{2}{6}+\frac{4}{6} \times \frac{2}{6}\)
= \(\frac{8}{36}+\frac{8}{36}\)
= \(\frac{16}{36}\)
= \(\frac{4}{9}\)
P(X = 2) = P(number greater than 4 on both the tosses)
= \(\frac{2}{6} \times \frac{2}{6}=\frac{4}{36}=\frac{1}{9}\)
Thus, the probability distribution is as follows:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q7
(ii) Here, success means six appears on at least one die.
P(Y = 0) = P(six appears on none of the dice) = \(\frac{5}{6} \times \frac{5}{6}=\frac{25}{36}\)
P(Y = 1) = P(six appears on none of the dice x six appears on at least one of the dice ) + P(six appears on none of the dice x six appears on at least one of the dice)
= \(\frac{1}{6} \times \frac{5}{6}+\frac{1}{6} \times \frac{5}{6}=\frac{5}{36}+\frac{5}{36}=\frac{10}{36}\)
P(Y = 2) = P(six appears on at least one of the dice) = \(\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}\)
Thus, the required probability distribution is as follows:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q7.1

Question 8.
A random variable X has the following probability distribution:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q8
Determine:
(i) k
(ii) P(X > 6)
(iii) P(0 < X < 3).

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7

Question 9.
The following is the c.d.f. of a r.v. X:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q9
Find
(i) p.m.f. of X
(ii) P( -1 ≤ X ≤ 2)
(iii) P(X ≤ X > 0).
Solution:
(i) From the given table
F(-3) = 0.1, F(-2) = 0.3, F(-1) = 0.5
F(0) = 0.65, f(1) = 0.75, F(2) = 0.85
F(3) = 0.9, F(4) = 1
P(X = -3) = F(-3) = 0.1
P(X = -2) = F(-2) – F(-3) = 0.3 – 0.1 = 0.2
P(X = -1) = F(-1) – F(-2) = 0.5 – 0.3 = 0.2
P(X = 0) = F(0) – F(-1) = 0.65 – 0.5 = 0.15
P(X = 1) = F(1) – F(0) = 0.75 – 0.65 = 0.1
P(X = 2) = F(2) – F(1) = 0.85 – 0.75 = 0.1
P(X = 3) = F(3) – F(2) = 0.9 – 0.85 = 0.1
P(X = 4) = F(4) – F(3) = 1 – 0.9 = 0.1
∴ the p.m.f of X is as follows:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q9.1
(ii) P(-1 ≤ X ≤ 2) = P(X = -1) + P(X = 0) + P(X = 1) + P(X = 2)
= 0.2 + 0.15 + 0.1 + 0.1
= 0.55

(iii) (X ≤ 3) ∩ (X > 0)
= { -3, -2, -1, 0, 1, 2, 3} n {1, 2, 3, 4}
= {1, 2, 3}
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q9.2

Question 10.
Find the expected value, variance, and standard deviation of the random variable whose p.m.f’s are given below:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q10
Solution:
(i) We construct the following table to find the expected value, variance, and standard deviation:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q10.1
(ii) We construct the following table to find the expected value, variance, and standard deviation:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q10.2
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q10.3
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q10.4
(iii) We construct the following table to find the expected value, variance, and standard deviation:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q10.8
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q10.9
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q10.10
(iv) We construct the following table to find the expected value, variance, and standard deviation:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q10.5
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q10.6
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q10.7

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7

Question 11.
A player tosses two wins. He wins ₹ 10 if 2 heads appear, ₹ 5 if 1 head appears and ₹ 2 if no head appears. Find the expected winning amount and variance of the winning amount.
Solution:
When a coin is tossed twice, the sample space is
S = {HH, HT, TH, HH}
Let X denote the amount he wins.
Then X takes values 10, 5, 2.
P(X = 10) = P(2 heads appear) = \(\frac{1}{4}\)
P(X = 5) = P(1 head appears) = \(\frac{2}{4}\) = \(\frac{1}{2}\)
P(X = 2) = P(no head appears) = \(\frac{1}{4}\)
We construct the following table to calculate the mean and the variance of X:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q11
From the table Σxi . P(xi) = 5.5, \(\Sigma x_{i}^{2} \cdot P\left(x_{i}\right)\) = 38.5
E(X) = Σxi . P(xi) = 5.5
Var(X) = \(\Sigma x_{i}^{2} \cdot P\left(x_{i}\right)\) – [E(X)]2
= 38.5 – (5.5)2
= 38.5 – 30.25
= 8.25
∴ Hence, expected winning amount = ₹ 5.5 and variance of winning amount = ₹ 8.25.

