Trigonometric Functions Class 12 Maths 1 Miscellaneous Exercise 3 Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 Questions and Answers.

12th Maths Part 1 Trigonometric Functions Miscellaneous Exercise 3 Questions And Answers Maharashtra Board

I) Select the correct option from the given alternatives.
Question 1.
The principal of solutions equation sinθ = \(\frac{-1}{2}\) are ________.
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 1
Solution:
(b) \(\frac{7 \pi}{6}, \frac{11 \pi}{6}\)

Question 2.
The principal solution of equation cot θ = \(\sqrt {3}\) ___________.
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 2
Solution:
(a) \(\frac{\pi}{6}, \frac{7 \pi}{6}\)

Question 3.
The general solution of sec x = \(\sqrt {2}\) is __________.
(a) 2nπ ± \(\frac{\pi}{4}\), n ∈ Z
(b) 2nπ ± \(\frac{\pi}{2}\), n ∈ Z
(c) nπ ± \(\frac{\pi}{2}\), n ∈ Z
(d) 2nπ ± \(\frac{\pi}{3}\), n ∈ Z
Solution:
(a) 2nπ ± \(\frac{\pi}{4}\), n ∈ Z

Question 4.
If cos pθ = cosqθ, p ≠ q rhen ________.
(a) θ = \(\frac{2 n \pi}{p \pm q}\)
(b) θ = 2nπ
(c) θ = 2nπ ± p
(d) nπ ± q
Solution:
(a) θ = \(\frac{2 n \pi}{p \pm q}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
If polar co-ordinates of a point are \(\left(2, \frac{\pi}{4}\right)\) then its cartesian co-ordinates are ______.
(a) (2, \(\sqrt {2}\) )
(b) (\(\sqrt {2}\), 2)
(c) (2, 2)
(d) (\(\sqrt {2}\) , \(\sqrt {2}\))
Solution:
(d) (\(\sqrt {2}\) , \(\sqrt {2}\))

Question 6.
If \(\sqrt {3}\) cosx – sin x = 1, then general value of x is _________.
(a) 2nπ ± \(\frac{\pi}{3}\)
(b) 2nπ ± \(\frac{\pi}{6}\)
(c) 2nπ ± \(\frac{\pi}{3}-\frac{\pi}{6}\)
(d) nπ + (-1)n\(\frac{\pi}{3}\)
Solution:
(c) 2nπ ± \(\frac{\pi}{3}-\frac{\pi}{6}\)

Question 7.
In ∆ABC if ∠A = 45°, ∠B = 60° then the ratio of its sides are _________.
(a) 2 : \(\frac{\pi}{2}\) : \(\frac{\pi}{3}\) + 1
(b) \(\frac{\pi}{2}\) : 2 : \(\frac{\pi}{3}\) + 1
(c) 2 \(\frac{\pi}{2}\) : \(\frac{\pi}{2}\) : \(\frac{\pi}{3}\)
(d) 2 : 2 \(\frac{\pi}{2}\) : \(\frac{\pi}{3}\) + 1
Solution:
(a) 2 : \(\frac{\pi}{2}\) : \(\frac{\pi}{3}\) + 1

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
In ∆ABC, if c2 + a2 – b2 = ac, then ∠B = __________.
(a) \(\frac{\pi}{4}\)
(b) \(\frac{\pi}{3}\)
(c) \(\frac{\pi}{2}\)
(d) \(\frac{\pi}{6}\)
Solution:
(b) \(\frac{\pi}{3}\)

Question 9.
In ABC, ac cos B – bc cos A = ____________.
(a) a2 – b2
(b) b2 – c2
(c) c2 – a2
(d) a2 – b2 – c2
Solution:
(a) a2 – b2

Question 10.
If in a triangle, the are in A.P. and b : c = \(\sqrt {3}\) : \(\sqrt {2}\) then A is equal to __________.
(a) 30°
(b) 60°
(c) 75°
(d) 45°
Solution:
(c) 75°

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 11.
cos-1\(\left(\cos \frac{7 \pi}{6}\right)\) = ________.
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 3

Question 12.
The value of cot (tan-1 2x + cot-1 2x) is __________.
(a) 0
(b) 2x
(c) π + 2x
(d) π – 2x
Solution:
(a) 0

Question 13.
The principal value of sin-1\(\left(-\frac{\sqrt{3}}{2}\right)\) is ____________.
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 4
Solution:
(d) \(-\frac{\pi}{3}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 14.
If sin-1\(\frac{4}{5}\) + cos-1\(\frac{,12}{13}\) = sin-1 ∝, then ∝ = _____________.
(a) \(\frac{63}{65}\)
(b) \(\frac{62}{65}\)
(c) \(\frac{61}{65}\)
(d) \(\frac{60}{65}\)
Solution:
(a) \(\frac{63}{65}\)

Question 15.
If tan-1(2x) + tan-1(3x) = \(\frac{\pi}{4}\), then x = ________.
(a) -1
(b) \(\frac{1}{6}\)
(c) \(\frac{2}{6}\)
(d) \(\frac{3}{2}\)
Solution:
(b) \(\frac{1}{6}\)

Question 16.
2 tan-1\(\frac{1}{3}\) + tan-1\(\frac{1}{7}\) = ______.
(a) tan-1\(\frac{4}{5}\)
(b) \(\frac{\pi}{2}\)
(c) 1
(d) \(\frac{\pi}{4}\)
Solution:
(d) \(\frac{\pi}{4}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 17.
tan (2 tan-1\(\left(\frac{1}{5}\right)-\frac{\pi}{4}\)) = ______.
(a) \(\frac{17}{7}\)
(b) \(-\frac{17}{7}\)
(c) \(\frac{7}{17}\)
(d) \(-\frac{7}{17}\)
Solution:
(d) \(-\frac{7}{17}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 5

Question 18.
The principal value branch of sec-1 x is __________.
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 6
Solution:
(b) [0, π] – {\(\frac{\pi}{2}\)}

Question 19.
cos[tan-1\(\frac{1}{3}\) + tan-1\(\frac{1}{2}\)] = ________.
(a) \(\frac{1}{\sqrt{2}}\)
(b) \(\frac{\sqrt{3}}{2}\)
(c) \(\frac{1}{2}\)
(d) \(\frac{\pi}{4}\)
Solution:
(a) \(\frac{1}{\sqrt{2}}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 20.
If tan θ + tan 2θ + tan 3θ = tan θ∙tan 2θ∙tan 3θ, then the general value of the θ is _______.
(a) nπ
(b) \(\frac{n \pi}{6}\)
(c) nπ ± \(\frac{n \pi}{4}\)
(d) \(\frac{n \pi}{2}\)
Solution:
(b) \(\frac{n \pi}{6}\)
[Hint: tan(A + B + C) = \(\frac{\tan A+\tan B+\tan C-\tan A \cdot \tan B \cdot \tan C}{1-\tan A \cdot \tan B-\tan B \cdot \tan C-\tan C \cdot \tan A}\)
Since , tan θ + tan 2θ + tan 3θ = tan θ ∙ tan 2θ ∙ tan 3θ,
we get, tan (θ + 2θ + 3θ) = θ
∴ tan6θ = 0
∴ 6θ = nπ, θ = \(\frac{n \pi}{6}\).]

Question 21.
If any ∆ABC, if a cos B = b cos A, then the triangle is ________.
(a) Equilateral triangle
(b) Isosceles triangle
(c) Scalene
(d) Right angled
Solution:
(b) Isosceles triangle

II: Solve the following
Question 1.
Find the principal solutions of the following equations :
(i) sin2θ = \(-\frac{1}{2}\)
Solution:
sin2θ = \(-\frac{1}{2}\)
Since, θ ∈ (0, 2π), 2∈ ∈ (0, 4π)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 7

(ii) tan3θ = -1
Solution:
Since, θ ∈ (0, 2π), 3∈ ∈ (0, 6π)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 8
… [∵ tan(π – θ) = tan(2π – θ) = tan(3π – θ)
= tan (4π – θ) = tan (5π – θ) = tan (6π – θ) = -tan θ]
∴ tan3θ = tan\(\frac{3 \pi}{4}\) = tan\(\frac{7 \pi}{4}\) = tan\(\frac{11 \pi}{4}\) = tan\(\frac{15 \pi}{4}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 9

(iii) cotθ = 0
Solution:
cotθ = 0
Since θ ∈ (0, 2π),
cotθ = 0 = cot \(\frac{\pi}{2}\) = cot (π + \(\frac{\pi}{2}\) …[∵ cos(π + θ) = cotθ]
∴ cotθ = cot\(\frac{\pi}{2}\) = cot\(\frac{3 \pi}{2}\)
∴ θ = \(\frac{\pi}{2}\) or θ = \(\frac{3 \pi}{2}\)
Hence, the required principal solutions are \(\left\{\frac{\pi}{2}, \frac{3 \pi}{2}\right\}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 2.
Find the principal solutions of the following equations :
(i) sin2θ = \(-\frac{1}{\sqrt{2}}\)
Solution:

(ii) tan5θ = -1
Solution:

(iii) cot2θ = 0
Solution:

Question 3.
Which of the following equations have no solutions ?
(i) cos 2θ = \(\frac{1}{3}\)
Solution:
cos 2θ = \(\frac{1}{3}\)
Since \(\frac{1}{3}\) ≤ cosθ ≤ 1 for any θ
cos2θ = \(\frac{1}{3}\) has solution

(ii) cos2 θ = -1
Solution:
cos2θ = -1
This is not possible because cos2θ ≥ 0 for any θ.
∴ cos2θ = -1 does not have any solution.

(iii) 2 sinθ = 3
Solution:
2 sin θ = 3 ∴ sin θ = \(\frac{3}{2}\)
This is not possible because -1 ≤ sin θ ≤ 1 for any θ.
∴ 2 sin θ = 3 does not have any solution.

(iv) 3 sin θ = 5
Solution:
3 sin θ = 5
∴ sin θ = \(\frac{5}{3}\)
This is not possible because -1 ≤ sin θ ≤ 1 for any θ.
∴ 3 sin θ = 5 does not have any solution.

Question 4.
Find the general solutions of the following equations :
(i) tanθ = \(-\sqrt {x}\)
Solution:
The general solution of tan θ = tan ∝ is
θ = nπ + ∝, n ∈ Z.
Now, tanθ = \(-\sqrt {x}\)
∴ tanθ = tan\(\frac{\pi}{3}\) …[∵ tan\(\frac{\pi}{3}\) = \(\sqrt {3}\)]
∴ tanθ = tan\(\left(\pi-\frac{\pi}{3}\right)\) …[∵ tan(π – θ) = -tanθ]
∴ tanθ = tan\(\frac{2 \pi}{3}\)
∴ the required general solution is
θ = nπ + \(\frac{2 \pi}{3}\), n ∈ Z.

