Practice Set 4.2 Algebra 9th Standard Maths Part 1 Chapter 4 Ratio and Proportion Solutions Maharashtra Board

9th Standard Maths 1 Practice Set 4.2 Chapter 4 Ratio and Proportion Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 4.2 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 4 Ratio and Proportion.

Class 9 Maths Part 1 Practice Set 4.2 Chapter 4 Ratio and Proportion Questions With Answers Maharashtra Board

Question 1.
Using the property \(\frac { a }{ b }\) = \(\frac { ak }{ bk }\), fill in the blanks by substituting proper numbers in the following.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 1
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 2
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 3

Question 2.
Find the following ratios.
i. The ratio of radius to circumference of the circle.
ii. The ratio of circumference of circle with radius r to its area.
iii. The ratio of diagonal of a square to its side, if the length of side is 7 cm.
iv. The lengths of sides of a rectangle are 5 cm and 3.5 cm. Find the ratio of numbers denoting its perimeter to area.
Solution:
i. Let the radius of circle be r.
then, its circumference = 2πr
Ratio of radius to circumference of the circle
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 4
The ratio of radius to circumference of the circle is 1 : 2π.

ii. Let the radius of the circle is r.
∴ circumference = 2πr and area = πr2
Ratio of circumference to the area of circle
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 5
∴ The ratio of circumference of circle with radius r to its area is 2 : r.

iii. Length of side of square = 7 cm
∴ Diagonal of square = √2 x side
= √2 x 7
= 7 √2 cm
Ratio of diagonal of a square to its side
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 6
∴ The ratio of diagonal of a square to its side is √2 : 1.

iv. Length of rectangle = (l) = 5 cm,
Breadth of rectangle = (b) = 3.5 cm
Perimeter of the rectangle = 2(l + b)
= 2(5 + 3.5)
= 2 x 8.5
= 17 cm
Area of the rectangle = l x b
= 5 x 3.5
= 17.5 cm2
Ratio of numbers denoting perimeter to the area of rectangle
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 7
∴ Ratio of numbers denoting perimeter to the area of rectangle is 34 : 35.

Question 3.
Compare the following
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 8
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 9
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 10
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 11
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 12

Question 4.
Solve.
ABCD is a parallelogram. The ratio of ∠A and ∠B of this parallelogram is 5 : 4. FInd the measure of ∠B. [2 Marksl
Solution:
Ratio of ∠A and ∠B for given parallelogram is 5 : 4
Let the common multiple be x.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 13
m∠A = 5x°and m∠B=4x°
Now, m∠A + m∠B = 180° …[Adjacent angles of a parallelogram arc supplementary]
∴ 5x° + 4x°= 180°
∴ 9x° = 180°
∴ x° = 20°
∴ m∠B=4x°= 4 x 20° = 80°
∴ The measure of ∠B is 800.

ii. The ratio of present ages of Albert and Salim is 5 : 9. Five years hence ratio of their ages will be 3 : 5. Find their present ages.
Solution:
The ratio of present ages of Albert and Salim is 5 : 9
Let the common multiple be x.
∴ Present age of Albert = 5x years and
Present age of Salim = 9x years
After 5 years,
Albert’s age = (5x + 5) years and
Salim’s age = (9x + 5) years
According to the given condition,
Five years hence ratio of their ages will be 3 : 5
\(\frac{5 x+5}{9 x+5}=\frac{3}{5}\)
∴ 5(5x + 5) = 3(9x + 5)
∴ 25x + 25 = 27x + 15
∴ 25 – 15 = 27 x – 25 x
∴ 10 = 2x
∴ x = 5
∴ Present age of Albert = 5x = 5 x 5 = 25 years
Present age of Salim = 9x = 9 x 5 = 45 years
∴ The present ages of Albert and Salim are 25 years and 45 years respectively.

iii. The ratio of length and breadth of a rectangle is 3 : 1, and its perimeter is 36 cm. Find the length and breadth of the rectangle.
Solution:
The ratio of length and breadth of a rectangle is 3 : 1
Let the common multiple be x.
Length of the rectangle (l) = 3x cm
and Breadth of the rectangle (b) = x cm
Given, perimeter of the rectangle = 36 cm
Since, Perimeter of the rectangle = 2(l + b)
∴ 36 = 2(3x + x)
∴ 36 = 2(4x)
∴ 36 = 8x
∴ \(x=\frac{36}{8}=\frac{9}{2}=4.5\)
Length of the rectangle = 3x = 3 x 4.5 = 13.5 cm
∴ The length of the rectangle is 13.5 cm and its breadth is 4.5 cm.

iv. The ratio of two numbers is 31 : 23 and their sum is 216. Find these numbers.
Solution:
The ratio of two numbers is 31 : 23
Let the common multiple be x.
∴ First number = 31x and
Second number = 23x
According to the given condition,
Sum of the numbers is 216
∴ 31x + 23x = 216
∴ 54x = 216
∴ x = 4
∴ First number = 31x = 31 x 4 = 124
Second number = 23x = 23 x 4 = 92
∴ The two numbers are 124 and 92.

v. If the product of two numbers is 360 and their ratio is 10 : 9, then find the numbers.
Solution:
Ratio of two numbers is 10 : 9
Let the common multiple be x.
∴ First number = 10x and
Second number = 9x
According to the given condition,
Product of two numbers is 360
∴ (10x) (9x) = 360
∴ 90x2 = 360
∴ x2 = 4
∴ x = 2 …. [Taking positive square root on both sides]
∴ First number = 10x = 10x2 = 20
Second number = 9x = 9x2 = 18
∴ The two numbers are 20 and 18.

Question 5.
If a : b = 3 : 1 and b : c = 5 : 1, then find the value of [3 Marks each]
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 14
Solution:
Given, a : b = 3 : 1
∴ \(\frac { a }{ b }\) = \(\frac { 3 }{ 1 }\)
∴ a = 3b ….(i)
and b : c = 5 : 1
∴ \(\frac { b }{ c }\) = \(\frac { 5 }{ 1 }\)
b = 5c …..(ii)
Substituting (ii) in (i),
we get a = 3(5c)
∴ a = 15c …(iii)
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 15

Ratio and Proportion 9th Class Practice Set 4.1 Question 6. If \(\sqrt{0.04 \times 0.4 \times a}=0.4 \times 0.04 \times \sqrt{b}\) , then find the ratio \(\frac { a }{ b }\).
Solution:
\(\sqrt{0.04 \times 0.4 \times a}=0.4 \times 0.04 \times \sqrt{b}\) … [Given]
∴ 0.04 x 0.4 x a = (0.4)2 x (0.04)2 x b … [Squaring both sides]
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 16

9th Algebra Practice Set 4.2 Question 7. (x + 3) : (x + 11) = (x – 2) : (x + 1), then find the value of x.
Solution:
(x + 3) : (x + 11) = (x- 2) : (x+ 1)
\(\quad \frac{x+3}{x+11}=\frac{x-2}{x+1}\)
∴ (x + 3)(x +1) = (x – 2)(x + 11)
∴ x(x +1) + 3(x + 1) = x(x + 11) – 2(x + 11)
∴ x2 + x + 3x + 3 = x2 + 1 lx – 2x – 22
∴ x2 + 4x + 3 = x2 + 9x – 22
∴ 4x + 3 = 9x – 22
∴ 3 + 22 = 9x – 4x
∴ 25 = 5x
∴ x = 5

Class 9 Maths Solution Maharashtra Board 

Practice Set 4.1 Algebra 9th Standard Maths Part 1 Chapter 4 Ratio and Proportion Solutions Maharashtra Board

9th Standard Maths 1 Practice Set 4.1 Chapter 4 Ratio and Proportion Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 4.1 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 4 Ratio and Proportion.