Question 12.
Let the p.m.f. of r.v. X be P(x) = \(\frac{3-x}{10}\), for x = -1, 0, 1, 2 and = 0, otherwise.
Calculate E(X) and Var(X).
Solution:
P(X) = \(\frac{3-x}{10}\)
X takes values -1, 0, 1, 2
P(X = -1) = P(-1) = \(\frac{3+1}{10}=\frac{4}{10}\)
P(X = 0) = P(0) = \(\frac{3-0}{10}=\frac{3}{10}\)
P(X = 1) = P(1) = \(\frac{3-1}{10}=\frac{2}{10}\)
P(X = 2) = P(2) = \(\frac{3-2}{10}=\frac{1}{10}\)
We construct the following table to calculate the mean and variance of X:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q12
From the table
ΣxiP(xi) = 0 and \(\Sigma x_{i}{ }^{2} \cdot P\left(x_{i}\right)\) = 1
E(X) = ΣxiP(xi) = 0
Var(X) = \(\Sigma x_{i}{ }^{2} \cdot P\left(x_{i}\right)\) – [E(X)]2
= 1 – 0
= 1
Hence, E(X) = 0, Var (X) = 1.

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7

Question 13.
Suppose the error involved in making a certain measurement is a continuous r.v. X with p.d.f.
f(x) = k(4 – x2), -2 ≤ x ≤ 2 and = 0 otherwise.
Compute
(i) P(X > 0)
(ii) P(-1 < X < 1)
(iii) P(X < -0.5 or X > 0.5).
Solution:
(i) P(X > 0)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q13
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q13.1
(ii) P(-1 < X < 1)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q13.2
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q13.3
(iii) P(X < -0.5 or X > 0.5)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q13.4
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q13.5
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q13.6
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q13.7
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q13.8

Question 14.
The p.d.f. of a continuous r.v. X is given by f(x) = \(\frac{1}{2 a}\), for 0 < x < 2a and = 0, otherwise. Show that P( X < \(\frac{a}{2}\)) = P(X > \(\frac{3a}{2}\))
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q14
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q14.1

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7

Question 15.
The p.d.f. of r.v. X is given by f(x) = \(\frac{k}{\sqrt{x}}\), for 0 < x < 4 and = 0, otherwise. Determine k. Determine c.d.f. of X and hence find P(X ≤ 2) and P(X ≤ 1).
Solution:
Since f is p.d.f. of the r.v. X,
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q15
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Miscellaneous Exercise 7 II Q15.1

12th Maharashtra State Board Maths Solutions Pdf Part 2

Probability Distributions Class 12 Maths 2 Exercise 7.2 Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 7 Probability Distributions Ex 7.2 Questions and Answers.

12th Maths Part 2 Probability Distributions Exercise 7.2 Questions And Answers Maharashtra Board

Question 1.
Verify which of the following is p.d.f. of r.v. X:
(i) f(x) = sin x, for 0 ≤ x ≤ \(\frac{\pi}{2}\)
(ii) f(x) = x, for 0 ≤ x ≤ 1 and -2 – x for 1 < x < 2
(iii) fix) = 2, for 0 ≤ x ≤ 1.
Solution:
f(x) is the p.d.f. of r.v. X if
(a) f(x) ≥ 0 for all x ∈ R and
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q1
Hence, f(x) is the p.d.f. of X.

(ii) f(x) = x ≥ 0 if 0 ≤ x ≤ 1
For 1 < x < 2, -2 < -x < -1
-2 – 2 < -2 – x < -2 – 1
i.e. -4 < f(x) < -3 if 1 < x < 2
Hence, f(x) is not p.d.f. of X.

(iii) (a) f(x) = 2 ≥ 0 for 0 ≤ x ≤ 1
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q1.1
Hence, f(x) is not p.d.f. of X.

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2

Question 2.
The following is the p.d.f. of r.v. X:
f(x) = \(\frac{x}{8}\), for 0 < x < 4 and = 0 otherwise.
Find
(a) P(x < 1.5)
(b) P(1 < x < 2) (c) P(x > 2).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q2
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q2.1

Question 3.
It is known that error in measurement of reaction temperature (in 0°C) in a certain experiment is continuous r.v. given by
f(x) = \(\frac{x^{2}}{3}\) for -1 < x < 2
= 0. otherwise.
(i) Verify whether f(x) is p.d.f. of r.v. X
(ii) Find P(0 < x ≤ 1)
(iii) Find the probability that X is negative.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q3

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2

Question 4.
Find k if the following function represents p.d.f. of r.v. X
(i) f(x) = kx. for 0 < x < 2 and = 0 otherwise.
Also find P(\(\frac{1}{4}\) < x < \(\frac{3}{2}\)).
(ii) f(x) = kx(1 – x), for 0 < x < 1 and = 0 otherwise.
Also find P(\(\frac{1}{4}\) < x < \(\frac{1}{2}\)), P(x < \(\frac{1}{2}\)).
Solution:
(i) Since, the function f is p.d.f. of X
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q4
(ii) Since, the function f is the p.d.f. of X,
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q4.1
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q4.2
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q4.3

Question 5.
Let X be the amount of time for which a book is taken out of the library by a randomly selected students and suppose X has p.d.f.
f(x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise.
Calculate:
(i) P(x ≤ 1)
(ii) P(0.5 ≤ x ≤ 1.5)
(iii) P(x ≥ 1.5).
Solution:
(i) P(x ≤ 1)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q5
(ii) P(0.5 ≤ x ≤ 1.5)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q5.1
(iii) P(x ≥ 1.5)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q5.2
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q5.3