(ii) tan2θ = 3
Solution:
The general solution of tan2θ = tan2∝ is
θ = nπ ± ∝, n ∈ Z.
Now, tan2θ = 3 = (\(\sqrt {x}\))2
∴ tan2θ = (tan\(\frac{\pi}{3}\))2 …[∵ tan\(\frac{\pi}{3}\) = \(\sqrt {3}\)]
∴ tan2θ = tan2\(\frac{\pi}{3}\)
∴ the required general solution is
θ = nπ ± \(\frac{\pi}{3}\), n ∈ Z.

(iii) sin θ – cosθ = 1
Solution:
∴ cosθ – sin θ = -1
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 72
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 73

(iv) sin2θ – cos2θ = 1
Solution:
sin2θ – cos2θ = 1
∴ cos2θ – sin2θ = -1
∴ cos2θ = cosπ …(1)
The general solution of cos θ = cos ∝ is
θ = 2nπ ± ∝, n ∈ Z
∴ the general solution of (1) is given by
2θ = 2nπ ± π, n ∈ Z
∴ θ = nπ ± \(\frac{\pi}{2}\), n ∈ Z

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
In ∆ABC prove that cos \(\left(\frac{A-B}{2}\right)=\left(\frac{a+b}{c}\right)\) sin \(\frac{C}{2}\)
Solution:
By the sine rule,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 12
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 17

Question 6.
With usual notations prove that \(\frac{\sin (A-B)}{\sin (A+B)}=\frac{a^{2}-b^{2}}{c^{2}}\).
Solution:
By the sine rule,
\(\frac{a}{\sin \mathrm{A}}\) = \(\frac{b}{\sin \mathrm{B}}\) = \(\frac{c}{\sin \mathrm{C}}\) = k
∴ a = ksinA, b = ksinB, c = ksinC
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 14

Question 7.
In ∆ABC prove that (a – b)2 2cos2\(\frac{\mathrm{C}}{2}\) + (a + b)2 sin2\(\frac{\mathrm{C}}{2}\) = c2.
Solution:
LHS (a – b)2 2cos2\(\frac{\mathrm{C}}{2}\) + (a + b)2 sin2\(\frac{\mathrm{C}}{2}\)
= (a2 + b2 – 2ab) cos2\(\frac{\mathrm{C}}{2}\) + (a2 + b2 + 2ab) sin\(\frac{\mathrm{C}}{2}\)2
= (a2 + b2) cos2\(\frac{\mathrm{C}}{2}\) – 2ab cos2\(\frac{\mathrm{C}}{2}\) + (a2 + b2) sin2\(\frac{\mathrm{C}}{2}\) + 2ab sin2\(\frac{\mathrm{C}}{2}\)
= (a2 + b2) (cos2\(\frac{\mathrm{C}}{2}\) + sin2\(\frac{\mathrm{C}}{2}\)) – 2ab(cos2\(\frac{\mathrm{C}}{2}\) – sin2\(\frac{\mathrm{C}}{2}\))
= a2 + b2 – 2ab cos C
= c2 = RHS.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
In ∆ABC if cosA = sin B – cos C then show that it is a right angled triangle.
Solution:
cos A= sin B – cos C
∴ cos A + cos C = sin B
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 15
∴ A – C = B
∴ A = B + C
∴ A + B + C = 180° gives
A + A = 180°
∴ 2A = 180 ∴ A = 90°
∴ ∆ ABC is a rightangled triangle.

Question 9.
If \(\frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}\) then show that a2, b2, c2, are in A.P.
Solution:
By sine rule,
\(\frac{\sin \mathrm{A}}{a}\) = \(\frac{\sin \mathrm{B}}{b}\) = \(\frac{\sin \mathrm{C}}{c}\) = k
∴ sin A = ka, sin B = kb,sin C = kc
Now, \(\frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}\)
∴ sinA∙sin(B – C) = sinC∙sin(A -B)
∴ sin [π – (B + C)] ∙ sin (B – C)
= sin [π – (A + B)]∙sin (A – B) … [∵ A + B + C = π]
∴ sin(B + C) ∙ sin(B – C) = sin (A + B) ∙ sin (A – B)
∴ sin2B – sin2C = sin2A – sin2B
∴ 2 sin2B = sin2A + sin2C
∴ 2k2b2 = k2a2 + k2c2
∴ 2b2 = a2 + c2
Hence, a2, b2, c2 are in A.P.

Question 10.
Solve the triangle in which a = (\(\sqrt {3}\) + 1), b = (\(\sqrt {3}\) – 1) and ∠C = 60°.
Solution:
Given : a = \(\sqrt {3}\) + 1, b = \(\sqrt {3}\) – 1 and ∠C = 60°.
By cosine rule,
c2 = a2 + b2 – 2ab cos C
= (\(\sqrt {3}\) + 1)2 + (\(\sqrt {3}\) – 1)2 – 2(\(\sqrt {3}\) + 1)(\(\sqrt {3}\) – 1)cos60°
= 3 + 1 + 2\(\sqrt {3}\) + 3+ 1 – 2\(\sqrt {3}\) – 2(3 – 1)\(\left(\frac{1}{2}\right)\)
= 8 – 2 = 6
∴ c = \(\sqrt {6}\) …[∵ c > 0)
By sine rule,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 16
∴ sin A = sin 60° cos 45° + cos 60° sin 45°
and sin B = sin 60° cos 45° – cos 60° sin 45°
∴ sin A = sin (60° + 45°) – sin 105°
and sin B = sin (60° – 45°) = sin 15°
∴ A = 105° and B = 15°
Hence, A = 105°, B 15° and C = \(\sqrt {6}\) units.

Question 11.
In ∆ABC prove the following :
(i) a sin A – b sin B = c sin (A – B)
Solution:
By sine rule,
\(\frac{a}{\sin \mathrm{A}}\) = \(\frac{b}{\sin \mathrm{B}}\) = \(\frac{c}{\sin \mathrm{C}}\) = k
∴ a = ksinA, b = ksinB, c = ksinC,
LHS = a sin A – b sinB
= ksinA∙sinA – ksinB∙sinB
= k (sin2A – sin2B)
= k (sin A + sin B)(sin A – sin B)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 17
= k × sin (A + B) × sin (A – B)
= ksin(π – C)∙sin(A – B) … [∵ A + B + C = π]
= k sinC∙sin (A – B)
= c sin (A – B) = RHS.

(ii) \(\frac{c-b \cos A}{b-c \cos A}=\frac{\cos B}{\cos C}\).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 18

(iii) a2 sin (B – C) = (b2 – c2) sinA
Solution:
By sine rule,
\(\frac{a}{\sin \mathrm{A}}\) = \(\frac{b}{\sin \mathrm{B}}\) = \(\frac{c}{\sin \mathrm{C}}\) = k
∴ a = ksinA, b = ksinB, c = ksinC
RHS = (b2 – c2) sin A
= (k2sin2B – k2sin2C)sin A
= k2(sin2B – sin2C) sin A
= k2(sin B + sin C)(sin B – sin C) sin A
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 19
= k2 × sin (B + C) × sin (B – C) × sin A
= k2∙sin(π – A)∙sin(B – C)∙sinA … [∵ A + B + C = π]
= k2sin A∙sin (B – C)∙sin A
= (k sin A)2∙sin (B – C)
= a2sin (B – C) = LHS.

(iv) ac cos B – bc cos A = (a2 – b2).
Solution:
LHS = ac cos B – bc cos A
= ac\(\left(\frac{c^{2}+a^{2}-b^{2}}{2 c a}\right)\) – bc\(\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)\)
=\(\frac{1}{2}\)(c2 + a2 – b2) – \(\frac{1}{2}\)(b2 + c2 – a2)
= \(\frac{1}{2}\)(c2 + a2 – b2 – b2 – c2 + a2)
= \(\frac{1}{2}\)(2a2 – 2b2) = a2 – b2 = RHS.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(v) \(\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}\) .
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 20
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 21

(vi) \(\frac{\cos 2 \mathrm{~A}}{a^{2}}-\frac{\cos 2 \mathrm{~B}}{b^{2}}=\frac{1}{a^{2}}-\frac{1}{b^{2}}\).
Solution:
By sine rule,
\(\frac{\sin \mathrm{A}}{a}=\frac{\sin \mathrm{B}}{b}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 22

(vii) \(\frac{b-c}{a}=\frac{\tan \frac{B}{2}-\tan \frac{C}{2}}{\tan \frac{B}{2}+\tan \frac{C}{2}}\)
Solution:
By sine rule,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 23
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 24
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 25
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 26
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 27

Question 12.
In ∆ABC if a2, b2, c2, are in A.P. then cot\(\frac{A}{2}\), cot\(\frac{B}{2}\), cot\(\frac{C}{2}\) are also in A.P.
Question is modified
In ∆ABC if a, b, c, are in A.P. then cot\(\frac{A}{2}\), cot\(\frac{B}{2}\), cot\(\frac{C}{2}\) are also in A.P.
Solution:
a, b, c, are in A.P.
∴ 2b = a + c …(1)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 28
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 29
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 30
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 31

Question 13.
In ∆ABC if ∠C = 90º then prove that sin(A – B) = \(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\)
Solution:
In ∆ABC, if ∠C = 90º
∴ c2 = a2 + b2 …(1)
By sine rule,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 32
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 33

Question 14.
In ∆ABC if \(\frac{\cos A}{a}=\frac{\cos B}{b}\), then show that it is an isosceles triangle.
Solution:
Given : \(\frac{\cos A}{a}=\frac{\cos B}{b}\) ….(1)
By sine rule,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 34
∴ sin A cos B = cos A sinB
∴ sinA cosB – cosA sinB = 0
∴ sin (A – B) = 0 = sin0
∴ A – B = 0 ∴ A = B
∴ the triangle is an isosceles triangle.