Class 9 Maths Part 1 Practice Set 4.1 Chapter 4 Ratio and Proportion Questions With Answers Maharashtra Board

Question 1.
From the following pairs of numbers, find the reduced form of ratio of first number to second number.
i. 72,60
ii. 38,57
iii. 52,78
Solution:
i. 72, 60
\(\text { Ratio }=\frac{72}{60}=\frac{12 \times 6}{12 \times 5}=\frac{6}{5}=6 : 5\)

ii. 38, 57
\(\text { Ratio }=\frac{38}{57}=\frac{19 \times 2}{19 \times 3}=\frac{2}{3}=2 : 3\)

iii. 52, 78
\(\text { Ratio }=\frac{52}{78}=\frac{26 \times 2}{26 \times 3}=\frac{2}{3}=2 : 3\)

Question 2.
Find the reduced form of the ratio of the first quantity to second quantity.
i. ₹ 700, ₹ 308
ii. ₹ 14, ₹ 12 and 40 paise
iii. 5 litres, 2500 ml
iv. 3 years 4 months, 5 years 8 months
v. 3.8 kg, 1900 gm
vi. 7 minutes 20 seconds, 5 minutes 6 seconds
Solution:
i. ₹ 700, ₹ 308
\( \text { Ratio }=\frac{700}{308}=\frac{28 \times 25}{28 \times 11}=\frac{25}{11}=25 : 11\)

ii. ₹ 14, ₹12 and 40 paise
₹ 14 = 14 x 100 paise = 1400 paise
₹ 12 and 40 paise = 12 x 100 paise + 40 paise
= (1200 + 40) paise
= 1240 paise
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 1

iii. 5 litres, 2500 ml
5 litres = 5 x 1000 ml = 5000ml
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 2

iv. 3 years 4 months, 5 years 8 months
3 years 4 months = 3×12 months + 4 months
= (36 + 4) months
= 40 months
5 years 8 months = 5 x 12 months + 8 months
= (60 + 8) months
= 68 months
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 3

v. 3.8 kg, 1900 gm
3.8 kg = 3.8 x 1000 gm = 3800 gm
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 4

vi. 7 minutes 20 seconds, 5 minutes 6 seconds
7 minutes 20 seconds = 7 x 60 seconds + 20 seconds
= (420 + 20) seconds
= 440 seconds
5 minutes 6 seconds = 5 x 60 seconds + 6 seconds
= (300 + 6) seconds
= 306 seconds
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 5

Question 3.
Express the following percentages as ratios
i. 75 : 100
ii. 44 : 100
iii. 6.25%
iv. 52: 100
v. 0.64%
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 6

Question 4.
Three persons can build a small house in 8 days. To build the same house in 6 days, how many persons are required?
Solution:
Let the persons required to build a house in 6 days be x.
Days required to build a house and number of persons are in inverse proportion.
∴ 6 × x = 8 × 3
∴ 6 x = 24
∴ x = 4
∴ 4 persons are required to build the house in 6 days.

Question 5.
Convert the following ratios into percentages.
i. 15 : 25
ii. 47 : 50
iii. \(\frac { 7 }{ 10 }\)
iv. \(\frac { 546 }{ 600 }\)
v. \(\frac { 7 }{ 16 }\)
Solution:
Let 15 : 25 = x %
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 7
∴ 15 : 25 = 60 %

ii. Let 47 : 50 = x%
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 8
∴ 47 : 50 = 94 %

iii. Let \(\frac { 7 }{ 10 }\) = x %
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 9

iv. Let \(\frac { 546 }{ 600 }\) = x %
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 10

v. Let \(\frac { 7 }{ 16 }\) = x %
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 11

Question 6.
The ratio of ages of Abha and her mother is 2 : 5. At the time of Abha’s birth her mothers age was 27 years. Find the present ages of Abha and her mother.
Solution:
The ratio of ages of Abha and her mother is 2 : 5.
Let the common multiple be x.
∴ Present age of Abha = 2x years and
Present age of Abha’s mother = 5x years
According to the given condition, the age of Abha’s mother at the time of Abha’s birth = 27 years
∴ 5x – 2x = 27
∴ 3x = 27
∴ x = 9
∴ Present age of Abha = 2x = 2 x 9 = 18 years
∴ Present age of Abha’s mother = 5x =5 x 9 = 45 years
The present ages of Abha and her mother are 18 years and 45 years respectively.

Question 7.
Present ages of Vatsala and Sara are 14 years and 10 years respectively. After how many years the ratio of their ages will become 5 : 4?
Solution:
Present age of Vatsala = 14 years
Present age of Sara = 10 years
After x years,
Vatsala’s age = (14 + x) years
Sara’s age = (10 + x) years
According to the given condition,
After x years the ratio of their ages will become 5 : 4
∴ \(\frac { 14 + x }{ 10 + x }\) = \(\frac { 5 }{ 4 }\)
∴ 4(14 + x) = 5(10 + x)
∴ 56 + 4x = 50 + 5x
∴ 56 – 50 = 5x – 4x
∴ 6 = x
∴ x = 6
∴ After 6 years, the ratio of their ages will become 5 : 4.

Question 8.
The ratio of present ages of Rehana and her mother is 2 : 7. After 2 years, the ratio of their ages will be 1 : 3. What is Rehana’s present age ?
Solution:
The ratio of present ages of Rehana and her mother is 2 : 7
Let the common multiple be x.
∴ Present age of Rehana = 2x years and Present age of Rehana’s mother = 7x years
After 2 years,
Rehana’s age = (2x + 2) years
Age of Rehana’s mother = (7x + 2) years
According to the given condition,
After 2 years, the ratio of their ages will be 1 : 3
∴ \(\frac { 2x + 2 }{ 7x + 2 }\) = \(\frac { 1 }{ 3 }\)
∴ 3(2x + 2) = 1(7x + 2)
∴ 6x + 6 = 7x + 2
∴ 6 – 2 = 7x – 6x
∴ 4 = x
∴ x = 4
∴ Rehana’s present age = 2x = 2 x 4 = 8 years
∴ Rehana’s present age is 8 years.

Class 9 Maths Solution Maharashtra Board 

Problem Set 3 Algebra 9th Standard Maths Part 1 Chapter 3 Polynomials Solutions Maharashtra Board

9th Standard Maths 1 Problem Set 3 Chapter 3 Polynomials Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Problem Set 3 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.

Class 9 Maths Part 1 Problem Set 3 Chapter 3 Polynomials Questions With Answers Maharashtra Board

Question 1.
Write the correct alternative answer for each of the following questions.

i. Which of the following is a polynomial?
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Problem Set 3 1
Answer:
(D) √2x² + \(\frac { 1 }{ 2 }\)

ii. What is the degree of the polynomial √7 ?
(A) \(\frac { 1 }{ 2 }\)
(B) 5
(C) 2
(D) 0
Answer:
(D) 0

iii. What is the degree of the polynomial ?
(A) 0
(B) 1
(C) undefined
(D) any real number
Answer:
(C) undefined

iv. What is the degree of the polynomial 2x2 + 5xsup>3 + 7?
(A) 3
(B) 2
(C) 5
(D) 7
Answer:
(A) 3

v. What is the coefficient form of x3 – 1 ?
(A) (1, -1)
(B) (3, -1)
(C) (1, 0, 0, -1)
(D) (1, 3, -1)
Answer:
(C) (1, 0, 0, -1)

vi. p(x) = x2 – x + 3, then p (7√7) = ?
(A) 3
(B) 7√7
(C) 42√7+3
(D) 49√7
Answer:
(D) 49√7

vii. When x = – 1, what is the value of the polynomial 2x3 + 2x ?
(A) 4
(B) 2
(C) -2
(D) -4
Answer:
(A) 4

viii. If x – 1 is a factor of the polynomial 3x2 + mx, then find the value of m.
(A) 2
(B) -2
(C) -3
(D) 3
Answer:
(C) -3

ix. Multiply (x2 – 3) (2x – 7x3 + 4) and write the degree of the product.
(A) 5
(B) 3
(C) 2
(D) 0
Answer:
(A) 5

x. Which is the following is a linear polynomials?
(A)  x + 5
(B)  x2 + 5
(C) x3 + 5
(D) x4 + 5
Answer:
(A)  x + 5

Hints:
v. x3 – 1 = x3 + 0x2 + 0x – 1

vi. p(7√ 7) = (7√ 7)2 (7√ 7) (7√ 7) + 3
= 3

vii. p(-1) = 2(-1)3 + 2(-1)
= -2 – 2 = -4

vii. p(1) = 0
∴ 3(1)2 + m(1) = 0
∴ 3 + m =0
∴ m = -3

ix. Here, degree of first polynomial = 2 and
degree of second polynomial 3
∴ Degree of polynomial obtained by multiplication = 2 + 3 = 5

Question 2.
Write the degree of the polynomial for each of the following.
i. 5 + 3x4
ii. 7
iii. ax7 + bx9 (a, b are constants)
Answer:
i. 5 + 3x4
Here, the highest power of x is 4.
∴Degree of the polynomial = 4

ii. 7 = 7x°
∴ Degree of the polynomial = 0

iii. ax7 + bx9
Here, the highest power ofx is 9.
∴Degree of the polynomial = 9

Question 3.
Write the following polynomials in standard form. [1 Mark each]
i. 4x2 + 7x4 – x3 – x + 9
ii. p + 2p3 + 10p2 + 5p4 – 8
Answer:
i. 7x4 – x3 + 4x2 – x + 9
ii. 5p4 + 2p3 + 10p2 + p – 8