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2

Question 6.
Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = \(\frac{1}{5}\), for 0 ≤ x ≤ 5 and = 0 otherwise. Find the probability that
(i) waiting time is between 1 and 3
(ii) waiting time is more than 4 minutes.
Solution:
(i) Required probability = P(1 < X < 3)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q6
(ii) Required probability = P(X > 4)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q6.1

Question 7.
Suppose the error involved in making a certain measurement is a continuous r.v. X with p.d.f.
f(x) = k(4 – x2), -2 ≤ x ≤ 2 and 0 otherwise.
Compute:
(i) P(X > 0)
(ii) P(-1 < X < 1)
(iii) P(-0.5 < X or X > 0.5).
Solution:
Since, f is the p.d.f. of X,
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q7
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q7.1
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q7.2
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q7.3
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q7.4
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q7.5

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2

Question 8.
The following is the p.d.f. of continuous r.v. X
f(x) = \(\frac{x}{8}\), for 0 < x < 4 and = 0 otherwise.
(i) Find expression for c.d.f. of X.
(ii) Find F(x) at x = 0.5, 1.7 and 5.
Solution:
(i) Let F(x) be the c.d.f. of X
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q8
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q8.1

Question 9.
Given the p.d.f. of a continuous random r.v. X, f(x) = \(\frac{x^{2}}{3}\), for -1 < x < 2 and = 0 otherwise. Determine c.d.f. of X and hence find P(X < 1); P(X < -2), P(X > 0), P(1 < X < 2).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q9
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q9.1

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2

Question 10.
If a r.v. X has p.d.f.
f(x) = \(\frac{c}{x}\) for 1 < x < 3, c > 0. Find c, E(X), Var (X).
Solution:
Since f(x) is p.d.f of r.v. X
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q10
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.2 Q10.1

12th Maharashtra State Board Maths Solutions Pdf Part 2

Methods of Induction and Binomial Theorem Class 11 Maths 2 Miscellaneous Exercise 4 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 Questions and Answers.

11th Maths Part 2 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 Questions And Answers Maharashtra Board

(I) Select the correct answers from the given alternatives.

Question 1.
The total number of terms in the expression of (x + y)100 + (x – y)100 after simplification is:
(A) 50
(B) 51
(C) 100
(D) 202
Answer:
(B) 51
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q1

Question 2.
The middle term in the expansion of (1 + x)2n will be:
(A) (n – 1)th
(B) nth
(C) (n + 1)th
(D) (n + 2)th
Answer:
(C) (n + 1)th
Hint:
(1 + x)2n has (2n + 1) terms.
∴ (n + 1 )th term is the middle term.

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 3.
In the expansion of (x2 – 2x)10, the coefficient of x16 is
(A) -1680
(B) 1680
(C) 3360
(D) 6720
Answer:
(C) 3360
Hint:
(x2 – 2x)10 = x10 (x – 2)10
To get the coefficient of x16 in (x2 – 2x)10,
we need to check coefficient of x6 in (x – 2)10
∴ Required coefficient = 10C6 (-2)4
= 210 × 16
= 3360

Question 4.
The term not containing x in expansion of \((1-x)^{2}\left(x+\frac{1}{x}\right)^{10}\) is
(A) 11C5
(B) 10C5
(C) 10C4
(D) 10C7
Answer:
(A) 11C5
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q4

Question 5.
The number of terms in expansion of (4y + x)8 – (4y – x)8 is
(A) 4
(B) 5
(C) 8
(D) 9
Answer:
(A) 4
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q5

Question 6.
The value of 14C1 + 14C3 + 14C5 + …. + 14C11 is
(A) 214 – 1
(B) 214 – 14
(C) 212
(D) 213 – 14
Answer:
(D) 213 – 14
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q6

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 7.
The value of 11C2 + 11C4 + 11C6 + 11C8 is equal to
(A) 210 – 1
(B) 210 – 11
(C) 210 + 12
(D) 210 – 12
Answer:
(D) 210 – 12
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q7

Question 8.
In the expansion of (3x + 2)4, the coefficient of the middle term is
(A) 36
(B) 54
(C) 81
(D) 216
Answer:
(D) 216
Hint:
(3x + 2)4 has 5 terms.
∴ (3x + 2)4 has 3rd term as the middle term.
The coefficient of the middle term
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q8
= 6 × 9 × 4
= 216

Question 9.
The coefficient of the 8th term in the expansion of (1 + x)10 is:
(A) 7
(B) 120
(C) 10C8
(D) 210
Answer:
(B) 120
Hint:
r = 7
t8 = 10C7 x7 = 10C3 x7
∴ Coefficient of 8th term = 10C3 = 120

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 10.
If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is
(A) \(-\frac{7}{9}\)
(B) \(-\frac{9}{7}\)
(C) \(\frac{7}{9}\)
(D) \(\frac{9}{7}\)
Answer:
(D) \(\frac{9}{7}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q10

(II) Answer the following.