Question 15.
In ∆ABC if sin2A + sin2B = sin2C then prove that the triangle is a right angled triangle.
Question is modified
In ∆ABC if sin2A + sin2B = sin2C then show that the triangle is a right angled triangle.
Solution:
By sine rule,
\(\frac{\sin \mathrm{A}}{a}\) = \(\frac{\sin \mathrm{B}}{b}\) = \(\frac{\sin \mathrm{C}}{c}\) = k
∴ sin A = ka, sinB = kb, sin C = kc
∴ sin2A + sin2B = sin2C
∴ k2a2 + k2b2 = k2c2
∴ a2 + b2 = c2
∴ ∆ABC is a rightangled triangle, rightangled at C.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 16.
In ∆ABC prove that a2(cos2B – cos2C) + b2(cos2C – cos2A) + c2(cos2A – cos2B) = 0.
Solution:
By sine rule,
\(\frac{a}{\sin \mathrm{A}}\) = \(\frac{b}{\sin \mathrm{B}}\) = \(\frac{c}{\sin \mathrm{C}}\) = k
LHS = a2(cos2B – cos2C) + b2( cos2C – cos2A) + c2(cos2A – cos2B)
= k2sin2A [(1 – sin2B) – (1 – sin2C)] + k2sin2B [(1 – sin2C) – (1 – sin2A)] + k2sin2C[(1 – sin2A) – (1 – sin2B)]
= k2sin2A (sin2C – sin2B) + k2sin2B(sin2A – sin2C) + k2sin2C (sin2B – sin2A)
= k2(sin2A sin2C – sin2Asin2B + sin2A sin2B – sin2B sin2C + sin2B sin2C – sin2A sin2C)
= k2(0) = 0 = RHS.

Question 17.
With usual notations show that (c2 – a2 + b2) tan A = (a2 – b2 + c2) tan B = (b2 – c2 + a2) tan C.
Solution:
By sine rule,
\(\frac{a}{\sin A}\) = \(\frac{b}{\sin B}\) = \(\frac{c}{\sin C}\) = k
∴ a = fksinA, b = ksinB, c = ksinC
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 35
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 36
From (1), (2) and (3), we get
(c2 – a2 + b2) tan A = (a2 – b2 + c2) tan B
= (b2 – c2 + a2) tan C.

Question 18.
In ∆ABC, if a cos2\(\frac{C}{2}\) + c cos2\(\frac{A}{2}\) = \(\frac{3 b}{2}\), then prove that a , b ,c are in A.P.
Solution:
a cos2\(\frac{C}{2}\) + c cos2\(\frac{A}{2}\) = \(\frac{3 b}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 37
∴ a + c + b = 3b …[∵ a cos C + c cos A = b]
∴ a + c = 2b
Hence, a, b, c are in A.P.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 19.
Show that 2 sin-1\(\left(\frac{3}{5}\right)\) = tan-1\(\left(\frac{24}{7}\right)\).
Solution:
Let sin2\(\left(\frac{3}{5}\right)\) = x.
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 38
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 39
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 40
∴ tan-1\(\left(\frac{24}{7}\right)\) = RHS

Question 20.
Show that tan-1\(\left(\frac{1}{5}\right)\) + tan-1\(\left(\frac{1}{7}\right)\) + tan-1\(\left(\frac{1}{3}\right)\) + tan-1\(\left(\frac{1}{8}\right)\) = \(\frac{\pi}{4}\).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 41
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 42

Question 21.
Prove that tan-1\(\sqrt {x}\) = \(\frac{1}{2}\) cos-1\(\left(\frac{1-x}{1+x}\right)\), if x ∈ [0, 1].
Solution:
Let tan-1\(\sqrt {x}\) = y
∴ tan y = \(\sqrt {x}\) ∴ x = tan2y
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 43

Question 22.
Show that \(\frac{9 \pi}{8}-\frac{9}{4}\) sin-1\(\frac{1}{3}\) = \(\frac{9}{4}\) sin-1\(\frac{2 \sqrt{2}}{3}\).
Question is modified
Show that \(\frac{9 \pi}{8}-\frac{9}{4}\) sin-1\(\left(\frac{1}{3}\right)\) = \(\frac{9}{4}\) sin-1\(\left(\frac{2 \sqrt{2}}{3}\right)\).
Solution:
We have to show that
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 44
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 45

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 23.
Show that
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 46
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 47
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 48
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 49

Question 24.
If sin(sin-1\(\frac{1}{5}\) + cos-1x) = 1, then find the value of x.
Solution:
sin(sin-1\(\frac{1}{5}\) = 1
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 50

Question 25.
If tan-1\(\left(\frac{x-1}{x-2}\right)\) + tan-1\(\left(\frac{x+1}{x+2}\right)\) = \(\frac{\pi}{4}\) then find the value of x.
Solution:
tan-1\(\left(\frac{x-1}{x-2}\right)\) + tan-1\(\left(\frac{x+1}{x+2}\right)\) = \(\frac{\pi}{4}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 51
∴ x = ±\(\frac{1}{\sqrt{2}}\).

Question 26.
If 2 tan-1(cos x ) = tan-1(cosec x) then find the value of x.
Solution:
2 tan-1(cos x ) = tan-1(cosec x)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 52

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 27.
Solve: tan-1\(\left(\frac{1-x}{1+x}\right)\) = \(\frac{1}{2}\)(tan-1x), for x > 0.
Solution:
tan-1\(\left(\frac{1-x}{1+x}\right)\) = \(\frac{1}{2}\)(tan-1x)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 53
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 54

Question 28.
If sin-1(1 – x) – 2sin-1x = \(\frac{\pi}{2}\), then find the value of x.
Solution:
sin-1(1 – x) – 2sin-1x = \(\frac{\pi}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 55
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 56

Question 29.
If tan-12x + tan-13x = \(\frac{\pi}{4}\), then find the value of x.
Question is modified
If tan-12x + tan-13x = \(\frac{\pi}{2}\), then find the value of x.
Solution:
tan-12x + tan-13x = \(\frac{\pi}{4}\)
∴ tan-1\(\left(\frac{2 x+3 x}{1-2 x \times 3 x}\right)\) = tan\(\frac{\pi}{4}\), where 2x > 0, 3x > 0
∴ \(\frac{5 x}{1-6 x^{2}}\) = tan\(\frac{\pi}{4}\) = 1
∴ 5x = 1 – 6x2
∴ 6x2 + 5x – 1 = 0
∴ 6x2 + 6x – x – 1 = 0
∴ 6x(x +1) – 1(x + 1) = 0
∴ (x + 1)(6x – 1) = 0
∴ x = -1 or x = \(\frac{1}{6}\)
But x > 0 ∴ x ≠ -1
Hence, x = \(\frac{1}{6}\)

Question 30.
Show that tan-1\(\frac{1}{2}\) – tan-1\(\frac{1}{4}\) = tan-1\(\frac{2}{9}\).
Solution:
LHS = tan-1\(\frac{1}{2}\) – tan-1\(\frac{1}{4}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 57

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 31.
Show that cot-1\(\frac{1}{3}\) – tan-1\(\frac{1}{3}\) = cot-1\(\frac{3}{4}\).
Solution:
LHS = cot-1\(\frac{1}{3}\) – tan-1\(\frac{1}{3}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 58

Question 32.
Show that tan-1\(\frac{1}{2}\) = \(\frac{1}{3}\) tan-1\(\frac{11}{2}\).
Solution:
We have to show that
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 59
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 60

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 33.
Show that cos-1\(\frac{\sqrt{3}}{2}\) + 2sin-1\(\frac{\sqrt{3}}{2}\) = \(\frac{5 \pi}{6}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 61

Question 34.
Show that 2cot-1\(\frac{3}{2}\) + sec-1\(\frac{13}{12}\) = \(\frac{\pi}{2}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 62
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 63
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 64

Question 35.
Prove the following :
(i) cos-1 x = tan-1\(\frac{\sqrt{1-x^{2}}}{x}\), if x < 0.
Question is modified
cos-1 x = tan-1\(\left(\frac{\sqrt{1-x^{2}}}{x}\right)\), if x > 0.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 65

(ii) cos-1 x = π + tan-1\(\frac{\sqrt{1-x^{2}}}{x}\), if x < 0.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 66
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 67

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 36.
If |x| < 1 , then prove that 2tan-1 x = tan-1\(\frac{2 x}{1-x^{2}}\) = sin-1\(\frac{2 x}{1+x^{2}}\) = cos-1\(\frac{1-x^{2}}{1+x^{2}}\)
Question is modified
If |x| < 1 , then prove that 2tan-1 x = tan-1\(\left(\frac{2 x}{1-x^{2}}\right)\) = sin-1\(\left(\frac{2 x}{1+x^{2}}\right)\) = cos-1\(\left(\frac{1-x^{2}}{1+x^{2}}\right)\)
Solution:
Let tan-1x = y
Then, x = tany
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 68
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 69

Question 37.
If x, y, z, are positive then prove that tan-1\(\frac{x-y}{1+x y}\) + tan-1\(\frac{y-z}{1+y z}\) + tan-1\(\frac{z-x}{1+z x}\) = 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 70

Question 38.
If tan-1 x + tan-1 y + tan-1 z = \(\frac{\pi}{2}\) then, show that xy + yz + zx = 1
Solution:
tan-1 x + tan-1 y + tan-1 z = \(\frac{\pi}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 71
∴ 1 – xy – yz – zx = 0
∴ xy + yz + zx = 1.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 39.
If cos-1 x + cos-1 y + cos-1 z = π then show that x2 + y2 + z2 + 2xyz = 1.
Solution:
0 ≤ cos-1x ≤ π and
cos-1x + cos-1y+ cos-1z = 3π
∴ cos-1x = π, cos-1y = π and cos-1z = π
∴ x = y = z = cosπ = -1
∴ x2 + y2 + z2 + 2xyz
= (-1)2 + (-1)2 + (-1)2 + 2(-1)(-1)(-1)
= 1 + 1 + 1 – 2
= 3 – 2 = 1.

Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 72

Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 73

12th Maharashtra State Board Maths Solutions Pdf Part 1

Trigonometric Functions Class 12 Maths 1 Exercise 3.3 Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 3 Trigonometric Functions Ex 3.3 Questions and Answers.

12th Maths Part 1 Trigonometric Functions Exercise 3.3 Questions And Answers Maharashtra Board

Question 1.
Find the principal values of the following :
(i) sin-1\(\left(\frac{1}{2}\right)\)
Solution:
The principal value branch of sin-1x is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).
Let sin-1\(\left(\frac{1}{2}\right)\) = ∝, where \(\frac{-\pi}{2}\) ≤ ∝ ≤ \(\frac{\pi}{2}\)
∴ sin∝ = \(\frac{1}{2}\) = sin\(\frac{\pi}{6}\)
∴ ∝ = \(\frac{\pi}{6}\) …[∵ – \(\frac{\pi}{2}\) ≤ \(\frac{\pi}{6}\) ≤ \(\frac{\pi}{2}\)]
∴ the principal value of sin-1\(\left(\frac{1}{2}\right)\) is \(\frac{\pi}{6}\).