Question 4.
Write the following polynomial in coefficient form.
i. x4 + 16
ii. m5 + 2m2 + 3m+15
Answer:
i. x4 + 16
Index form = x4 + 0x3 + 0x2 + 0x + 16
∴ Coefficient form of the polynomial = (1,0,0,0,16)

ii. m5 + 2m2 + 3m + 15
Index form = m5 + 0m4 + 0m3 + 2m2 + 3m + 15
∴ Coefficient form of the polynomial = (1, 0, 0, 2, 3, 15)

Question 5.
Write the index form of the polynomial using variable x from its coefficient form.
i. (3, -2, 0, 7, 18)
ii. (6, 1, 0, 7)
iii. (4, 5, -3, 0)
Answer:
i. Number of coefficients = 5
∴ Degree = 5 – 1 = 4
∴Index form = 3x4 – 2x3 + 0x2 + 7x + 18

ii. Number of coefficients = 4
∴Degree = 4 – 1 = 3
∴ Index form = 6x3 + x2 + 0x + 7

iii. Number of coefficients = 4
∴ Degree = 4 – 1 = 3
∴ Index form = 4x3 + 5x2 – 3x + 0

Question 6.
Add the following polynomials.
i. 7x4 – 2x3 + x + 10;
3x4 + 15x3 + 9x2 – 8x + 2
ii. 3p3q + 2p2q + 7;
2p2q + 4pq – 2p3q
Solution:
i. (7x4 – 2x3 + x + 10) + (3x4 + 15x3 + 9x2 – 8x + 2)
= 7x4 – 2x3 + x + 10 + 3x4 + 15x3 + 9x2 – 8x + 2
= 7x4 + 3x4 – 2x3 + 1 5x3 + 9x2 + x – 8x + 10 + 2
= 10x4 + 13x3 + 9x2 – 7x + 12

ii. (3p3q + 2p2q + 7) + (2p2q + 4pq – 2p3q)
= 3p3q + 2p2q + 7 + 2p2q + 4pq – 2p3q
= 3p3q – 2p3q + 2p2q + 2p2q + 4pq + 7
= p3q + 4p2q + 4pq + 7

Question 7.
Subtract the second polynomial from the first.
i. 5x2 – 2y + 9 ; 3x2 + 5y – 7
ii. 2x2 + 3x + 5 ; x2 – 2x + 3
Solution:
i. (5x2 – 2y + 9) – (3x2 + 5y – 7)
= 5x2 – 2y+ 9 – 3x2 – 5y + 1
= 5x2 – 3x2 – 2y – 5y + 9 + 7
= 2x2 – 1y + 16

ii. (2x2+ 3x + 5) – (x2 – 2x + 3)
= 2x2 + 3x + 5 – x2 + 2x – 3
= 2x2 – x2 + 3x + 2x + 5 – 3
= x2 + 5x + 2

Question 8.
Multiply the following polynomials.
i. (m3 – 2m + 3) (m4 – 2m2 + 3m + 2)
ii. (5m3 – 2) (m2 – m + 3)
Solution:
i. (m3 – 2m + 3) (m4 – 2m2 + 3m + 2)
= m3(m4 – 2m2 + 3m + 2) – 2m(m4 – 2m2 + 3m + 2) + 3(m4 – 2m2 + 3m + 2)
= m7 – 2m5 + 3m4 + 2m3 – 2m5 + 4m3 – 6m2 – 4m + 3m4 – 6m2 + 9m + 6
= m7 – 2m5 – 2m5 + 3m4 + 3m4 + 2m3 + 4m3 – 6m2 – 6m2 – 4m + 9m + 6
= m7 – 4m5 + 6m4 + 6m3 – 12m2 + 5m + 6

ii. (5m3 – 2) (m2 – m + 3)
= 5m3(m2 – m + 3) – 2(m2 – m + 3)
= 5m5 – 5m4 + 15m3 – 2m2 + 2m – 6

Question 9.
Divide polynomial 3x3 – 8x2 + x + 7 by x – 3 using synthetic method and write the quotient and remainder.
Solution:
Dividend = 3x3 – 8x2 + x + 7
∴ Coefficient form of dividend = (3, – 8, 1,7)
Divisor = x – 3
∴ Opposite of – 3 is 3
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Problem Set 3 2
Coefficient form of quotient = (3, 1,4)
∴ Quotient = 3x2 + x + 4 and
Remainder =19

Question 10.
For which value of m, x + 3 is the factor of the polynomial x3 – 2mx + 21?
Solution:
Here, p(x) = x3 – 2mx + 21
(x + 3) is a factor of x3 – 2mx + 21.
∴ By factor theorem,
Remainder = 0
∴ P(- 3) = 0
p(x) = x3 – 2mx + 21
∴ p(-3) = (-3)3 – 2(m)(-3) + 21
∴ 0 = – 27 + 6m + 21
∴ 6 + 6m = 0
∴ 6m = 6
∴ m = 1
∴ x + 3 is the factor of x3 – 2mx + 21 for m = 1.

Question 11.
At the end of the year 2016, the population of villages Kovad, Varud, Chikhali is 5x2 – 3y2, 7y2 + 2xy and 9x2 + 4xy respectively. At the beginning of the year 2017, x2 + xy – y2, 5xy and 3x2 + xy persons from each of the three villages respectively went to another village for education, then what is the remaining total population of these three villages ?
Solution:
Total population of villages at the end of 2016 = (5x2 – 3y2) + (7y2 + 2xy) + (9x2 + 4xy)
= 5x2 + 9x2 – 3y2 + 7y2 + 2xy + 4xy
= 14x2 + 4y2 + 6xy …….(i)
Total number of persons who went to other village at the beginning of 2017 = (x2 + xy – y2) + (5xy) + (3x2 + xy)
= x2 + 3x2 – y2 + xy + 5xy + xy
= 4x2 – y2 + 7xy … (ii)
Remaining total population of villages = Total population at the end of 2016 – total number of persons who went to other village at the beginning of 2017
= 14x2 + 4y2 + 6xy – (4x2 – y2 + 7xy) … [From (i) and (ii)]
= 14x2 + 4y2 + 6xy – 4x2 + y2 – 7xy
= 14x2 – 4x2 + 4y2 + y2 + 6xy – 7xy = 1
= 10x2 + 5y2 – xy
∴ The remaining total population of the three villages is 10x2 + 5y2 – xy.

Question 12.
Polynomials bx2 + x + 5 and bx3 – 2x + 5 are divided by polynomial x – 3 and the remainders are m and n respectively. If m – n = 0, then find the value of b.
Solution:
When polynomial bx2 + x + 5 is divided by (x – 3), the remainder is m.
∴ By remainder theorem,
Remainder = p(3) = m
p(x) = bx2 + x + 5
∴ p(3) = b(3)2 + 3 + 5
∴m = b(9) + 8
m = 9b + 8 …(i)
When polynomial bx3 – 2x + 5 is divided by x – 3 the remainder is n
∴ remainder = p(3) = n
p(x) = bx3 – 2x + 5
∴ P(3)= b(3)3 – 2(3) + 5
∴ n = b(27) – 6 + 5
∴ n = 27b – 1 …(ii)
Now, m – n = 0 …[Given]
∴ m = n
∴ 9b + 8 = 27b – 1 …[From (i) and (ii)]
∴ 8 + 1 = 27b – 9b
∴ 9 = 18b
∴ b = \(\frac { 1 }{ 2 }\)

Question 13.
Simplify.
(8m2 + 3m – 6) – (9m – 7) + (3m2 – 2m + 4)
Solution:
(8m2 + 3m – 6) – (9m – 7) + (3m2 – 2m + 4)
= 8m2 + 3m – 6 – 9m + 7 + 3m2 – 2m + 4
= 8m2 + 3m2 + 3m – 9m – 2m – 6 + 7 + 4
= 11m2 – 8m + 5

Question 14.
Which polynomial is to be subtracted from x2 + 13x + 7 to get the polynomial 3x2 + 5x – 4?
Solution:
Let the required polynomial be A.
∴ (x2 + 13x + 7) – A = 3x2 + 5x – 4
∴ A = (x2 + 13x + 7) – (3x2 + 5x – 4)
= x2 + 13x + 7 – 3x2 – 5x + 4
= x2 – 3x2 + 13x – 5x + 7+4
= -2x2 + 8x + 11
∴ – 2x2 + 8x + 11 must be subtracted from x2 + 13x + 7 to get 3x2 + 5x – 4.