Question 1.
Prove by the method of induction, for all n ∈ N.
(i) 8 + 17 + 26 + ….. + (9n – 1) = \(\frac{n}{2}\) (9n + 7)
Solution:
Let P(n) ≡ 8 + 17 + 26 +…..+(9n – 1) = \(\frac{n}{2}\) (9n + 7), for all n ∈ N.
Step I:
Put n = 1
L.H.S. = 8
R.H.S. = \(\frac{1}{2}\) [9(1) + 7] = 8
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 8 + 17 + 26 +…..+ (9k – 1) = \(\frac{k}{2}\) (9k + 7) ……(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., 8 + 17 + 26 + …… + [9(k + 1) – 1]
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q1 (i)
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 8 + 17 + 26 +…..+ (9n – 1) = \(\frac{n}{2}\) (9n + 7) for all n ∈ N.

(ii) 12 + 42 + 72 + …… + (3n – 2)2 = \(\frac{n}{2}\) (6n2 – 3n – 1)
Solution:
Let P(n) = 12 + 42 + 72 + ….. + (3n – 2)2 = \(\frac{n}{2}\) (6n2 – 3n – 1), for all n ∈ N.
Step I:
Put n = 1
L.H.S.= 12 = 1
R.H.S.= \(\frac{1}{2}\) [6(1)2 – 3(1) – 1] = 1
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 12 + 42 + 72 +…..+ (3k – 2)2 = \(\frac{k}{2}\) (6k2 – 3k – 1) ……(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q1 (ii)
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 12 + 42 + 72 + … + (3n – 2)2 = \(\frac{n}{2}\) (6n2 – 3n – 1) for all n ∈ N.

(iii) 2 + 3.2 + 4.22 + …… + (n + 1) 2n-1 = n . 2n
Solution:
Let P(n) ≡ 2 + 3.2 + 4.22 +…..+ (n + 1) 2n-1 = n.2n, for all n ∈ N.
Step I:
Put n = 1
L.H.S. = 2
R.H.S. = 1(21) = 2
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 2 + 3.2 + 4.22 + ….. + (k + 1) 2k-1 = k.2k …..(i)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
2 + 3.2 + 4.22 +….+ (k + 2) 2k = (k + 1) 2k+1
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q1 (iii)
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 2 + 3.2 + 4.22 +……+ (n + 1) 2n-1 = n.2n for all n ∈ N.

(iv) \(\frac{1}{3.4 .5}+\frac{2}{4.5 .6}+\frac{3}{5.6 .7}+\ldots+\frac{n}{(n+2)(n+3)(n+4)}\) = \(\frac{n(n+1)}{6(n+3)(n+4)}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q1 (iv)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q1 (iv).1
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q1 (iv).2

Question 2.
Given that tn+1 = 5tn – 8, t1 = 3, prove by method of induction that tn = 5n-1 + 2.
Solution:
Let the statement P(n) has L.H.S. a recurrence relation tn+1 = 5tn – 8, t1 = 3
and R.H.S. a general statement tn = 5n-1 + 2.
Step I:
Put n = 1
L.H.S. = 3
R.H.S. = 51-1 + 2 = 1 + 2 = 3
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.
Put n = 2
L.H.S = t2 = 5t1 – 8 = 5(3) – 8 = 7
R.H.S. = t2 = 52-1 + 2 = 5 + 2 = 7
∴ L.H.S. = R.H.S.
∴ P(n) is tme for n = 2.

Step II:
Let us assume that P(n) is true for n = k.
∴ tk+1 = 5tk – 8 and tk = 5k-1 + 2

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
tk+1 = 5k+1-1 + 2 = 5k + 2
tk+1 = 5tk – 8 and tk = 5k-1 + 2 ……[From Step II]
∴ tk+1 = 5(5k-1 + 2) – 8 = 5k + 2
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ tn = 5n-1 + 2, for all n ∈ N.

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 3.
Prove by method of induction
\(\left(\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right)^{n}=\left(\begin{array}{cc}
2 n+1 & -4 n \\
n & -2 n+1
\end{array}\right)\), ∀ n ∈ N.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q3
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q3.1
Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ \(\left(\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right)^{n}=\left(\begin{array}{cc}
2 n+1 & -4 n \\
n & -2 n+1
\end{array}\right)\), ∀ n ∈ N.

Question 4.
Expand (3x2 + 2y)5
Solution:
Here, a = 3x2, b = 2y, n = 5.
Using binomial theorem,
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q4

Question 5.
Expand \(\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q5

Question 6.
Find third term in the expansion of \(\left(9 x^{2}-\frac{y^{3}}{6}\right)^{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q6

Question 7.
Find tenth term in the expansion of \(\left(2 x^{2}+\frac{1}{x}\right)^{12}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q7

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 8.
Find the middle term(s) in the expansion of
(i) \(\left(\frac{2 a}{3}-\frac{3}{2 a}\right)^{6}\)
Solution:
Here, a = \(\frac{2 a}{3}\), b = \(\frac{-3}{2 a}\), n = 6.
Now, n is even.
∴ \(\frac{\mathrm{n}+2}{2}=\frac{6+2}{2}=4\)
∴ Middle term is t4, for which r = 3.
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q8 (i)
∴ The Middle term is -20.