(ii) cosec-1(2)
Solution:
The principal value branch of cosec-1x is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) – {0}.
Let cosec-1(2) = ∝, where \(\frac{-\pi}{2}\) ≤ ∝ ≤ \(\frac{\pi}{2}\), ∝ ≠ 0
∴ cosec-1 ∝ = 2 = cosec\(\frac{\pi}{6}\)
∴ ∝ = \(\frac{\pi}{6}\) …[∵ –\(\frac{\pi}{2}\) ≤ \(\frac{\pi}{6}\) ≤ \(\frac{\pi}{2}\)]
∴ the principal value of cosec-1(2) is \(\frac{\pi}{6}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) tan-1(-1)
Solution:
The principal value branch of tan-1x is \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\)
Let tan-1(-1) = ∝, where \(\frac{-\pi}{2}\) < ∝ < \(\frac{\pi}{2}\)
∴ tan∝ = -1 = -tan\(\frac{\pi}{4}\)
∴ tan∝ = tan\(\left(-\frac{\pi}{4}\right)\) …[∵ tan(-θ) = -tanθ]
∴ ∝ = –\(\frac{\pi}{4}\) …[∵ –\(\frac{\pi}{2}\) < \(\frac{-\pi}{4}\) < \(\frac{\pi}{2}\)]
∴ the principal value of tan-1(-1) is –\(\frac{\pi}{4}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) tan-1(-\(\sqrt {3}\))
Solution:
The principal value branch of tan-1x is \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\).
Let tan-1(-\(\sqrt {3}\)) = ∝, where \(\frac{-\pi}{2}\) < ∝ < \(\frac{\pi}{2}\)
∴ tan∝ = –\(\sqrt {3}\) = -tan\(\frac{\pi}{3}\)
∴ tan∝ = tan\(\left(-\frac{\pi}{3}\right)\) …[∵ tan(-θ) = -tanθ]
∴ ∝ = –\(\frac{\pi}{3}\) …[∵ –\(\frac{\pi}{2}\) < \(\frac{-\pi}{3}\) < \(\frac{\pi}{2}\)]
∴ the principal value of tan-1(-\(\sqrt {3}\)) is –\(\frac{\pi}{3}\).

(v) sin-1 \(\left(\frac{1}{\sqrt{2}}\right)\)
Solution:
The principal value branch of sin-1x is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).
Let sin-1 \(\left(\frac{1}{\sqrt{2}}\right)\) = ∝, where \(\frac{-\pi}{2}\) < ∝ < \(\frac{\pi}{2}\)
∴ sin∝ = \(\left(\frac{1}{\sqrt{2}}\right)\) = sin\(\frac{\pi}{4}\)
∴ ∝ = \(\frac{\pi}{4}\) …[∵ –\(\frac{\pi}{2}\) ≤ \(\frac{\pi}{4}\) ≤ \(\frac{\pi}{2}\)]
∴ the principal value of sin-1 \(\left(\frac{1}{\sqrt{2}}\right)\) is \(\frac{\pi}{4}\).

(vi) cos-1\(\left(-\frac{1}{2}\right)\)
Solution:
The principal value branch of cos-1x is (0, π).
Let cos-1\(\left(-\frac{1}{2}\right)\) = ∝, where 0 ≤ ∝ ≤ π
∴ cos∝ = \(-\frac{1}{2}\) = -cos\(\frac{\pi}{3}\)
∴ cos∝ = cos\(\left(\pi-\frac{\pi}{3}\right)\) …[∵ cos(π – θ) = -cosθ)
∴ cos∝ = cos\(\frac{2 \pi}{3}\)
∴ ∝ = \(\frac{2 \pi}{3}\) …[∵ 0 ≤ \(\frac{2 \pi}{3}\) ≤ π]
∴ the principal value of cos-1\(\left(-\frac{1}{2}\right)\) is \(\frac{2 \pi}{3}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 2.
Evaluate the following :
(i) tan-1(1) + cos-1\(\left(\frac{1}{2}\right)\) + sin-1\(\left(\frac{1}{2}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 1
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 2

(ii) cos-1\(\left(\frac{1}{2}\right)\) + 2 sin-1\(\left(\frac{1}{2}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 3
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 4

(iii) tan-1\(\sqrt {3}\) – sec-1(-2)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 5
∴ tan-1\(\sqrt {3}\) – sec-1(-2)
= \(\frac{\pi}{3}-\frac{2 \pi}{3}\) …[By (1) and (2)]
= –\(\frac{\pi}{3}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) cosec-1( \(-\sqrt{2}\)) + cot-1(\(\sqrt{3}\))
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 6
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 7

Question 3.
Prove the following :
(i) sin-1\(\left(\frac{1}{\sqrt{2}}\right)\) – 3sin-1\(\left(\frac{\sqrt{3}}{2}\right)\) = –\(-\frac{3 \pi}{4}\)
Question is modified.
sin-1\(\left(\frac{1}{\sqrt{2}}\right)\) – 3sin-1\(\left(\frac{\sqrt{3}}{2}\right)\) = –\(\frac{3 \pi}{4}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 8
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 9

(ii) sin-1\(\left(-\frac{1}{2}\right)\) + cos-1\(\left(-\frac{\sqrt{3}}{2}\right)\) = cos-1\(\left(-\frac{1}{2}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 10
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 11
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 12

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) sin-1\(\left(\frac{3}{5}\right)\) + cos-1\(\left(\frac{12}{13}\right)\) = sin-1\(\left(\frac{56}{65}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 13
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 14

(iv) cos-1\(\left(\frac{3}{5}\right)\) + cos-1\(\left(\frac{4}{5}\right)\) = \(\frac{\pi}{2}\)
Solution:
Let cos-1\(\left(\frac{3}{5}\right)\) = x
∴ cosx = \(\left(\frac{3}{5}\right)\), where 0 < x < \(\frac{\pi}{2}\) ∴ sinx > 0
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 15

(v) tan-1\(\left(\frac{1}{2}\right)\) + tan-1\(\left(\frac{1}{3}\right)\) = \(\frac{\pi}{4}\)
Solution:
LHS = tan-1\(\left(\frac{1}{2}\right)\) + tan-1\(\left(\frac{1}{3}\right)\)
= tan-1\(\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2} \times \frac{1}{3}}\right)\)
= tan-1\(\left(\frac{3+2}{6-1}\right)\) = tan-1(1)
= tan-1\(\left(\tan \frac{\pi}{4}\right)\) = \(\frac{\pi}{4}\)
= RHS.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vi) 2 tan-1\(\left(\frac{1}{3}\right)\) = tan-1\(\left(\frac{3}{4}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 16
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 17

(vii) tan-1\(\left[\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}\right]\) = \(\frac{\pi}{4}\) + θ if θ ∈ \(\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 18

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(viii) tan-1\(\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\frac{\theta}{2}\), if θ ∈ (0, π)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 19

= \(\frac{\theta}{2}\) …[∵ tan-1(tanθ) = θ]
= RHS.

12th Maharashtra State Board Maths Solutions Pdf Part 1

Trigonometry – I Class 11 Maths 1 Miscellaneous Exercise 2 Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 11 Maths Solutions Pdf Chapter 2 Trigonometry – I Miscellaneous Exercise 2 Questions and Answers.

11th Maths Part 1 Trigonometry – I Miscellaneous Exercise 2 Questions And Answers Maharashtra Board

I. Select the correct option from the given alternatives.

Question 1.
The value of the expression
cos1°. cos2°. cos3° … cos 179° =
(A) -1
(B) 0
(C) \(\frac{1}{\sqrt{2}}\)
(D) 1
Answer:
(B) 0

Explanation:
cos 1° cos 2° cos 3° … cos 179°
= cos 1° cos 2° cos 3° … cos 90°… cos 179°
= 0 …[∵ cos 90° = 0]

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2

Question 2.
\(\frac{\tan \mathrm{A}}{1+\sec \mathrm{A}}+\frac{1+\sec \mathrm{A}}{\tan \mathrm{A}}\) is equal to
(A) 2cosec A
(B) 2 sec A
(C) 2 sin A
(D) 2 cos A
Answer:
(A) 2cosec A

Explanation:
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 1

Question 3.
If α is a root of 25cos2 θ + 5cos θ – 12 = 0, \(\frac{\pi}{2}\) < α < π, then sin 2α is equal to
(A) \(-\frac{24}{25}\)
(B) \(-\frac{13}{18}\)
(C) \(\frac{13}{18}\)
(D) \(\frac{24}{25}\)
Answer:
(A) \(-\frac{24}{25}\)

Explanation:

25 cos2 θ + 5 cos θ – 12 = 0
∴ (5cos θ + 4) (5 cos θ – 3) = 0
∴ cos θ = \(-\frac{4}{5}\) or cos θ = \(\frac{3}{5}\)
Since \(\frac{\pi}{2}\) < α < π,
cos α < 0
∴ cos α = \(-\frac{4}{5}\)
sin2 α = 1 – cos2 α = 1 – \(\frac{16}{25}=\frac{9}{25}\)
∴ sin α = \(\pm \frac{3}{5}\)
Since \(\frac{\pi}{2}\) < α < π sin α > 0
∴ sin α = 3/5
sin 2 α = 2 sin α cos α
= \(2\left(\frac{3}{5}\right)\left(\frac{-4}{5}\right)=-\frac{24}{25}\)

Question 4.
If θ = 60°, then \(\frac{1+\tan ^{2} \theta}{2 \tan \theta}\) is equal to
(A) \(\frac{\sqrt{3}}{2}\)
(B) \(\frac{2}{\sqrt{3}}\)
(C) \(\frac{1}{\sqrt{3}}\)
(D) \(\sqrt{3}\)
Answer:
(B) \(\frac{2}{\sqrt{3}}\)

Explanation:
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 2

Question 5.
If sec θ = m and tan θ = n, then \(\frac{1}{m}\left\{(m+n)+\frac{1}{(m+n)}\right\}\) is equal to
(A) 2
(B) mn
(C) 2m
(D) 2n
Answer:
(A) 2
Explanation:
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 3

Question 6.
If cosec θ + cot θ = \(\frac{5}{2}\), then the value of tan θ is
(A) \(\frac{14}{25}\)
(B) \(\frac{20}{21}\)
(C) \(\frac{21}{20}\)
(D) \(\frac{15}{16}\)
Answer:
(B) \(\frac{20}{21}\)

Explanation:
cosec θ + cot θ = \(\frac{5}{2}\) …………….(i)
cosec2 θ – cot2 θ = 1
∴ (cosec θ + cot θ) (cosec θ – cot θ) = 1
∴ \(\frac{5}{2}\) (cosec θ – cot θ) = 1
∴ cosec θ – cot θ = \(\frac{2}{5}\) …(ii)
Subtracting (ii) from (i), we get
2 cot θ = \(\frac{5}{2}-\frac{2}{5}=\frac{21}{10}\)
∴ cot θ = \(\frac{21}{20}\)
∴ tan θ = \(\frac{20}{21}\)

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2

Question 7.
\(1-\frac{\sin ^{2} \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}-\frac{\sin \theta}{1-\cos \theta}\) equals
(A) 0
(B) 1
(C) sin θ
(D) cos θ
Answer:
(D) cos θ

Explanation:
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 4

Question 8.
If cosec θ – cot θ = q, then the value of cot θ is
(A) \(\frac{2 q}{1+q^{2}}\)
(B) \(\frac{2 q}{1-q^{2}}\)
(C) \(\frac{1-\mathrm{q}^{2}}{2 \mathrm{q}}\)
(D) \(\frac{1+q^{2}}{2 q}\)
Answer:
(C) \(\frac{1-\mathrm{q}^{2}}{2 \mathrm{q}}\)

Explanation:

cosec θ – cot θ = q ……(i)
cosec2 θ – cot2 θ = 1
∴ (cosec θ + cot θ) (cosec θ – cot θ) = 1
∴ (cosec θ + cot θ)q = 1
∴ cosec θ + cot θ = 1/q …….(ii)
Subtracting (i) from (ii), we get
2cot θ = \(\frac{1}{\mathrm{q}}-\mathrm{q}\)
∴ cot θ = \(\frac{1-q^{2}}{2 q}\)

Question 9.
The cotangent of the angles \(\frac{\pi}{3}, \frac{\pi}{4}\) and \(\frac{\pi}{6}\) are in
(A) A.P.
(B) G.P.
(C) H.P.
(D) Not in progression
Answer:
(B) G.P.