Question 15.
Which polynomial is to be added to 4m + 2n + 3 to get the polynomial 6m + 3n + 10?
Solution:
Let the required polynomial be A.
∴ (4m + 2n + 3) + A = 6m + 3n + 10
∴ A = 6m + 3n + 10 – (4m + 2n + 3)
= 6m + 3n + 10 – 4m – 2n – 3
= 6m – 4m + 3n – 2n + 10 – 3
= 2m + n + 7
∴ 2m + n + 7 must be added to 4m + 2n + 3 to get 6m + 3n + 10.

Question 1.
Read the following passage, write the appropriate amount in the boxes and discuss.
Govind, who is a dry land farmer from Shiralas has a 5 acre field. His family includes his wife, two children and his old mother. He borrowed one lakh twenty five thousand rupees from the bank for one year as agricultural loan at 10 p.c.p.a. He cultivated soyabean in x acres and cotton and tur in y acres. The expenditure he incurred was as follows :
He spent ₹10,000 on seeds. The expenses for fertilizers and pesticides for the soyabean crop was ₹ 2000x and ₹ 4000x2 were spent on wages and cultivation of land. He spent ₹ 8000y on fertilizers and pesticides and ₹ 9000y2 for wages and cultivation of land for the cotton and tur crops.

Let us write the total expenditure on all the crops by using variables x and y.
₹ 10000 + 2000x + 4000×2 + 8000y + 9000y2
He harvested 5x2 quintals soyabean and sold it at ₹ 2800 per quintal. The cotton crop yield was \(\frac { 5 }{ 3 }\) y2 quintals which fetched ₹ 5000 per quintal.
The tur crop yield was 4y quintals and was sold at ₹ 4000 per quintal. Write the total income in rupees that was obtained by selling the entire farm produce, with the help of an expression using variables x and y. (Textbook pg. no. 44)
Answer:
Total income = income on soyabean crop + income on cotton crop + income on tur crop
= ₹ (5x2 x 2800) + ₹(\(\frac { 5 }{ 3 }\) y2 x 5000) + ₹ (4y x 4000)
= ₹ ( 14000x2 + \(\frac { 25000 }{ 3 }\)y2 + 16000y)

Question 2.
We have seen the example of expenditure and income (in terms of polynomials) of Govind who is a dry land farmer. He has borrowed rupees one lakh twenty-five thousand from the bank as an agriculture loan and repaid the said loan at 10 p.c.p.a. He had spent ₹ 10,000 on seeds. The expenses on soyabean crop was ₹ 2000x for fertilizers and pesticides and ₹ 4000x2 was spent on wages and cultivation. He spent ₹ 8000y on fertilizers and pesticides and ₹9000y2 on cultivation and wages for cotton and tur crop.
His total income was
₹ (14000x2 + \(\frac { 25000 }{ 3 }\)y2 + 16000y)
By taking x = 2, y = 3 write the income expenditure account of Govind’s farming. (Textbook pg. no. 52)
Solution:
–           Credit (Income)
₹ 1,25,000   Bank loan
₹ 56000      Income from soyabean
₹ 75000      Income from cotton
₹ 48000      Income from tur
₹ 304000     Total income

–                     Debit (Expenses)
₹ 1,37,000       loan paid with interest for seeds
₹ 10000          For seeds
₹ 4000            Fertilizers and pesticides for soyabean
₹ 16000         Wages and cultivation charges for soyabean
₹ 24000          Fertilizers and pesticides for cotton & tur
₹ 81000         Wages and cultivation charges for cotton & tur
₹ 272000       Total expenditure

Maharashtra State Board 9th Maths Solution 

Practice Set 2.5 Algebra 9th Standard Maths Part 1 Chapter 2 Real Numbers Solutions Maharashtra Board

9th Standard Maths 1 Practice Set 2.5 Chapter 2 Real Numbers Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 2.5 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 2 Real Numbers.

Class 9 Maths Part 1 Practice Set 2.5 Chapter 2 Real Numbers Questions With Answers Maharashtra Board

Question 1.
Find the value.
i. | 15 – 2|
ii. | 4 – 9|
iii. | 7| x | -4|
Solution:
i. |15 – 2| = |13| = 13
ii. |4 – 9| = |-5| = 5
iii. |7| x |- 4| = 7 x 4 = 28

Question 2.
Solve.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.5 1
Solution:
i. |3x – 5| = 1
∴ 3x – 5 = 1 or 3x – 5 = -1
∴ 3x = 1 + 5 or 3x = -1 + 5
∴ 3x = 6 or 3x = 4
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.5 2

ii. |7 – 2x| = 5
∴ 7 – 2x = 5 or 7 – 2x = -5
∴ 7 – 5 = 2x or 7 + 5 = 2x
∴ 2x = 2 or 2x = 12
∴ x = \(\frac { 2 }{ 2 }\) or x = \(\frac { 12 }{ 2 }\)
∴ x = 1 or x = 6

Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.5 3
∴ 8 – x = 10 or 8 – x = -10 .. [Multiplying both the sides by 2]
∴ 8 – 10 = x or 8 + 10 = x
∴ x = -2 or x = 18

Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.5 4

Maths Solution Class 9 Maharashtra Board 

Practice Set 2.4 Algebra 9th Standard Maths Part 1 Chapter 2 Real Numbers Solutions Maharashtra Board

9th Standard Maths 1 Practice Set 2.4 Chapter 2 Real Numbers Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 2.4 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 2 Real Numbers.

Class 9 Maths Part 1 Practice Set 2.4 Chapter 2 Real Numbers Questions With Answers Maharashtra Board

Question 1.
Multiply.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 1
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 2

Question 2.
Rationalize the denominator.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 3
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 4
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 5
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 6
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 7

Maths Solution Class 9 Maharashtra Board 

Practice Set 3.6 Algebra 9th Standard Maths Part 1 Chapter 3 Polynomials Solutions Maharashtra Board

9th Standard Maths 1 Practice Set 3.6 Chapter 3 Polynomials Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 3.6 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.

Class 9 Maths Part 1 Practice Set 3.6 Chapter 3 Polynomials Questions With Answers Maharashtra Board

Question 1.
Find the factors of the polynomials given below:
i. 2x2 + x – 1
ii. 2m2 + 5m – 3
iii. 12x2 + 61x + 77
iv. 3y2 – 2y – 1
v. √3x2 + 4x + √3
vi. \(\frac { 1 }{ 2 }\)x2 – 3x + 4
Solution:
i. 2x2 + x – 1
= 2x2 + 2x – x – 1
= 2x(x + 1)- 1(x + 1)
= (x + 1)(2x – 1)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 1

ii. 2m2 + 5m – 3
= 2m2 + 6m – m – 3
= 2m(m + 3) – 1(m + 3)
= (m + 3)(2m – 1)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 2

iii. 12x2 + 61x + 77
= 12x2 + 28x + 33x + 77
= 4x(3x + 7) 4 + 11(3x + 7)
= (3x + 7)(4x + 11)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 3

iv. 3y2 – 2y – 1
= 3y2 – 3y + y – 1
= 3y(y – 1) + 1 (y – 1)
= (y – 1)(3y + 1)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 4

v. √3×2 + 4x + √3
= √3×2 + 3x + x + √3
= √3×2 + √3 x √3x + x + √3
= √3x(x + √3) + 1 ( x + √3 )
= (x + √3)(√3x + 1)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 5

vi. \(\frac { 1 }{ 2 }\) x2 – 3x + 4
= \(\frac { 1 }{ 2 }\) x2 – 2x – x + 4
= \(\frac{1}{2} x^{2}-\frac{2 \times 2}{2} x-x+4\)
= \(\frac { 1 }{ 2 }\) x(x – 4) – 1 (x – 4)
= (x – 4) (\(\frac { 1 }{ 2 }\) x – 1)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 6

Alternate method
\(\frac { 1 }{ 2 }\) x2 – 3x + 4 = \(\frac { 1 }{ 2 }\) (x2 – 6x + 8)
= \(\frac { 1 }{ 2 }\) (x2 – 4x – 2x + 8)
= \(\frac { 1 }{ 2 }\) [x(x – 4) – 2(x – 4)]
= \(\frac { 1 }{ 2 }\) (x – 2)(x – 4)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 7