(ii) \(\left(x-\frac{1}{2 y}\right)^{10}\)
Solution:
Here, a = x, b = \(-\frac{1}{2 y}\), n = 10.
Now, n is even.
∴ \(\frac{\mathrm{n}+2}{2}=\frac{10+2}{2}=6\)
∴ Middle term is t6, for which r = 5
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q8 (ii)

(iii) (x2 + 2y2)7
Solution:
Here, a = x2, b = 2y2, n = 7.
Now, n is odd.
∴ \(\frac{\mathrm{n}+1}{2}=\frac{7+1}{2}=4, \frac{\mathrm{n}+3}{2}=\frac{7+3}{2}=5\)
∴ Middle terms are t4 and t5, for which r = 3 and r = 4 respectively.
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q8 (iii)
∴ Middle terms are 280x8y6 and 560x6y8.

(iv) \(\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{9}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q8 (iv)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q8 (iv).1

Question 9.
Find the coefficients of
(i) x6 in the expantion of \(\left(3 x^{2}-\frac{1}{3 x}\right)^{9}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q9 (i)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q9 (i).1

(ii) x60 in the expansion of \(\left(\frac{1}{x^{2}}+x^{4}\right)^{18}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q9 (ii)

Question 10.
Find the constant term in the expansion of
(i) \(\left(\frac{4 x^{2}}{3}+\frac{3}{2 x}\right)^{9}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q10 (i)

(ii) \(\left(2 x^{2}-\frac{1}{x}\right)^{12}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q10 (ii)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 11.
Prove by method of induction
(i) loga xn = n loga x, x > 0, n ∈ N
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q11 (i)

(ii) 152n-1 + 1 is divisible by 16, for all n ∈ N.
Solution:
152n-1 + 1 is divisible by 16, if and only if (152n-1 + 1) is is a multiple of 16.
Let P(n) ≡ 152n-1 + 1 = 16m, where m ∈ N.
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q11 (ii)
Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 152n-1 + 1 is divisible by 16, for all n ∈ N.

(iii) 52n – 22n is divisible by 3, for all n ∈ N.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q11 (iii)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q11 (iii).1

Question 12.
If the coefficient of x16 in the expansion of (x2 + ax)10 is 3360, find a.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q12

Question 13.
If the middle term in the expansion of \(\left(x+\frac{b}{x}\right)^{6}\) is 160, find b.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q13
∴ 160 = \(\frac{6 \times 5 \times 4 \times 3 !}{3 \times 2 \times 1 \times 3 !} \times b^{3}\)
∴ 160 = 20b3
∴ 8 = b3
∴ b = 2

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 14.
If the coefficients of x2 and x3 in theexpansion of (3 + kx)9 are equal, find k.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q14

Question 15.
If the constant term in the expansion of \(\left(x^{3}+\frac{\mathrm{k}}{x^{8}}\right)^{11}\) is 1320, find k.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q15

Question 16.
Show that there is no term containing x6 in the expansion of \(\left(x^{2}-\frac{3}{x}\right)^{11}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q16

Question 17.
Show that there is no constant term in the expansion of \(\left(2 x-\frac{x^{2}}{4}\right)^{9}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q17

Question 18.
State, first four terms in the expansion of \(\left(1-\frac{2 x}{3}\right)^{-1 / 2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q18

Question 19.
State, first four terms in the expansion of \((1-x)^{-1 / 4}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q19

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 20.
State, first three terms in the expansion of \((5+4 x)^{-1 / 2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q20

Question 21.
Using the binomial theorem, find the value of \(\sqrt[3]{995}\) upto four places of decimals.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q21

Question 22.
Find approximate value of \(\frac{1}{4.08}\) upto four places of decimals.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q22

Question 23.
Find the term independent of x in the expansion of (1 – x2) \(\left(x+\frac{2}{x}\right)^{6}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q23
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q23.1

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 24.
(a + bx) (1 – x)6 = 3 – 20x + cx2 + …, then find a, b, c.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q24

Question 25.
The 3rd term of (1 + x)n is 36x2. Find 5th term.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q25
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q25.1

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 26.
Suppose (1 + kx)n = 1 – 12x + 60x2 – …… find k and n.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q26

Maths Solutions for Class 11 State Board

Probability Distributions Class 12 Maths 2 Exercise 7.1 Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 7 Probability Distributions Ex 7.1 Questions and Answers.

12th Maths Part 2 Probability Distributions Exercise 7.1 Questions And Answers Maharashtra Board

Question 1.
Let X represent the difference between a number of heads and the number of tails when a coin is tossed 6 times. What are the possible values of X?
Solution:
When a coin is tossed 6 times, the number of heads can be 0, 1, 2, 3, 4, 5, 6.
The corresponding number of tails will be 6, 5, 4, 3, 2, 1, 0.
∴ X can take values 0 – 6, 1 – 5, 2 – 4, 3 – 3, 4 – 2, 5 – 1, 6 – 0
i.e. -6, -4, -2, 0, 2, 4, 6.
∴ X = {-6, -4, -2, 0, 2, 4, 6}.

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1

Question 2.
An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes the number of black balls drawn. What are the possible values of X?
Solution:
The urn contains 5 red and 2 black balls.
If two balls are drawn from the urn, it contains either 0 or 1 or 2 black balls.
X can take values 0, 1, 2.
∴ X = {0, 1, 2}.