Explanation:
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 5

Question 10.
The value of tan 1°.tan 2° tan 3° equal to
(A) -1
(B) 1
(C) \(\frac{\pi}{2}\)
(D) 2
Answer:
(B) 1

Explanation:

tan1° tan2° tan3° … tan89°
= (tan 1° tan 89°) (tan 2° tan 88°)
…(tan 44° tan 46°) tan 45°
= (tan 1 ° cot 1 °) (tan 2° cot 2°)
…(tan 44° cot 44°) . tan 45°
…tan(∵ 90° – θ) = cot θ]
= 1 x 1 x 1 x … x 1 x tan 45° =1

II. Answer the following:

Question 1.
Find the trigonometric functions of:
90°, 120°, 225°, 240°, 270°, 315°, -120°, -150°, -180°, -210°, -300°, -330°
Solution:
Angle of measure 90° :
Let m∠XOA = 90°
Its terminal arm (ray OA)
intersects the standard, unit circle at P(0, 1).
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 6
∴ x = 0 and y = 1
sin 90° = y = 1
cos 90° = x = 0
tan 90° = \(\frac{y}{x}=\frac{1}{0}\), which is not defined
cosec 90° = \(\frac{1}{y}=\frac{1}{1}\) = 1
sec 90° = \(\frac{1}{x}=\frac{1}{0}\), which is not defined
cot 90° = \(\frac{x}{y}=\frac{0}{1}\) = 0

Angle of measure 120° :
Let m∠XOA =120°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30° – 60° – 90° triangle.
OP = 1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 7
Since point P lies in the 2nd quadrant, x < 0, y > 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 8

[Note: Answer given in the textbook of tan 120° is \(\frac{-1}{\sqrt{3}}\) and cot 120° is \(-\sqrt{3}\). However, as per our \(-\sqrt{3}\) calculation the answer of tan 120° is \(-\sqrt{3}\) and cot 120° is \(-\frac{1}{\sqrt{3}}\)

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2

Angle of measure 225° :
Let m∠XOA = 225°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
ΔOMP is a 45° – 45° – 90° triangle.
OP = 1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 9
Since point P lies in the 3rd quadrant, x < 0, y < 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 10

Angle of measure 240° :
Let m∠XOA = 240°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
ΔOMP is a 30° – 60° – 90° triangle.
OP = 1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 11
Since point P lies in the 3rd quadrant, x < 0, y < 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 12

Angle of measure 270° :
Let m∠XOA = 270°
Its terminal arm (ray OA) intersects the standard unit circle at P(0, – 1).
x = 0 andy = – 1
sin 270° = y = -1
cos 270° = x = 0
tan 270° = \(\frac{y}{x}\)
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 13

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2

Angle of measure 315° :
Let m∠XOA = 315°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 45° – 45° – 90° triangle.
OP = 1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 14
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 15
[Note: Answer given in the textbook of cot 315° is 1. However, as per our calculation it is -1.]

Angle of measure (-120°):
Let m∠XOA = – 120°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30° – 60° – 90° triangle.
OP = 1,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 38
Since point P lies in the 3rd quadrant, x < 0, y < 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 39
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 40

Angle of measure (-150°) :
Let m∠XOA = – 150°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30° – 60° – 90° triangle.
OP = 1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 16
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 17

Angle of measure (-180°):
Let m∠XOA = – 180°
Its terminal arm (ray OA) intersects the standard unit circle at P(- 1, 0).
∴ x = – 1 andy = 0
sin (-180°) = y = 0
cos (-180°) = x
= -1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 18
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 19

Angle of measure (- 210°):
Let m∠XOA = -210°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30° – 60° – 90° triangle.
OP = 1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 20
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 21

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2

Angle of measure (- 300°):
Let m∠XOA = – 300° Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
ΔOMP is a 30° – 60° – 90° triangle.
OP = 1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 22
Since point P lies in the 1st quadrant, x>0,y>0
x = OM = \(\frac{1}{2}\) and
y = PM = \(\frac{\sqrt{3}}{2}\)
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 24
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 23

Angle of measure (- 330°):
Let m∠XOA = – 330°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30° – 60° – 90° triangle.
OP= 1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 25
Since point P lies in the 1st quadrant, x > 0, y > 0
∴ x = OM = \(\frac{\sqrt{3}}{2}\) and y = PM = \(\frac{1}{2}\)
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 26

Question 2.
State the signs of:
i. cosec 520°
ii. cot 1899°
iii. sin 986°
Solution:
i. 520° =360° + 160°
∴ 520° and 160° are co-terminal angles.
Since 90° < 160° < 180°,
160° lies in the 2nd quadrant.
∴ 520° lies in the 2nd quadrant,
∴ cosec 520° is positive.

ii. 1899° = 5 x 360° + 99°
∴ 1899° and 99° are co-terminal angles.
Since 90° < 99° < 180°,
99° lies in the 2nd quadrant.
∴ 1899° lies in the 2nd quadrant.
∴ cot 1899° is negative.

iii. 986° = 2x 360° + 266°
∴ 986° and 266° are co-terminal angles.
Since 180° < 266° < 270°,
266° lies in the 3rd quadrant.
∴ 986° lies in the 3rd quadrant.
∴ sin 986° is negative.

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2

Question 3.
State the quadrant in which 6 lies if
i. tan θ < 0 and sec θ > 0
ii. sin θ < 0 and cos θ < 0
iii. sin θ > 0 and tan θ < 0
Solution:
i. tan θ < 0 tan θ is negative in 2nd and 4th quadrants, sec θ > 0
sec θ is positive in 1st and 4th quadrants.
∴ θ lies in the 4th quadrant.

ii. sin θ < 0
sin θ is negative in 3rd and 4th quadrants, cos θ < 0
cos θ is negative in 2nd and 3rd quadrants.
.’. θ lies in the 3rd quadrant.

iii. sin θ > 0
sin θ is positive in 1st and 2nd quadrants, tan θ < 0
tan θ is negative in 2nd and 4th quadrants.
∴ θ lies in the 2nd quadrant.

Question 4.
Which is greater?
sin (1856°) or sin (2006°)
Solution:
1856° = 5 x 360° + 56°
∴ 1856° and 56° are co-terminal angles.
Since 0° < 56° < 90°, 56° lies in the 1st quadrant.
∴ 1856° lies in the 1st quadrant,
∴ sin 1856° >0 …(i)
2006° = 5 x 360° + 206°
∴ 2006° and 206° are co-terminal angles.
Since 180° < 206° < 270°,
206° lies in the 3rd quadrant.
∴ 2006° lies in the 3rd quadrant,
∴ sin 2006° <0 …(ii)
From (i) and (ii),
sin 1856° is greater.

Question 5.
Which of the following is positive?
sin(-310°) or sin(310°)
Solution:
Since 270° <310° <360°,
310° lies in the 4th quadrant.
∴ sin (310°) < 0
-310° = -360°+ 50°
∴ 50° and – 310° are co-terminal angles.
Since 0° < 50° < 90°, 50° lies in the 1st quadrant.
∴ – 310° lies in the 1st quadrant.
∴ sin (- 310°) > 0
∴ sin (- 310°) is positive.

Question 6.
Show that 1 – 2sin θ cos θ ≥ 0 for all θ ∈ R.
Solution:
1 – 2 sin θ cos θ
= sin2 θ + cos2 θ – 2sin θ cos θ
= (sin θ – cos θ)2 ≥ 0 for all θ ∈ R

Question 7.
Show that tan2 θ + cot2 θ ≥ 2 for all θ ∈ R.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 27

Question 8.
If sin θ = \(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\), then find the values of cos θ, tan θ in terms of x and y.
Solution:
Given, sin θ = \(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\)
we know that
cos2θ = 1 – sin2 θ
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 28

[Note: Answer given in the textbook of cos θ = \(\frac{2 x y}{x^{2}+y^{2}}\) and tan θ = \(. However, as per our calculation the answer of cos θ = ± [latex]\frac{2 x y}{x^{2}+y^{2}}\) and tan θ = ± \(\frac{x^{2}-y^{2}}{2 x y}\). ]

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2

Question 9.
If sec θ = \(\sqrt{2}\) and \(\frac{3 \pi}{2}\) < θ < 2π, then evaluate \(\frac{1+\tan \theta+{cosec} \theta}{1+\cot \theta-{cosec} \theta}\)
Solution:
Given sec θ = \(\sqrt{2}\)
We know that,
tan2 θ = sec2 θ – 1
= (\(\sqrt{2}\)) – 1
= 2 – 1 = 1
∴ tan θ = ±1
Since \(\frac{3 \pi}{2}\) < θ < 2π
θ lies in the 4th quadrant.
∴ tan θ < 0
∴ tan θ = -1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 29

Question 10.
Prove the following:

i. sin2A cos2 B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1
Solution:
L.H.S. = sin2A cos2 B + cos2A sin2B + cos2A cos2B + sin2A sin2B
= sin2A (cos2 B + sin2 B) + cos2 A (sin2 B + cos2 B)
= sin2A(1) + cos2A(1)
= 1 = R.H.S.