Question 2.
Factorize the following polynomials.
i. (x2 – x)2 – 8(x2 – x) + 12
iii. (x2 – 6x)2 – 8(x2 – 6x + 8) – 64
v. (y + 2) (y – 3) (y + 8) (y + 3) + 56
vii. (x – 3) (x – 4)2 (x – 5) – 6
Solution:
i. (x2 – x)2 – 8(x2 – x) + 12
= m2 – 8m + 12 …[Putting x2 – x = m]
= m2 – 6m – 2m + 12
= m(m – 6) – 2(m – 6)
= (m – 6)(m – 2)
= (x2 – x- 6) (x2 – x- 2) …[Replacing m = x2 -x]
= (x2 – 3x + 2x – 6) (x2 – 2x + x – 2)
= [x(x – 3) + 2(x – 3)] [x(x – 2) + 1 (x-2)]
= (x – 3) (x + 2) (x – 2) (x + 1)

ii. (x – 5)2 – (5x – 25) – 24
= (x – 5)2 – (5x – 25) – 24
= (x – 5)2 – 5(x – 5) – 24
= m2 – 5m – 24 … [Putting x – 5 = m]
= m2 – 8m + 3m – 24
= m(m – 8) + 3(m – 8)
= (m – 8) (m + 3)
= (x – 5 – 8) (x – 5 + 3) … [Replacing m = x – 5]
= (x – 13) (x – 2)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 8

iii. (x2 – 6x)2 – 8(x2 – 6x + 8) – 64
= m2 – 8(m + 8)-64 …[Putting x2 – 6x = m]
= m2 – 8m – 64 – 64
= m2 – 8m – 128
= m2 – 16m + 8m- 128
= m(m – 16) + 8(m – 16)
= (m – 16)(m + 8)
= (x2 – 6x – 16) (x2 – 6x + 8) … [Replacing m = x2 – 6x]
= (x2 – 8x + 2x – 16) (x2 – 4x – 2x + 8)
= [x(x – 8) + 2(x – 8)] [x(x – 4) – 2(x – 4)]
= (x – 8) (x + 2) (x – 4) (x – 2)

iv. (x2– 2x + 3) (x2 – 2x + 5) – 35
= (m + 3) (m + 5) – 35 … [Putting x2 – 2x = m]
= m (m + 5) + 3(m + 5) – 35
= m2 + 5m + 3m + 15 – 35
= m2 + 8m – 20
= m2 + 10m – 2m – 20
= m(m + 10) – 2(m + 10)
= (m + 10) (m – 2)
= (x2 – 2x + 10) (x2 – 2x – 2) … [Replacing m = x2 – 2x]
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 9

v. (y + 2) (y – 3) (y + 8) (y + 3) + 56
= (y + 2)(y + 3)(y – 3)(y + 8) + 56
= (y2 + 3y + 2y + 6) (y2 + 8y – 3y – 24) + 56
= (y2 + 5y + 6) (y2 + 5y – 24) + 56
= (m + 6) (m – 24) + 56 … [Putting y2 + 5y = m]
= m (m – 24) + 6 (m – 24) + 56
= m2 – 24m + 6m – 144 + 56
= m2 – 18m – 88
= m2 – 22m + 4m – 88
= m(m – 22) + 4(m – 22)
= (m – 22) (m + 4)
= (y2 + 5y – 22)(y2 + 5y + 4) … [Replacing m = y2 + 5y]
= (y2 + 5y – 22) (y2 + 4y + y + 4)
= (y2 + 5y – 22) [y(y + 4) + 1(y + 4)]
= (y2 + 5y – 22) (y + 4) (y + 1)

vi. (y2 + 5y) (y2 + 5y – 2) – 24
= (m)(m – 2) – 24 … [Putting y2 + 5y = m]
= m2 – 2m – 24
= m2 – 6m + 4m – 24
= m(m – 6) + 4(m – 6)
= (m – 6) (m + 4)
= (y2 + 5y – 6) (y2 + 5y + 4) … [Replacing m = y2 + 5y]
= (y2 + 6y – y – 6) (y2 + 4y + y + 4)
= [y(y + 6) – 1(y + 6)] [y(y + 4) + 1(y + 4)]
= (y + 6) (y – 1) (y + 4) (y + 1)

vii. (x – 3) (x – 4)2 (x – 5) – 6
= (x – 3) (x – 5) (x – 4)2 – 6
= (x2 – 5x – 3x + 15) (x2 – 8x + 16) – 6
= (x2 – 8x + 15) (x2 – 8x + 16) – 6
= (m + 15) (m+ 16) – 6 … [Putting x2 – 8x = m]
= m (m + 16) + 15 (m + 16) – 6
= m2 + 16m + 15m + 240 – 6
= m2 + 31m + 234
= m2 + 18m + 13m + 234
= m(m + 18) + 13(m + 18)
= (m + 18) (m + 13)
= (x2 – 8x + 18) (x2 – 8x + 13) … [Replacing m = x2 – 8x]

Maharashtra State Board 9th Maths Solution 

Practice Set 3.5 Algebra 9th Standard Maths Part 1 Chapter 3 Polynomials Solutions Maharashtra Board

9th Standard Maths 1 Practice Set 3.5 Chapter 3 Polynomials Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 3.5 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.

Class 9 Maths Part 1 Practice Set 3.5 Chapter 3 Polynomials Questions With Answers Maharashtra Board

Question 1.
Find the value of the polynomial 2x – 2x3 + 7 using given values for x.
i. x = 3
ii. x = -1
iii. x = 0
Solution:
i. p(x) = 2x – 2x3 + 7
Put x = 3 in the given polynomial.
∴ p(3) = 2(3) – 2(3)3 + 7
= 6 – 2 x 27 + 7
= 6 – 54 + 7
∴ P(3) = – 41

ii. p(x) = 2x – 2x3 + 7
Put x = -1 in the given polynomial.
∴ p(- 1) = 2(- 1) – 2(-1)3 + 7
= – 2 – 2(-1) + 7
= -2 + 2 + 7
∴ p(-1) = 7

iii. p(x) = 2x – 2x3 + 7
Put x = 0 in the given polynomial.
∴ p(0) = 2(0) – 2(0)3 + 7
= 0 – 0 + 7
∴ P(0) = 7

Question 2.
For each of the following polynomial, find p(1), p(0) and p(- 2).
i. p(x) = x3
ii. p(y) = y2 – 2y + 5
ii. p(y) = x4 – 2x2 + x
Solution:
i. p(x) = x3
∴ p(1) = 13 = 1
p(x) = x3
∴ p(0) = 03 = 0
p(x) = x3
∴ p(-2) = (-2)3 = -8

ii. p(y) = y2 – 2y + 5
∴ p(1) = 12 – 2(1) + 5
= 1 – 2 + 5
∴ P(1) = 4
p(y) = y2 – 2y + 5
∴ p(0) = 02 – 2(0) + 5
= 0 – 0 + 5
∴ p(0) = 5
p(y) = y2 – 2y + 5
∴ p(- 2) = (- 2)2 – 2(- 2) + 5
= 4 + 4 + 5
∴ p(-2) = 13

iii. p(x) = x4 – 2x2 – x
∴ p(1) = (1)4 – 2(1)2 – 1
= 1 – 2 – 1
∴ p(1) = -2
∴ p(x) = x4 – 2x2 – x
∴ p(0) = (0)4 – 2(0)2 – 0
= 0 – 0 – 0
∴ p(0) = 0
p(x) = x4 – 2x2 – x
∴ p(-2) = (-2)4 – 2(-2)2 – (-2)
= 16 – 2(4) + 2
= 16 – 8 + 2
∴ p(-2) = 10

Question 3.
If the value of the polynomial m3 + 2m + a is 12 for m = 2, then find the value of a.
Solution:
p(m) = m3 + 2m + a
∴ p(2) = (2)3 + 2(2) + a
∴ 12 = 8 + 4 + a … [∵ p(2)= 12]
∴ 12 = 12 + a
∴ a = 12 – 12
∴ a = 0

Question 4.
For the polynomial mx2 – 2x + 3 if p(-1) = 7, then find m.
Solution:
p(x) = mx2 – 2x + 3
∴ p(- 1) = m (- 1)2 – 2(- 1) + 3
∴ 7 = m(1) + 2 + 3 …[∵ p(-1) = 7]
∴ 7 = m + 5
∴ m = 7 – 5
∴ m = 2