Question 3.
State which of the following are not the probability mass function of a random variable. Give reasons for your answer.
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q3
Solution:
P.m.f. of random variable should satisfy the following conditions:
(a) 0 ≤ pi ≤ 1
(b) Σpi = 1.

(i)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q3.1
(a) Here 0 ≤ pi ≤ 1
(b) Σpi = 0.4 + 0.4 + 0.2 = 1
Hence, P(X) can be regarded as p.m.f. of the random variable X.

(ii)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q3.2
P(X = 3) = -0.1, i.e. Pi < 0 which does not satisfy 0 ≤ Pi ≤ 1
Hence, P(X) cannot be regarded as p.m.f. of the random variable X.

(iii)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q3.3
(a) Here 0 ≤ pi ≤ 1
(b) ∑pi = 0.1 + 0.6 + 0.3 = 1
Hence, P(X) can be regarded as p.m.f. of the random variable X.

(iv)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q3.4
Here ∑pi = 0.3 + 0.2 + 0.4 + 0 + 0.05 = 0.95 ≠ 1
Hence, P(Z) cannot be regarded as p.m.f. of the random variable Z.

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1

(v)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q3.5
Here ∑pi = 0.6 + 0.1 + 0.2 = 0.9 ≠ 1
Hence, P(Y) cannot be regarded as p.m.f. of the random variable Y.

(vi)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q3.6
(a) Here 0 ≤ pi ≤ 1
(b) ∑pi = 0.3 + 0.4 + 0.3 = 1
Hence, P(X) can be regarded as p.m.f. of the random variable X.

Question 4.
Find the probability distribution of
(i) number of heads in two tosses of a coin.
(ii) number of tails in the simultaneous tosses of three coins.
(iii) number of heads in four tosses of a coin.
Solution:
(i) For two tosses of a coin the sample space is {HH, HT, TH, TT}
Let X denote the number of heads in two tosses of a coin.
Then X can take values 0, 1, 2.
∴ P[X = 0] = P(0) = \(\frac{1}{4}\)
P[X = 1] = P(1) = \(\frac{2}{4}\) = \(\frac{1}{2}\)
P[X = 2] = P(2) = \(\frac{1}{4}\)
∴ the required probability distribution is
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q4

(ii) When three coins are tossed simultaneously, then the sample space is
{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Let X denotes the number of tails.
Then X can take the value 0, 1, 2, 3.
∴ P[X = 0] = P(0) = \(\frac{1}{8}\)
P[X = 1] = P(1) = \(\frac{3}{8}\)
P[X = 2] = P(2) = \(\frac{3}{8}\)
P[X = 3] = P(3) = \(\frac{1}{8}\)
∴ the required probability distribution is
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q4.1

(iii) When a fair coin is tossed 4 times, then the sample space is
S = {HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTHT, HTTH, THHT, THTH, TTHH, HTTT, THTT, TTHT, TTTH, TTTT}
∴ n(S) = 16
Let X denotes the number of heads.
Then X can take the value 0, 1, 2, 3, 4
When X = 0, then X = {TTTT}
∴ n(X) = 1
∴ P(X = 0) = \(\frac{n(X)}{n(S)}=\frac{1}{16}\)
When X = 1, then
X = {HTTT, THTT, TTHT, TTTH}
∴ n(X) = 4
∴ P(X = 1) = \(\frac{n(X)}{n(S)}=\frac{4}{16}=\frac{1}{4}\)
When X = 2, then
X = {HHTT, HTHT, HTTH, THHT, THTH, TTHH}
∴ n(X) = 6
∴ P(X = 2) = \(\frac{n(X)}{n(S)}=\frac{6}{16}=\frac{3}{8}\)
When X = 3, then
X = {HHHT, HHTH, HTHH, THHH}
∴ n(X) = 4
∴ P(X = 3) = \(\frac{n(X)}{n(S)}=\frac{4}{16}=\frac{1}{4}\)
When X = 4, then X = {HHHH}
∴ n(X) = 1
∴ P(X = 4) = \(\frac{n(X)}{n(S)}=\frac{1}{16}\)
∴ the probability distribution of X is as follows:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q4.2

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1

Question 5.
Find the probability distribution of a number of successes in two tosses of a die, where success is defined as a number greater than 4 appearing on at least one die.
Solution:
When a die is tossed twice, the sample space s has 6 × 6 = 36 sample points.
∴ n(S) = 36
The trial will be a success if the number on at least one die is 5 or 6.
Let X denote the number of dice on which 5 or 6 appears.
Then X can take values 0, 1, 2.
When X = 0 i.e., 5 or 6 do not appear on any of the dice, then
X = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)}
∴ n(X) = 16.
∴ P(X = 0) = \(\frac{n(X)}{n(S)}=\frac{16}{36}=\frac{4}{9}\)
When X = 1, i.e. 5 or 6 appear on exactly one of the dice, then
X = {(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (6, 1), (6, 2), (6, 3), (6, 4)}
∴ n(X) = 16
∴ P(X = 1) = \(\frac{n(X)}{n(S)}=\frac{16}{36}=\frac{4}{9}\)
When X = 2, i.e. 5 or 6 appear on both of the dice, then
X = {(5, 5), (5, 6), (6, 5), (6, 6)}
∴ n(X) = 4
∴ P(X = 2) = \(\frac{n(X)}{n(S)}=\frac{4}{36}=\frac{1}{9}\)
∴ the required probability distribution is
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q5