ii. \(\frac{(1+\cot \theta+\tan \theta)(\sin \theta-\cos \theta)}{\sec ^{3} \theta-{cosec}^{3} \theta}=\sin ^{2} \theta \cos ^{2} \theta\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 30

iii. L.H.S. = \(\left(\tan \theta+\frac{1}{\cos \theta}\right)^{2}+\left(\tan \theta-\frac{1}{\cos \theta}\right)^{2}=2\left(\frac{1+\sin ^{2} \theta}{1-\sin ^{2} \theta}\right)\)
Solution:
L.H.S. = \(\left(\tan \theta+\frac{1}{\cos \theta}\right)^{2}+\left(\tan \theta-\frac{1}{\cos \theta}\right)^{2}\)
= (tanθ + secθ)2 + (tanθ – secθ)2
= tan2 θ + 2 tan θ sec θ + sec2 θ
+ tan2 θ – 2 tan θ sec θ +.sec2 θ
= 2(tan2 θ + sec2 θ)

iv. 2.sec2 θ – sec4 θ – 2.cosec2 θ + cosec4 θ = cot4 θ – tan4 θ
Solution:
LHS.
= 2.sec2 θ – sec4 θ – 2.cosec2 θ + cosec4 θ =  = 2 sec2 θ – (sec2 θ)2 – 2cosec2 θ + (cosec2 θ)2
= 2(1+ tan2 θ) – (1+ tan2 θ)2 – 2(1+ cot2 θ)
+ (1+ cot2 θ)2
= 2 + 2tan2 θ – (1 + 2tan2 θ + tan4 θ)
– 2 – 2cot2 θ + 1 + 2cot2 θ + cot4 θ
= 2 + 2.tan2 θ – 1 – 2 tan2 θ – tan4 θ – 2
– 2 cot2 θ + 1 + 2 cot2 θ + cot4 θ
= cot4 θ – tan4 θ = R.H.S.

v. sin4 θ + cos4 θ = sin4 θ + cos4 θ
Solution:
L.H.S. = sin4 θ + cos4 θ
= (sin2 θ)2 + (cos2 θ)2 = (sin2 θ + cos2 θ)2 – 2sin2 θ cos2 θ
… [ v a2 + b2 = (a + b)2 – 2ab]
= 1 – 2sin2 θ cos2 θ
= R.H.S.

vi. 2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) + 1 = 0
L.H.S =
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) + 1=0
= sin6 θ + cos6 θ
= (sin2 θ)3 + (cos2 θ)3 = (sin2 θ + cos2 θ)3
– 3 sin2 θ cos2 θ (sin2 0 + cos2 0)
…[••• a3 + b3 = (a + b)3 – 3ab(a + b)]
= (1)3 – 3 sin2 θ cos2 θ(1)
= 1-3 sin2 θ cos2 θ sin4 θ + cos4 θ
= (sin2 θ)2 + (cos2 θ)2 = (sin2 θ + cos2 θ)2 – 2 sin2 θ cos2 θ
…[Y a2 + b2 = (a + b)2 – 2ab]
= 1-2 sin2 θ cos2 θ
L.H.S.= 2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) + 1
= 2(1-3 sin2 θ cos2 θ) -3(1 – 2 sin2 θ cos2 θ) + 1
= 2-6 sin2 θ cos2 θ – 3 + 6 sin2 θ cos2 θ + 1 = c
= R.H.S.

vii. cos4 θ – sin4 θ + 1 = 2cos2θ
L.H.S. = cos4 θ – sin4 θ + 1
= (cos2 θ)2 – (sin2 θ)2 + 1 = (cos2θ + sin2θ) c(os2 θ – sin2θ) +1
= (1) (cos2θ – sin2θ) + 1 = cos2 θ + (1 – sin2θ)
= cos2 θ + cos2θ = 2cos2θ = R.H.S.

viii. sin4θ + 2sin2θ cos2θ = 1 – cos4θ
L.H.S. = sin4θ + 2sin2θ cos2θ = sin2θ(sin2θ + 2cos2θ)
= (sin2θ) (sin2θ + cos2θ + cos2θ) = (1 – cos2θ) (1 + cos2θ)
= 1 – cos4θ = R.H.S.

ix. \(\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}+\frac{\sin ^{3} \theta-\cos ^{3} \theta}{\sin \theta-\cos \theta}=2\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 31
= (sin2 θ + cos2 θ – sin θ cos θ) + (sin2 θ + cos2 θ + sinθ cosθ)
= 2 (sin2 θ + cos2 θ)
= 2(1)
= 2 = R.H.S.

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2

x. tan2 θ – sin2 θ = sin4 θ sec2 θ
Solution:
L.H.S. = tan2 θ – sin2 θ
= \(\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\) – sin2θ
= sin2 θ (\(\frac{1}{\cos ^{2} \theta}-1 \))
= \(\frac{\sin ^{2} \theta\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta}\)
= (sin2 θ) (sin2 θ)sec2 θ
= sin4 θ sec2 θ
= R.H.S

xi. (sinθ + cosecθ)2 + (cos θ + see θ)2 = tan2 θ + cot2 θ + 7
Solution:
L.H.S. = (sinθ + cosecθ)2 + (cos θ + see θ)2
= sin 2 θ + cosec2 θ + 2sinθ cosec θ
+ cos2 θ + sec2 θ + 2sec0 cos0
= (sin2 θ + cos2 θ) + cosec2 θ + 2 + sec2 θ + 2
= 1 + (1 + cot2 θ) + 2 + (1 + tan2 θ) + 2 = tan2 θ + cot2 θ + 7
= R.H.S.

xii. sin8θ – cos8θ = (sin2 θ – cos2 θ) (1 – 2sin2 θ cos2 θ)
Solution:
L.H.S. = sin8θ – cos8θ
= (sin4θ)2 – (cos4θ)2
= (sin4θ – cos4θ) (sin4θ + cos4θ)
= [(sin2 θ)2 – (cos2 θ)2 ]
. [(sin2 θ)2 + (cos2 θ)2 ]
= (sin2 θ + cos2 θ) (sin2 θ – cos2 θ). [(sin2 θ + cos2 θ)2 – 2sin2 θ.cos2 θ] …[Y a2 + b2 = (a + b)2 – 2ab]
= (1) (sin2 θ – cos2 θ) (12 – 2sin2 θ cos2 θ)
= (sin2 θ – cos2 θ) (1 – 2sin2 θ cos2 θ)
= R.H.S.

xiii. sin6A + cos6A = 1 – 3 sin2A + 3sin4A
Soluiton:
L.H.S. = sin6A + cos6A
= (sin2 A)3 + (cos2 A)3
= (sin2 A + cos2 A)3
– 3sin2A cos2A(sin2 A + cos2 A)
…[ a3 + b3 = (a + b)3 – 3ab(a + b)]
= 13 – 3sin2A cos2A (1)
= 1 – 3sin2A cos2A
= 1 – 3 sin2A (1 – sin2A)
= 1 – 3 sin2A + 3sin4A
= R.H.S.

xiv. (1 + tanA tanB)2 + (tanA – tanB)2 = sec 2A sec2B
Solution:
L.H.S. = (1 + tanA tanB)2 + (tanA – tanB)2
= 1 + 2tanA tanB + tan2A tan2 + tan2 A- 2tanA tanB + tan2B
= 1 + tan2A + tan2 B + tan2A tan2B
= 1(1+ tan2A) + tan2 B(1 + tan2A)
= (1 + tan2A) (1 + tan2B)
= sec2A sec2B = R.H.S.

xv. \(\frac{1+\cot \theta+{cosec} \theta}{1-\cot \theta+{cosec} \theta}=\frac{{cosec} \theta+\cot \theta-1}{\cot \theta-{cosec} \theta+1}\)
Solution:
We know that cosec2θ – cot2 θ = 1
∴ (cosec θ – cot θ) (cosec θ + cot θ) = 1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 32

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2

xvi. \(\frac{\tan \theta+\sec \theta-1}{\tan \theta+\sec \theta+1}=\frac{\tan \theta}{\sec \theta+1}\)
Solution:
We know that
tan2θ = sec2 θ – 1
∴ tan θ. tanθ = (sec θ + 1)(sec θ – 1)
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 33

xvii. \(\frac{{cosec} \theta+\cot \theta-1}{{cosec} \theta+\cot \theta+1}=\frac{1-\sin \theta}{\cos \theta}\)
Solution:
We know that,
cot2 θ = cosec2 θ – 1
∴ cot θ . cot θ = (cosec θ + 1)(cosec θ – 1)
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 34

Alternate Method:
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 35

xviii. \(\frac{{cosec} \theta+\cot \theta+1}{\cot \theta+{cosec} \theta-1}=\frac{\cot \theta}{{cosec} \theta-1}\)
solution:
We know that,
cot2 θ = cosec2 θ – 1
∴ cot θ.cot θ = (cosec θ + 1) (cosec θ – 1)

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Miscellaneous Exercise 2 37

Maharashtra State Board 11th Maths Book Solutions 

Trigonometric Functions Class 12 Maths 1 Exercise 3.2 Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 3 Trigonometric Functions Ex 3.2 Questions and Answers.

12th Maths Part 1 Trigonometric Functions Exercise 3.2 Questions And Answers Maharashtra Board

Question 1.
Find the Cartesian co-ordinates of the point whose polar co-ordinates are :
(i) \(\left(\sqrt{2}, \frac{\pi}{4}\right)\)
Solution:
Here, r = \(\sqrt {2}\) and θ = \(\frac{\pi}{4}\)
Let the cartesian coordinates be (x, y)
Then, x = rcosθ = \(\sqrt {2}\)cos\(\frac{\pi}{4}\) = \(\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)\) = 1
y = rsinθ = \(\sqrt {2}\)sin\(\frac{\pi}{4}\) = \(\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)\) = 1
∴ the cartesian coordinates of the given point are (1, 1).