Question 5.
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
i. (x2 – 1x + 9); (x + 1)
ii. (2x3 – 2x2 + ax – a); (x – a)
iii. (54m3 + 18m2 – 27m + 5); (m – 3)
Solution:
i. p(x) = x2 – 7x + 9
Divisor = x + 1
∴ take x = – 1
∴ By remainder theorem,
∴ Remainder =p(-1)
p(x) = x2 – 7x + 9
∴ p(-1) = (- 1)2 – 7(- 1) + 9
= 1 + 7 + 9
∴ Remainder =17

ii. p(x) = 2x3 – 2x2 + ax – a
Divisor = x – a
∴ take x = a
By remainder theorem,
Remainder = p(a)
p(x) = 2x3 – 2x2 + ax – a
∴ p(a) = 2a3 – 2a2 + a(a) – a
= 2a3– 2a2 + a2 – a
∴ Remainder = 2a3 – a2 – a

iii. p(m) = 54m3 + 18m2 – 27m + 5
Divisor = m – 3
∴ take m = 3
∴ By remainder theorem,
Remainder = p(3)
p(m) = 54m3 + 18m2 – 27m + 5
∴ p(3) = 54(3)3 +18(3)2 – 27(3) + 5
= 54(27) + 18(9) – 81 + 5
= 1458 + 162 – 81 + 5
∴ Remainder = 1544

Question 6.
If the polynomial y3 – 5y2 + 7y + m is divided by y + 2 and the remainder is 50, then find the value of m.
Solution:
p(y) = y3 – 5y2 + 7y + m
Divisor = y + 2
∴ take y = – 2
∴ By remainder theorem,
Remainder = p(- 2) = 50
P(y) = y3 – 5y2 + 7y + m
∴ P(-2) = (- 2)3 – 5(- 2)2 + 7(- 2) + m
∴ 50 = -8 – 5(4) – 14 + m
∴ 50 = -8 – 20 – 14 + m
∴ 50 = – 42 + m
∴ m = 50 + 42
∴ m = 92

Question 7.
Use factor theorem to determine whether x + 3 is a factor of x2 + 2x – 3 or not.
Solution:
p(x) = x2 + 2x – 3
Divisor = x + 3
∴ take x = – 3
∴ Remainder = p(-3)
p(x) = x2 + 2x – 3
∴ p(-3) = (-3)2 + 2(- 3) – 3
= 9 – 6 – 3
∴ p(-3) = 0
∴ By factor theorem, x + 3 is a factor of x2 + 2x – 3.

Question 8.
If (x – 2) is a factor of x3 – mx2 + 10x – 20, then find the value of m.
Solution:
p(x) = x3 – mx2 + 10x – 20 x – 2 is a factor of x3 – mx2 + lOx – 20.
∴By factor theorem,
Remainder = p(2) = 0
p(x) = x3 – mx2 + 10x – 20
∴ p(2) = (2)3 – m(2)2 + 10(2) – 20
∴ 0 = 8 – 4m + 20 – 20
∴ 0 = 8 – 4m
∴ 4m = 8
∴ m = 2

Question 9.
By using factor theorem in the following examples, determine whether q(x) is a factor of p(x) or not.
i. p(x) = x3 – x2 – x -1 ; q(x) = x – 1
ii. p(x) = 2x3 – x2 – 45 ; q(x) = x – 3
Solution:
i. p(x) = x3 – x2 – x – 1
Divisor = q(x) = x – 1
∴ take x = 1
Remainder = p(1)
p(x) = x3 – x2 – x – 1
∴ P(1) = (1)3 – (1)2 – 1 – 1
= 1 – 1 – 1 – 1
= -2 ≠ 0
∴ By factor theorem, x – 1 is not a factor of x3 – x2 – x – 1.

ii. p(x) = 2x3 – x – 45
Divisor = q(x) = x – 3
take x = 3
Remainder = p(3)
p(x) = 2x3 – x2 – 45
P(3) = 2(3)3 – (3)2 – 45
= 2(27) – 9 – 45
= 54 – 9 – 45
= 0
∴ By factor theorem, x – 3 is a factor of 2x3 – x2 – 45.

Question 10.
If (x31 + 31) is divided by (x + 1), then find the remainder.
Solution:
p(x) = x31 + 31
Divisor = x + 1
∴ take x = – 1
∴ By remainder theorem,
Remainder = p(-1)
p(x) =x31 + 31 …
∴ p(-1) = (-1)31 + 31
= -1 + 31 = 30
∴ Remainder = 30

Question 11.
Show that m – 1 is a factor of m21 – 1 and m22 – 1. [3 Marks]
Solution:
i. p(m) = m21 – 1
Divisor = m – 1
∴ take m = 1
Remainder = p(1)
p(m) = m21 – 1
∴ P(1) = 121 – 1 = 1 – 1 = 0
∴ By factor theorem, m -1 is a factor of m21 -1.

ii. p(m) = m22 – 1
Divisor = m – 1
∴ take m = 1
Remainder = p(1)
p(m) = m22 – 1
∴ P(1) = 122 – 1 = 1 – 1 = 0
∴ By factor theorem, m -1 is a factor of m22 – 1.

Question 12.
If x – 2 and x – \(\frac { 1 }{ 2 }\) both are the factors of the polynomial nx2 – 5x + m, then show that m = n = 2.
Solution:
p(x) = nx2 – 5x + m
(x – 2) is a factor of nx2 – 5x + m.
∴ By factor theorem,
P(2) = 0
∴ p(x) = nx2 – 5x + m
∴ p(2) = n(2)2 – 5(2) + m
∴ 0 = n(4) – 10 + m
∴ 4n – 10 + m = 0 …(i)
Also, ( x = \(\frac { 1 }{ 2 }\) ) is a factor of nx2 – 5x + m.
∴ By factor theorem,
p(\(\frac { 1 }{ 2 }\)) = 0
p(x) = nx2 – 5x + m
∴ p(\(\frac { 1 }{ 2 }\)) = n(\(\frac { 1 }{ 2 }\))2 – 5\(\frac { 1 }{ 2 }\) + m
0 = \(\frac { n }{ 4 }\) – \(\frac { 5 }{ 2 }\) + m
∴ 0 = n- 10 +4m … [Multiplying both sides by 4]
∴ n = 10 – 4m ……(ii)
Substituting n = 10 – 4m in equation (i),
4(10 – 4m) – 10 + m = 0
∴ 40 – 16m – 10 + m = 0
∴ -15m+ 30 = 0
∴ -15m = -30
∴ m = 2
Substituting m = 2 in equation (ii),
n = 10 – 4(2)
= 10 – 8
∴ n = 2
∴ m = n = 2

Question 13.
i. If p(x) = 2 + 5x, then find the value of p(2) + p(- 2) – p(1).
Solution:
p(x) = 2 + 5x
∴ P(2) = 2 + 5(2)
= 2 + 10
= 12
p(x) = 2 + 5x
P(- 2) = 2 + 5(- 2)
= 2 – 10 = – 8
p(x) = 2 + 5x
P(1) = 2 + 5(1)
= 2 + 5 = 7
∴ P(2) + P(- 2) – p(1) = 12 + (- 8) – 7
∴ P(2) + p(- 2) – p(1) = – 3

ii. If p(x) = 2x2 – 5√3 x + 5, then find the value of p(5√3 ).
Solution:
p(x) = 2x2 – 5√3 x + 5
∴ p(5√3) = 2(5√3)2 – 5√3 (5√3 ) + 5
= 2 (25 x 3) – 25 x 3 + 5
= 150-75 + 5
∴ p( 5√3 ) = 80

Question 1.
1. Divide p(x) = 3x2 + x + 7 by x + 2. Find the remainder.
2. Find the value of p(x) = 3x2 + x + 7 when x = – 2.
3. See whether remainder obtained by division is same as the value of p(-2). Take one more example and verify. (Textbook pg. no. 50)
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.5 1
∴ Remainder = 17

2. p(x) = 3x2 + x + 7
Substituting x = – 2, we get
p(-2) = 3(2)2 + (-2) + 7
= 12 – 2 + 7
∴ p(-2) = 17

3. Yes, remainder = p(-2)

Another Example:
If the polynomial t3 – 3t2 + kt + 50 is divided by (t – 3), the remainder is 62. Find the value of k.
Solution:
When given polynomial is divided by (t – 3) the remainder is 62. It means the value of the polynomial when t = 3 is 62.
p(t) = t3 – 3t3 + kt + 50
By remainder theorem,
Remainder = p(3) = 33 – 32 + k x 3 + 50
= 27 – 3 x 9 + 3k + 50
= 27 – 27 + 3k + 50
= 3k + 50
But remainder is 62.
∴ 3k + 50 = 62
∴ 3k = 62 – 50
∴ 3k = 12
∴ k = 4

Question 2.
Verify that (x – 1) is a factor of the polynomial x3 + 4x – 5. (Textbook pg. no. 51)
Solution:
Here, p(x) = x3 + 4x – 5
Substituting x = 1 in p(x), we get
p(1) = (1)3 + 4(1) – 5
= 1 + 4 – 5
P(1) = 0
∴ By remainder theorem,
Remainder = 0
∴ (x -1) is the factor of x3 + 4x – 5.