Question 6.
From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.
Solution:
Here, the number of defective bulbs is the random variable.
Let the number of defective bulbs be denoted by X.
∴ X can take the value 0, 1, 2, 3, 4.
Since the draws are done with replacement, therefore the four draws are independent experiments.
Total number of bulbs is 30 which include 6 defectives.
∴ P(X = 0) = P(0) = P(all 4 non-defective bulbs)
= \(\frac{24}{30} \times \frac{24}{30} \times \frac{24}{30} \times \frac{24}{30}\)
= \(\frac{256}{625}\)
P(X = 1) = P (1) = P (1 defective and 3 non-defective bulbs)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q6
P(X = 2) = P(2) = P(2 defective and 2 non-defective)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q6.1
P(X = 3) = P(3) = P(3 defectives and 1 non-defective)
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q6.2
P(X = 4) = P(4) = P(all 4 defectives)
= \(\frac{6}{30} \times \frac{6}{30} \times \frac{6}{30} \times \frac{6}{30}\)
= \(\frac{1}{625}\)
∴ the required probability distribution is
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q6.3

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1

Question 7.
A coin is biased so that the head is 3 times as likely to occur as the tail. If the coin is tossed twice. Find the probability distribution of a number of tails.
Solution:
Given a biased coin such that heads is 3 times as likely as tails.
∴ P(H) = \(\frac{3}{4}\) and P(T) = \(\frac{1}{4}\)
The coin is tossed twice.
Let X can be the random variable for the number of tails.
Then X can take the value 0, 1, 2.
∴ P(X = 0) = P(HH) = \(\frac{3}{4} \times \frac{3}{4}=\frac{9}{16}\)
P(X = 1) = P(HT, TH) = \(\frac{3}{4} \times \frac{1}{4}+\frac{1}{4} \times \frac{3}{4}=\frac{6}{16}=\frac{3}{8}\)
P(X = 2) = P(TT) = \(\frac{1}{4} \times \frac{1}{4}=\frac{1}{16}\)
∴ the required probability distribution is
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q7

Question 8.
A random variable X has the following probability distribution:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q8
Determine:
(i) k
(ii) P(X < 3) (iii) P(X > 4)
Solution:
(i) Since P (x) is a probability distribution of x,
\(\sum_{x=0}^{7} P(x)=1\)
⇒ P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) = 1
⇒ 0 + k + 2k + 2k + 3k + k2 + 2k2 + 7k2 + k = 1
⇒ 10k2 + 9k – 1 = 0
⇒ 10k2 + 10k – k – 1 = 0
⇒ 10k(k + 1) – 1(k + 1) = 0
⇒ (k + 1)(10k – 1) = 0
⇒ 10k – 1 = 0 ……..[∵ k ≠ -1]
⇒ k = \(\frac{1}{10}\)

(ii) P(X< 3) = P(0) + P(1) + P(2)
= 0 + k + 2k
= 3k
= 3(\(\frac{1}{10}\))
= \(\frac{3}{10}\)

(iii) P(0 < X < 3) = P (1) + P (2)
= k + 2k
= 3k
= 3(\(\frac{1}{10}\))
= \(\frac{3}{10}\)

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1

Question 9.
Find expected value and variance of X for the following p.m.f.:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q9
Solution:
We construct the following table to calculate E(X) and V(X):
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q9.1
From the table,
Σxipi = -0.05 and \(\Sigma x_{i}^{2} \cdot p_{i}\) = 2.25
∴ E(X) = Σxipi = -0.05
and V(X) = \(\Sigma x_{i}^{2}+p_{i}-\left(\sum x_{i}+p_{i}\right)^{2}\)
= 2.25 – (-0.05)2
= 2.25 – 0.0025
= 2.2475
Hence, E(X) = -0.05 and V(X) = 2.2475.

Question 10.
Find expected value and variance of X, where X is the number obtained on the uppermost face when a fair die is thrown.
Solution:
If a die is tossed, then the sample space for the random variable X is
S = {1, 2, 3, 4, 5, 6}
∴ P(X) = \(\frac{1}{6}\); X = 1, 2, 3, 4, 5, 6.
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q10
Hence, E(X) = 3.5 and V(X) = 2.9167.