(ii) \(\left(4, \frac{\pi}{2}\right)\)
Solution:

(iii) \(\left(\frac{3}{4}, \frac{3 \pi}{4}\right)\)
Solution:
Here, r = \(\frac{3}{4}\) and θ = \(\frac{3 \pi}{4}\)
Let the cartesian coordinates be (x, y)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 1

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) \(\left(\frac{1}{2}, \frac{7 \pi}{3}\right)\)
Solution:
Here, r = \(\frac{1}{2}\) and θ = \(\frac{7 \pi}{4}\)
Let the cartesian coordinates be (x, y)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 2
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 3
∴ the cartesian coordinates of the given point are \(\left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)\)

Question 2.
Find the of the polar co-ordinates point whose Cartesian co-ordinates are.
(i) \((\sqrt{2}, \sqrt{2})\)
Solution:
Here x = \(\sqrt {2}\) and y = \(\sqrt {2}\)
∴ the point lies in the first quadrant.
Let the polar coordinates be (r, θ)
Then, r2 = x2 + y2 = (\(\sqrt {2}\) )2 + (\(\sqrt {2}\) )2 = 2 + 2 = 4
∴ r = 2 … [∵ r > 0]
cos θ = \(\frac{x}{r}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}\)
and sin θ = \(\frac{y}{r}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}\)
∴ tan θ = 1
Since the point lies in the first quadrant and
0 ≤ θ ≤ 2π, tan θ = 1 = tan\(\frac{\pi}{4}\)
∴ θ = \(\frac{\pi}{4}\)
∴ the polar coordinates of the given point are \(\left(2, \frac{\pi}{4}\right)\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) \(\left(0, \frac{1}{2}\right)\)
Solution:
Here x = 0 and y = \(\frac{1}{2}\)
the point lies on the positive side of Y-axis. Let the polar coordinates be (r, θ)
Then, r2 = x2 + y2 = (0)2 + \(\left(\frac{1}{2}\right)^{2}=0+\frac{1}{4}=\frac{1}{4}\)
∴ r = \(\frac{1}{2}\) …[∵ r > 0]
cosθ = \(\frac{x}{r}=\frac{0}{(1 / 2)}\) = 0
and sin θ = \(\frac{y}{r}=\frac{(1 / 2)}{(1 / 2)}\) = 1
Since, the point lies on the positive side of Y-axis and 0 ≤ θ ≤ 2π
cosθ = 0 = cos\(\frac{\pi}{2}\) and sinθ = 1 = sin\(\frac{\pi}{2}\)
∴ θ = \(\frac{\pi}{2}\)
∴ the polar coordinates of the given point are \(\left(\frac{1}{2}, \frac{\pi}{2}\right)\).

(iii) \((1,-\sqrt{3})\)
Solution:
Here x = 1 and y = \(-\sqrt{3}\)
∴ the point lies in the fourth quadrant.
Let the polar coordinates be (r, θ).
Then, r2 = x2 + y2 = (1)2 + (\(-\sqrt {3}\) )2 = 1 + 3 = 4
∴ r = 2 … [∵ r > 0]
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 4
∴ the polar coordinates of the given point are \(\left(2, \frac{5 \pi}{3}\right)\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) \(\left(\frac{3}{2}, \frac{3 \sqrt{3}}{2}\right)\)
Solution:

Question 3.
In ∆ABC, if ∠A = 45º, ∠B = 60º then find the ratio of its sides.
Solution:
By the sine rule,
\(\frac{a}{\sin \mathrm{A}}\) = \(\frac{b}{\sin \mathrm{B}}\) = \(\frac{c}{\sin \mathrm{C}}\)
∴ \(\frac{a}{b}=\frac{\sin A}{\sin B}\) and \(\frac{b}{c}=\frac{\sin B}{\sin C}\)
∴ a : b : c = sinA : sinB : sinC
Given ∠A = 45° and ∠B = 60°
∵ ∠A + ∠B + ∠C = 180°
∴ 45° + 60° + ∠C = 180°
∴ ∠C = 180° – 105° = 75°
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 5

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
In ∆ABC, prove that sin \(\left(\frac{\mathbf{B}-\mathbf{C}}{2}\right)=\left(\frac{\boldsymbol{b}-\boldsymbol{c}}{a}\right)\) cos \(\frac{A}{2}\).
Solution:
By the sine rule,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 6
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 7

Question 5.
With usual notations prove that 2 \(\left\{a \sin ^{2} \frac{C}{2}+c \sin ^{2} \frac{A}{2}\right\}\) = a – b + c.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 8

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 6.
In ∆ABC, prove that a3sin(B – C) + b3sin(C – A) + c3sin(A – B) = 0
Solution:
By the sine rule,
\(\frac{a}{\sin A}\) = \(\frac{b}{\sin B}\) = \(\frac{c}{\sin C}\) = k
∴ a = k sin A, b = k sin B, c = k sin C
LHS = a3sin (B – C) + b3sin (C – A) + c3sin (A – B)
= a3(sin B cos C – cos B sin C) + b3(sinCcos A – cos C sin A) + c3(sinAcosB – cos A sin B)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 9
= \(\frac{1}{2 k}\) [a2(a2 + b2 – c2) – a2(a2 + c2 – b2) + b2(b2 + c2 – a2) – b2(a2 + b2 – c2) + c2(c2 + a2 – b2) – c2(b2 + c2 – a2)]
= \(\frac{1}{2 k}\) [a4 + a2b2 – a2c2 – a4 – a2c2 + a2b2 + b4 + b2c2 – a2b2 – a2b2 – b4 + b2c2 + c4 + a2c2 – b2c2 – b2c2 – c4 + a2c2]
= \(\frac{1}{2 k}\)(0) = 0 = RHS.

Question 7.
In ∆ABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P
Solution:
By the sine rule,
\(\frac{\sin \mathrm{A}}{a}\) = \(\frac{\sin \mathrm{B}}{b}\) =\(\frac{\sin \mathrm{C}}{c}\) = k
∴ sin A = ka, sin B = kb, sin C = kc …(1)
Now, cot A, cotB, cotC are in A.P.
∴ cotC – cotB = cotB – cot A
∴ cotA + cotC = 2cotB
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 10
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 11

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
In ∆ABC, if a cos A = b cos B then prove that the triangle is right angled or an isosceles traingle.
Solution:
By the sine rule,
\(\frac{a}{\sin \mathrm{A}}\) = \(\frac{b}{\sin \mathrm{B}}\) = k
a = k sin A and b = k sin B
∴ a cos A = b cos B gives
k sin A cos A = k sin B cos B
∴ 2 sin A cos A = 2 sin B cos B
∴ sin 2A = sin 2B ∴ sin 2A – sin 2B = 0
∴ 2 cos (A + B)∙sin (A -B) = 0
∴ 2cos (π – C)∙sin(A – B) = 0 … [∵ A + B + C = π]
∴ -2 cos C∙sin (A – B) = 0
∴ cos C = 0 OR sin(A -B) = 0
∴ C = 90° OR A – B = 0
∴ C = 90° OR A = B
∴ the triangle is either rightangled or an isosceles triangle.

Question 9.
With usual notations prove that 2(bc cos A + ac cos B + ab cos C) = a2 + b2 + c2.
Solution:
LHS = 2 (bc cos A + ac cos B + ab cos C)
= 2bc cos A + 2ac cos B + 2ab cos C
= 2bc \(\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)\) + 2ac\(\left(\frac{c^{2}+a^{2}-b^{2}}{2 c a}\right)\) + 2ab\(\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)\) …(By cosine rule]
= b2 + c2 – a2 + c2 + a2 – b2 + a2 + b2 – c2 = a2 + b2 + c2 = RHS.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 10.
In △ABC, if a = 18, b = 24, c = 30 then find the values of
(i) cos A
Solution:
Given : a = 18, b = 24 and c = 30
∴ 2s = a + b + c = 18 + 24 + 30 = 72 ∴ s = 36
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 12

(ii) sin\(\frac{A}{2}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 13

(iii) cos\(\frac{A}{2}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 14

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) tan\(\frac{A}{2}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 15

(v) A(△ABC)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 16

(iv) sin A.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 17

Question 11.
In △ABC prove that (b + c – a) tan \(\frac{A}{2}\) = (c + a – b) tan\(\frac{B}{2}\) = (a + b – c) tan\(\frac{C}{2}\).
Solution:
(b + c – a) tan \(\frac{A}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 18
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 19

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 12.
In △ABC prove that sin \(\frac{A}{2}\)∙sin \(\frac{A}{2}\)∙sin \(\frac{A}{2}\) = \(\frac{[A(\triangle A B C)]^{2}}{a b c s}\)
Solution:
LHS = sin \(\frac{A}{2}\)∙sin \(\frac{B}{2}\)∙sin \(\frac{C}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 20

12th Maharashtra State Board Maths Solutions Pdf Part 1

Trigonometry – I Class 11 Maths 1 Exercise 2.2 Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 11 Maths Solutions Pdf Chapter 2 Trigonometry – I Ex 2.2 Questions and Answers.

11th Maths Part 1 Trigonometry – I Exercise 2.2 Questions And Answers Maharashtra Board

Question 1.
If 2sin A = 1 = \(\sqrt{2}\) cos B and \(\frac{\pi}{2}\) < A < π, \(\frac{3 \pi}{2}\)
Solution:
Given, 2sin A = 1
∴ sin A = 1/2
we know that,
cos2 A = 1 – sin2 A = 1 – \(\left(\frac{1}{2}\right)^{2}=1-\frac{1}{4}=\frac{3}{4}\)
∴ cos A = \(\pm \frac{\sqrt{3}}{2}\)
Since \(\frac{\pi}{2}\) < A < π
A lies in the 2nd quadrant.
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.2 1
We know that,
Sin2 B = 1 – cos2 B = 1 – \(\left(\frac{1}{\sqrt{2}}\right)^{2}\)\(\frac{1}{2}=\frac{1}{2}\)
∴ sin B = \(\pm \frac{1}{\sqrt{2}}\)
Since \(\frac{3 \pi}{2}\) < B < 2π
B lies in the 4th quadrant,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.2 2

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.2

Question 2.
If \(\) and A, B are angles in the second quadran, then prove that 4cosA + 3 cos B = -5
Solution:
Given, \(\frac{\sin \mathrm{A}}{3}=\frac{\sin \mathrm{B}}{4}=\frac{1}{5}\)
∴ sin A = \(\frac{3}{5}\) and sin B = \(\frac{4}{5}\)
We know that,
cos2 A = 1 – sin2 = 1 – \(\left(\frac{3}{5}\right)^{2}\) = 1 – \(\frac{9}{25}=\frac{16}{25}\)
∴ Cos A = ± \([{4}{5}\)
Since A lies in the second quadrant,
cos A < 0
∴ Cos A = –\(\frac{4}{5}\)
Sin B = 4/5
We know that,
cos2B = 1 – sin2B = 1 – \(\left(\frac{4}{5}\right)^{2}=1-\frac{16}{25}=\frac{9}{25}\)
∴ Cos B = ±\(\frac{4}{5}\)
Since B lies in the second quadrant, cos B < 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.2 3

Question 3.
If tan θ = \(\frac{1}{2}\), evaluate \(\frac{2 \sin \theta+3 \cos \theta}{4 \cos \theta+3 \sin \theta}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.2 4

Question 4.
Eliminate 0 from the following:
i. x = 3sec θ, y = 4tan θ
ii. x = 6cosec θ,y = 8cot θ
iii. x = 4cos θ – 5sin θ, y = 4sin θ + 5cos θ
iv. x = 5 + 6 cosec θ,y = 3 + 8 cot θ
v. x = 3 – 4tan θ,3y = 5 + 3sec θ
Solution:
i. x = 3sec θ, y = 4tan θ
∴ sec θ = \(\frac{x}{3}\) and tan θ= \(\frac{y}{4}\)
We know that,
sec2θ – tan2θ = 1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.2 5
∴ 16x2 – 9y2 = 144

ii. x = 6cosec θ and y = 8cot θ
.’. cosec θ = \(\) and cot θ = \(\)
We know that,
cosec2 θ – cot2 θ =
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.2 6
16x2 – 9y2 = 576