Maharashtra State Board 9th Maths Solution 

Practice Set 3.4 Algebra 9th Standard Maths Part 1 Chapter 3 Polynomials Solutions Maharashtra Board

9th Standard Maths 1 Practice Set 3.4 Chapter 3 Polynomials Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 3.4 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.

Class 9 Maths Part 1 Practice Set 3.4 Chapter 3 Polynomials Questions With Answers Maharashtra Board

Question 1.
For x = 0, find the value of the polynomial x2 – 5x + 5.
Solution:
p(x) = x2 – 5x + 5
Put x = 0 in the given polynomial.
∴ P(0) = (0)2 – 5(0) + 5
= 0 – 0 + 5
∴ p(0) = 5

Question 2.
If p(y) = y2 – 3√2 + 1, then find p( 3√2 ).
Solution:
p(y) = y2 – 3√2 y + 1
Putp= 3√2 in the given polynomial.
∴ p( 3√2 ) = (3√2 )2 – 3√2 (3√2 ) + 1
= 9 x 2 – 9 x 2 + 1
= 18 – 18 + 1
∴ p( 3√2 ) = 1

Question 3.
If p(m) = m3 + 2m2 – m + 10, then P(a) + p(-a) = ?
Solution:
p(m) = m3 + 2m2 – m + 10
Put m = a in the given polynomial.
∴ p(a) = a3 + 2a2 – a + 10 …(i)
Put m = -a in the given polynomial.
p(-a) = (-a)3 + 2(-a)2 – (-a) +10
∴ p (-a) = -a3 + 2a2 + a + 10 …(ii)
Adding (i) and (ii),
p(a) + p(-a) = (a3 + 2a2 – a + 10) + (-a3 + 2a2 + a + 10)
= a3 – a3 + 2a2 + 2a2a + a + 10 + 10
∴ p(a) + p(-a) = 4a2 + 20

Question 4.
If p(y) = 2y3 – 6y2 – 5y + 7, then find p(2).
Solution:
p(y) = 2y3 – 6y2 – 5y + 7
Put y = 2 in the given polynomial.
∴ p(2) = 2(2)3 – 6(2)2 – 5(2) + 7
= 2 x 8 – 6 x 4 – 10 + 7
= 16 – 24 – 10 + 7
∴ P(2) = -11

Maharashtra State Board 9th Maths Solution 

Practice Set 2.1 Algebra 10th Standard Maths Part 1 Chapter 2 Quadratic Equations Solutions Maharashtra Board

10th Standard Maths 1 Practice Set 2.1 Chapter 2 Quadratic Equations Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 2.1 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 2 Quadratic Equations.

Class 10 Maths Part 1 Practice Set 2.1 Chapter 2 Quadratic Equations Questions With Answers Maharashtra Board

Question 1.
Write any two quadratic equations.
Solution:
i. y2 – 7y + 12 = 0
ii. x2 – 8 = 0

Question 2.
Decide which of the following are quadratic
i. x2 – 7y + 2 = 0
ii. y2 = 5y – 10
iii. y2 + \(\frac { 1 }{ y } \) = 2
iv. x + \(\frac { 1 }{ x } \) = -2
v. (m + 2) (m – 5) = 03
vi. m3 + 3m2 – 2 = 3m3
Solution:
i. The given equation is x2 + 5x – 2 = 0
Here, x is the only variable and maximum index of the variable is 2.
a = 1, b = 5, c = -2 are real numbers and a ≠ 0.
∴ The given equation is a quadratic equation.

ii. The given equation is
y2 = 5y – 10
∴ y2 – 5y + 10 = 0
Here, y is the only variable and maximum index of the variable is 2.
a = 1, b = -5, c = 10 are real numbers and a ≠ 0.
∴ The given equation is a quadratic equation.

iii. The given equation is
y2 + \(\frac { 1 }{ y } \) = 2
∴ y3 + 1 = 2y …[Multiplying both sides by y]
∴ y3 – 2y + 1 = 0
Here, y is the only variable and maximum index of the variable is not 2.
∴ The given equation is not a quadratic equation.

iv. The given equation is
x + \(\frac { 1 }{ x } \) = -2
∴ x2 + 1 = -2x …[Multiplying both sides by x]
∴ x2 + 2x+ 1 = 0
Here, x is the only variable and maximum index of the variable is 2.
a = 1, b = 2, c = 1 are real numbers and a ≠ 0.
∴ The given equation is a quadratic equation.

v. The given equation is
(m + 2) (m – 5) = 0
∴ m(m – 5) + 2(m – 5) = 0
∴ m2 – 5m + 2m – 10 = 0
∴ m2 – 3m – 10 = 0
Here, m is the only variable and maximum index of the variable is 2.
a = 1, b = -3, c = -10 are real numbers and a ≠ 0.
∴ The given equation is a quadratic equation.

vi. The given equation is
m3 + 3m2 – 2 = 3m3
∴ 3m3 – m3 – 3m2 + 2 = 0
∴ 2m3 – 3m2 + 2 = 0
Here, m is the only variable and maximum
index of the variable is not 2.
∴ The given equation is not a quadratic equation.

Question 3.
Write the following equations in the form ax2 + bx + c = 0, then write the values of a, b, c for each equation.
i. 2y = 10 – y2
ii. (x – 1)2 = 2x + 3
iii. x2 + 5x = – (3 – x)
iv. 3m2 = 2m2 – 9
v. P (3 + 6p) = – 5
vi. x2 – 9 = 13
Solution:
i. 2y – 10 – y2
∴ y2 + 2y – 10 = 0
Comparing the above equation with
ay2 + by + c = 0, we get
a = 1, b = 2, c = -10

ii. (x – 1)2 = 2x + 3
∴ x2 – 2x + 12x + 3
x2 – 2x + 1 – 2x – 30
∴ x2 – 4x – 2 = 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = 1, b = -4, c = -2

iii. x2 + 5x = – (3 – x)
∴ x2 + 5x = -3 + x
∴ x2 + 5x – x + 3 = 0
∴ x2 + 4x + 3 = 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = 1, b = 4, c = 3

iv. 3m2 = 2m2 – 9
∴ 3m2 – 2m2 + 9 = 0
∴ m2 + 9 = 0
∴ m2 + 0m + 9 = 0
Comparing the above equation with
am2 + bm + c = 0, we get
a = 1, b = 0, c = 9

v. p (3 + 6p) = – 5
∴ 3p + 6p2 = -5
∴ 6p2 + 3p + 5 = 0
Comparing the above equation with
ap2 + bp + c = 0, we get
a = 6, b = 3, c = 5

vi. x2 – 9 = 13
∴ x2 – 9 – 13 = 0
∴ x2 – 22 = 0
∴ x2 + 0x – 22 = 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = 1, b = 0, c = -22

Question 4.
Determine whether the values given against each of the quadratic equation are the roots of the equation.
i. x2 + 4x – 5 = 0; x = 1,-1
ii. 2m2 – 5m = 0; m = 2, \(\frac { 5 }{ 2 } \)
Solution:
i. The given equation is
x2 + 4x – 5 = 0 …(i)
Putting x = 1 in L.H.S. of equation (i), we get
L.H.S. = (1)2 + 4(1) – 5 = 1 + 4 – 5 = 0
∴ L.H.S. = R.H.S.
∴ x = 1 is the root of the given quadratic equation.
Putting x = -1 in L.H.S. of equation (i), we get
L.H.S. = (-1)2 + 4(-1) – 5 = 1 – 4 – 5 = -8
∴ LH.S. ≠ R.H.S.
∴ x = -1 ¡s not the root of the given quadratic equation.