Question 11.
Find the mean number of heads in three tosses of a fair coin.
Solution:
When three coins are tossed the sample space is {HHH, HHT, THH, HTH, HTT, THT, TTH, TTT}
∴ n(S) = 8
Let X denote the number of heads when three coins are tossed.
Then X can take values 0, 1, 2, 3
P(X = 0) = P(0) = \(\frac{1}{8}\)
P(X = 1) = P(1) = \(\frac{3}{8}\)
P(X = 2) = P(2) = \(\frac{3}{8}\)
P(X = 3) = P(3) = \(\frac{1}{8}\)
∴ mean = E(X) = ΣxiP(xi)
= \(0 \times \frac{1}{8}+1 \times \frac{3}{8}+2 \times \frac{3}{8}+3 \times \frac{1}{8}\)
= \(0+\frac{3}{8}+\frac{6}{8}+\frac{3}{8}\)
= \(\frac{12}{8}\)
= 1.5

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1

Question 12.
Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.
Solution:
When two dice are thrown, the sample space S has 6 × 6 = 36 sample points.
∴ n(S) = 36
Let X denote the number of sixes when two dice are thrown.
Then X can take values 0, 1, 2
When X = 0, then
X = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)}
∴ n(X) = 25
∴ P(X = 0) = \(\frac{n(X)}{n(S)}=\frac{25}{36}\)
When X = 1, then
X = {(1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5)}
∴ n(X) = 10
∴ P(X = 1) = \(\frac{n(X)}{n(S)}=\frac{10}{36}\)
When X = 2, then X = {(6, 6)}
∴ n(X) = 1
∴ P(X = 2) = \(\frac{n(X)}{n(S)}=\frac{1}{36}\)
∴ E(X) = ΣxiP(xi)
= \(0 \times \frac{25}{36}+1 \times \frac{10}{36}+2 \times \frac{1}{36}\)
= \(0+\frac{10}{36}+\frac{2}{36}\)
= \(\frac{1}{3}\)

Question 13.
Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers. Find E(X).
Solution:
Two numbers are chosen from the first 6 positive integers.
∴ n(S) = \({ }^{6} C_{2}=\frac{6 \times 5}{1 \times 2}\) = 15
Let X denote the larger of the two numbers.
Then X can take values 2, 3, 4, 5, 6.
When X = 2, the other positive number which is less than 2 is 1.
∴ n(X) = 1
∴ P(X = 2) = P(2) = \(\frac{n(X)}{n(S)}=\frac{1}{15}\)
When X = 3, the other positive number less than 3 can be 1 or 2 and hence can be chosen in 2 ways.
∴ n(X) = 2
P(X = 3) = P(3) = \(\frac{n(X)}{n(S)}=\frac{2}{15}\)
Similarly, P(X = 4) = P(4) = \(\frac{3}{15}\)
P(X = 5) = P(5) = \(\frac{4}{15}\)
P(X = 6) = P(6) = \(\frac{5}{15}\)
∴ E(X) = ΣxiP(xi)
= \(2 \times \frac{1}{15}+3 \times \frac{2}{15}+4 \times \frac{3}{15}+5 \times \frac{4}{15}+6 \times \frac{5}{15}\)
= \(\frac{2+6+12+20+30}{15}\)
= \(\frac{70}{15}\)
= \(\frac{14}{3}\)

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1

Question 14.
Let X denote the sum of numbers obtained when two fair dice are rolled. Find the standard deviation of X.
Solution:
If two fair dice are rolled then the sample space S of this experiment is
S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
∴ n(S) = 36
Let X denote the sum of the numbers on uppermost faces.
Then X can take the values 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q14
∴ the probability distribution of X is given by
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q14.1
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q14.2
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q14.3

Question 15.
A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. One student is selected in such a manner that each has the same chance of being chosen and the age X of the student is recorded. What is the probability distribution of the random variable X? Find mean, variance, and standard deviation of X.
Solution:
Let X denote the age of the chosen student. Then X can take values 14, 15, 16, 17, 18, 19, 20, 21.
We make a frequency table to find the number of students with age X:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q15
The chances of any student selected are equally likely.
If there are m students with age X, then P(X) = \(\frac{m}{15}\)
Using this, the following is the probability distribution of X:
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q15.1
Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1 Q15.2
Variance = V(X) = \(\Sigma x_{i}^{2}\) . P(xi) – [E(X)]2
= 312.2 – (17.53)2
= 312.2 – 307.3
= 4.9
Standard deviation = √V(X) = √4.9 = 2.21
Hence, mean = 17.53, variance = 4.9 and standard deviation = 2.21.

Maharashtra Board 12th Maths Solutions Chapter 7 Probability Distributions Ex 7.1

Question 16.
In a meeting, 70% of the member’s favour and 30% oppose a certain proposal. A member is selected at random and we take X = 0 if he opposed and X = 1 if he is in favour. Find E(X) and Var(X).
Solution:
X takes values 0 and 1.
It is given that
P(X = 0) = P(0) = 30% = \(\frac{30}{100}\) = 0.3
P(X = 1) = P(1) = 70% = \(\frac{70}{100}\) = 0.7
∴ E(X) = Σxi . P(xi) = 0 × 0.3 + 1 × 0.7 = 0.7
Also, \(\Sigma x_{i}^{2} \cdot P\left(x_{i}\right)\) = 0 × 0.3 + 1 × 0.7 = 0.7
∴ Variance = V(X) = \(\Sigma x_{i}^{2} \cdot P\left(x_{i}\right)-[E(X)]^{2}\)
= 0.7 – (0.7)2
= 0.7 – 0.49
= 0.21
Hence, E(X) = 0.7 and Var(X) = 0.21.

12th Maharashtra State Board Maths Solutions Pdf Part 2