ii. The given equation is
2m2 – 5m = 0 …(i)
Putting m = 2 in L.H.S. of equation (i), we get
L.H.S. = 2(2)2 – 5(2) = 2(4) -10 = 8 – 10 = -2
∴ L.H.S. ≠ R.H.S.
∴ m = 2 is not the root of the given quadratic equation.
Putting m = \(\frac { 5 }{ 2 } \) in L.H.S. of equation (i), we get
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.1 1

Question 5.
Find k if x = 3 is a root of equation kx2 – 10x + 3 = 0.
Solution:
x = 3 is the root of the equation kx2 – 10x + 3 = 0.
Putting x = 3 in the given equation, we get
k(3)2 – 10(3) + 3 = 0
∴ 9k – 30 +3 = 0
∴ 9k – 27 = 0
∴ 9k = 27
∴ k = \(\frac { 27 }{ 9 } \)
∴ k = 3

Question 6.
One of the roots of equation 5m2 + 2m + k = 0 is \(\frac { -7 }{ 5 } \) Complete the following activity to find the value of ‘k’.
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.1 2

Question 1.
x2 + 3x – 5, 3x2 – 5x, 5x2; Write the polynomials In the index form. Observe the coefficients and fill in the boxes. (Textbook p. no. 31)
Answer:
Index form of the given polynomials:
x2 + 3x – 5, 3x2 – 5x + 0, 5x2 + 0x + 0
i. Coefficients of x2 are [1], [3] and [5] respectively, and these coefficients are non zero.
ii. Coefficients of x are 3, [-5] and [0] respectively.
iii. Constant terms are [-5], [0] and [0] respectively.
Here, constant terms of second and third polynomial is zero.

Question 2.
Complete the following table (Textbook p. no. 31)
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.1 3
Answer:
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.1 4

Question 3.
Decide which of the following are quadratic equations? (Textbook pg. no. 31)
i. 9y2 + 5 = 0
ii. m3 – 5m2 + 4 = 0
iii. (l + 2)(l – 5) = 0
Solution:
i. In the equation 9y2 + 5 = 0, [y] is the only variable and maximum index of the variable is [2].
∴ It [is] a quadratic equation.

ii. In the equation m3 – 5m2 + 4 = 0, [m] is the only variable and maximum index of the variable is not 2.
∴ It [is not] a quadratic equation.

iii. (l + 2)(l – 5) = 0
∴ l(l – 5) + 2(l – 5) = 0
∴ l2 – 5l + 2l – 10 = 0
∴ l2 – 3l – 10 = 0.
In this equation [l] is the only variable and maximum index of the variable is [2]
∴ it [is] a quadratic equation.

Question 4.
If x = 5 is a root of equation kx2 – 14x – 5 = 0, then find the value of k by completing the following activity. (Textbook pg, no. 33)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.1 5
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.1 6

Maharashtra State Board Class 10 Maths Solutions Part 1

Practice Set 1.5 Algebra 10th Standard Maths Part 1 Chapter 1 Linear Equations in Two Variables Solutions Maharashtra Board

10th Standard Maths 1 Practice Set 1.5 Chapter 1 Linear Equations in Two Variables Textbook Answers Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 1.5 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 1 Linear Equations in Two Variables.

Class 10 Maths Part 1 Practice Set 1.5 Chapter 1 Linear Equations in Two Variables Questions With Answers Maharashtra Board

Question 1.
Two numbers differ by 3. The sum of twice the smaller number and thrice the greater number is 19. Find the numbers.
Solution:
Let the greater number be x and the smaller number be y.
According to the first condition, x – y = 3 …(i)
According to the second condition,
3x + 2y = 19 …(ii)
Multiplying equation (i) by 2, we get
2x – 2y = 6 …(iii)
Adding equations (ii) and (iii), we get
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Practice Set Ex 1.5 1
Substituting x = 5 in equation (i), we get
5 – y = 3
∴ 5 – 3 = y
∴ y = 2
∴ The required numbers are 5 and 2.

Question 2.
Complete the following.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Practice Set Ex 1.5 2
Solution:
Opposite sides of a rectangle are equal.
∴ 2x + y + 8 = 4x – y
∴ 8 = 4x – 2x – y – y
∴ 2x – 2y = 8
∴ x – y = 4 …(i)[Dividingboth sides by 2]
Also, x + 4= 2y
∴ x – 2y = -4 …(ii)
Subtracting equation (ii) from (i), we get
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Practice Set Ex 1.5 3
Substituting y = 8 in equation (i), we get
x – 8 = 4
∴ x = 4 + 8
∴ x = 12
Now, length of rectangle = 4x – y
= 4(12) – 8
= 48 – 8
∴ Length of rectangle = 40
Breadth of rectangle = 2y = 2(8) = 16
Perimeter of rectangle = 2(length + breadth)
= 2(40 + 16)
= 2(56)
∴ Perimeter of rectangle =112 units
Area of rectangle = length × breadth
= 40 × 16
∴ Area of rectangle = 640 sq. units
∴ x = 12 and y = 8, Perimeter of rectangle is 112 units and area of rectangle is 640 sq. units.

Question 3.
The sum of father’s age and twice the age of his son is 70. If we double the age of the father and add it to the age of his son the sum is 95. Find their present ages.
Solution:
Let the present ages of father and son be x years and y years respectively.
According to the first condition,
x + 2y = 70 …(i)
According to the second condition,
2x + y = 95 …(ii)
Multiplying equation (i) by 2, we get
2x + 4y = 140 …(iii)
Subtracting equation (ii) from (iii), we get
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Practice Set Ex 1.5 4
Substituting y = 15 in equation (i), we get
x + 2(15) = 7O
⇒ x + 30 = 70
⇒ x = 70 – 30
∴ x = 40
∴ The present ages of father and son are 40 years and 15 years respectively.

Question 4.
The denominator of a fraction is 4 more than twice its numerator. Denominator becomes 12 times the numerator, if both the numerator and the denominator are reduced by 6. Find the fraction.
Solution:
Let the numerator of the fraction be x and the denominator be y.
∴ Fraction = \(\frac { x }{ y } \)
According to the first condition,
y = 2x + 4
∴ 2x – y = -4 …(i)
According to the second condition,
(y – 6)= 12(x – 6)
∴ y – 6 = 12x – 72
∴ 12x – y = 72 – 6
∴ 12x – y = 66 …(ii)
Subtracting equation (i) from (ii), we get
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Practice Set Ex 1.5 5

Question 5.
Two types of boxes A, B ,are to be placed in a truck having capacity of 10 tons. When 150 boxes of type A and 100 boxes of type B are loaded in the truck, it weights 10 tons. But when 260 boxes of type A are loaded in the truck, it can still accommodate 40 boxes of type B, so that it is fully loaded. Find the weight of each type of box.
Solution:
Let the weights of box of type A be x kg and that of box of type B be y kg.
1 ton = 1000 kg
∴ 10 tons = 10000 kg
According to the first condition,
150x + 100y = 10000
∴ 3x + 2y = 200 …(i) [Dividing both sides by 50]
According to the second condition,
260x + 40y = 10000
∴ 13x + 2y = 500 …(ii) [Dividing both sides by 20]
Subtracting equation (i) from (ii), we get
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Practice Set Ex 1.5 6
∴ The weights of box of type A is 30 kg and that of box of type B is 55 kg.

Question 6.
Out of 1900 km, Vishal travelled some distance by bus and some by aeroplane. Bus travels with average speed 60 km/hr and the average speed of aeroplane is 700 km/hr. It takes 5 hours to complete the journey. Find the distance Vishal travelled by bus.
Solution:
Let the distance Vishal travelled by bus be x km and by aeroplane be y km.
According to the first condition,
x + y = 1900 …(i)
\(\text { Time }=\frac{\text { Distance }}{\text { Speed }} \)
∴ Time required to cover x km by bus = \(\frac { x }{ 60 } \) hr
Time required to cover y km by aeroplane
= \(\frac { y }{ 700 } \) hr
According to the second condition,
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Practice Set Ex 1.5 7
Multiplying equation (i) by 6, we get
6x + 6y= 11400 …(iii)
Subtracting equation (iii) from (ii), we get
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Practice Set Ex 1.5 9
∴ The distance Vishal travelled by bus is 150 km.

Question 1.
There are some instructions given below. Frame the equations from the information and write them in the blank boxes shown by arrows. (Textbook pg. no. 20)
Answer:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Practice Set Ex 1.5 10

Maharashtra State Board Class 10 Maths Solutions Part 1