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.2

iii. x = 4cos θ – 5 sin θ … (i)
y = 4sin θ + 5cos θ .. .(ii)
Squaring (i) and (ii) and adding, we get
x2 + y2 = (4cos θ – 5sin θ)2 + (4sin θ + 5cos θ)2
= 16cos2θ – 40 sinθ cosθ + 25 sin2θ + 16 sin2 θ + 40sin θ cos θ + 25 cos2 θ
= 16(sin2 θ + cos2 θ) + 25(sin2 θ + cos2 θ)
= 16(1) + 25(1)
= 41

iv. x = 5 + 6cosec θ andy = 3 + 8cot θ
∴ x – 5 = 6cosec θ and y – 3 = 8cot θ
∴ cosec θ = \(\frac{x-5}{6}\) and cot θ = \(\frac{y-3}{8}\)
We know that,
cosec2 θ – cot2 θ = 1
∴ \(\left(\frac{x-5}{6}\right)^{2}-\left(\frac{y-3}{8}\right)^{2}\) = 1

v. 2x = 3 – 4tan θ and 3y = 5 + 3sec θ
∴ 2x – 3 = -4tan θ and 3y – 5 = 3sec θ
∴ tan θ = \(\frac{3-2 x}{4}\) and sec θ = \(\frac{3 y-5}{3}\)θ
We know that, sec2 θ – tan2 θ = 1
∴ \(\left(\frac{3 y-5}{3}\right)^{2}-\left(\frac{3-2 x}{4}\right)^{2}\) = 1
∴ \(\left(\frac{3 y-5}{3}\right)^{2}-\left(\frac{2 x-3}{4}\right)^{2}\) = 1

Question 5.
If 2sin2 θ + 3sin θ = 0, find the permissible values of cosθ.
Solution:
2sin2 θ + 3sin θ = 0
∴ sin θ (2sin θ + 3) = 0
∴ sin θ = 0 or sin θ = \(\frac{-3}{2}\)
Since – 1 ≤ sin θ ≤ 1,
sin θ = 0
\(\sqrt{1-\cos ^{2} \theta}\) = 0 …[ ∵ sin2 θ = 1- cos2 θ]
∴ 1 – cos2 θ = 0
∴ cos2 θ = 1
∴ cos θ = ±1 …[∵ – 1 ≤ cos θ ≤ 1]

Question 6.
If 2cos2 θ – 11 cos θ + 5 = 0, then find the possible values of cos θ.
Solution:
2cos2θ – 11 cos θ + 5 = 0
∴ 2cos2 θ – 10 cos θ – cos θ + 5 = 0
∴ 2cos θ(cos θ – 5) – 1 (cos θ – 5) = 0
∴ (cos θ – 5) (2cos θ – 1) = 0
cos θ – 5 = 0 or 2cos θ – 1 = 0
∴ cos θ = 5 or cos θ = 1/2
Since, -1 ≤ cos θ ≤ 1
∴ cos θ = 1/2

Question 7.
Find the acute angle θ such 2cos2 θ = 3sin θ.
Solution:
2cos20 = 3sin θ
∴ 2(1 – sin2 θ) = 3sin θ
∴ 2 – 2sin2 θ = 3sin θ
∴ 2sin2 θ + 3sin 9-2 = θ
∴ 2sin2 θ + 4sin θ – sin θ – 2 = θ
∴ 2sin θ(sin θ + 2) -1 (sin θ + 2) = θ
∴ (sin θ + 2) (2sin θ – 1) = 0
∴ sin θ + 2 = 0 or 2sin θ – 1 = 0
∴ sin θ = -2 or sin θ = 1/2
Since, -1 ≤ sin θ ≤ 1
∴ Sin θ = 1/2
∴ θ = 30° …[ ∵ sin 30 = 1/2]

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.2

Question 8.
Find the acute angle 0 such that 5tan2 0 + 3 = 9sec 0.
Solution:
5tan2 θ + 3 = 9sec θ
∴ 5(sec2 θ – 1) + 3 = 9sec θ
∴ 5sec2 θ – 5 + 3 = 9sec θ
∴ 5sec2 θ – 9sec θ – 2 = 0
∴ 5sec2 θ – 10 sec θ + sec θ – 2 = 0
∴ 5sec θ(sec θ – 2) + 1(sec θ – 2) = 0
∴ (sec θ – 2) (5sec θ + 1) = 0
∴ sec θ – 2 = 0 or 5sec θ + 1 = 0
∴ sec θ = 2 or sec θ = -1/5
Since sec θ ≥ 1 or sec θ ≤ -1,
sec θ = 2
∴ θ = 60° … [ ∵ sec 60° = 2]

Question 9.
Find sin θ such that 3cos θ + 4sin θ = 4.
Solution:
3cos θ + 4sin θ = 4
∴ 3cos θ = 4(1 – sin θ)
Squaring both the sides, we get .
9cos2θ = 16(1 – sin θ)2
∴ 9(1 – sin2 θ) = 16(1 + sin2 θ – 2sin θ)
∴ 9 – 9sin2 θ = 16 + 16sin2 θ – 32sin θ
∴ 25sin2 θ – 32sin θ + 7 = 0
∴ 25sin2 θ – 25sin θ – 7sin θ + 7 = 0
25sin θ (sin θ – 1) – 7 (sin θ – 1) = 0
∴ (sin θ – 1) (25sin θ – 7) = 0
∴ sin θ – 1 = 0 or 25 sin θ – 7 = 0
∴ sin θ = 1 or sin θ = \(\frac{7}{25}\)
Since, -1 ≤ sin θ ≤ 1
∴ sin θ = 1 or \(\frac{7}{25}\)
[Note: Answer given in the textbook is 1. However, as per our calculation it is 1 or \(\frac{7}{25}\).]

Question 10.
If cosec θ + cot θ = 5, then evaluate sec θ.
Solution:
cosec θ + cot θ = 5
∴ \(\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}=5\)
∴ \(\frac{1+\cos \theta}{\sin \theta}=5\)
∴ 1 + cos θ = 5.sin θ
Squaring both the sides, we get
1 + 2 cos θ + cos2 θ = 25 sin2 θ
∴ cos2 θ + 2 cos θ + 1 = 25 (1 – cos2 θ)
∴ cos2 θ + 2 cos θ + 1 = 25 – 25 cos2 θ
∴ 26 cos2 θ + 2 cos θ – 24 = 0
∴ 26 cos2 θ + 26 cos θ – 24 cos θ – 24 = 0
∴ 26 cos θ (cos θ + 1) – 24 (cos θ + 1) = 0
∴ (cos θ + 1) (26 cos θ – 24) = 0
∴ cos θ + 1 = θ or 26 cos θ – 24 = 0
∴ cos θ = -1 or cos θ = \(\frac{24}{26}=\frac{12}{13}\)
When cos θ = -1, sin θ = 0
∴ cot θ and cosec x are not defined,
∴ cos θ ≠ -1
∴ cos θ = \(\frac{12}{13}\)
∴ sec θ = \(\frac{1}{\cos \theta}=\frac{13}{12}\)
[Note: Answer given in the textbook is -1 or \(\frac{13}{12}\).
However, as per our calculation it is only \(\frac{13}{12}\).]

Question 11.
If cot θ = \(\frac{3}{4}\) and π < θ < \(\frac{3 \pi}{2}\), then find the value of 4 cosec θ + 5 cos θ.
Solution:
We know that,
cosec2θ = 1 + cot2 θ = \(\left(\frac{3}{4}\right)^{2}\) = 1 + \(\frac{9}{16}\)
∴ cosec2 θ = \(\frac{25}{16}\)
∴ cosec θ = \(\pm \frac{5}{4}\)
Since π < θ < \(\frac{3 \pi}{2}\)
θ lies in the third quadrant.
∴ cosec θ < 0
∴ cosec θ = –\(\frac{5}{4}\)
cot θ = \(\frac{3}{4}\)
tan θ = \(\frac{1}{\cot \theta}=\frac{4}{3}\)
We know that,
sec2 θ = 1 + tan2 θ = 1 + \(\left(\frac{4}{3}\right)^{2}\)
= 1 + \(\frac{16}{9}=\frac{25}{9}\)
∴ sec θ = ±\(\frac{5}{3}\)
Since θ lies in the third quadrant,
sec θ < 0
∴ sec θ = –\(\frac{5}{3}\)
cos θ = \(\frac{1}{\sec \theta}=\frac{-3}{5}\)
∴ 4cosec θ + 5cos θ
= \(4\left(-\frac{5}{4}\right)+5\left(-\frac{3}{5}\right)\)
= -5 – 3 = -8
[Note: The question has been modified.]

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.2

Question 12.
Find the Cartesian co-ordinates of points whose polar co-ordinates are:
i. (3, 90°) ii. (1, 180°)
Solution:
i. (r, θ) = (3, 90°)
Using x = r cos θ and y = r sin θ, where (x, y) are the required cartesian co-ordinates, we get
x = 3cos 90° and y = 3sin 90°
∴ x = 3(0) = 0 and y = 3(1) = 3
∴ the required cartesian co-ordinates are (0, 3).

ii. (r, θ) = (1, 180°)
Using x = r cos θ and y = r sin θ, where (x, y) are the required cartesian co-ordinates, we get
x = 1(cos 180°) and y = 1(sin 180°)
∴ x = -1 and y = 0
∴ the required cartesian co-ordinates are (-1, 0).

Question 13.
Find the polar co-ordinates of points whose Cartesian co-ordinates are:
1. (5, 5) ii. (1, \(\sqrt{3}\))
ii. (-1, -1) iv. (-\(\sqrt{3}\), 1)
Solution:
i. (x, y) = (5, 5)
∴ r = \(\sqrt{x^{2}+y^{2}}\) = \(\sqrt{25+25}\)
\(=\sqrt{50}=5 \sqrt{2}\)
tan θ = \(\frac{y}{x}=\frac{5}{5}\) = 1
Since the given point lies in the 1st quadrant,
θ = 45° …[∵ tan 45° = 1]
∴ the required polar co-ordinates are (\(5 \sqrt{2}\), 45°).

ii. (x, y) = ( 1, \(\sqrt{3}\))
∴ r = \(\sqrt{x^{2}+y^{2}}=\sqrt{1+3}=\sqrt{4}=2\)
tan θ = \(\frac{y}{x}=\frac{\sqrt{3}}{1}=\sqrt{3}\)
Since the given point lies in the 1st quadrant,
θ = 60° …[∵ tan 60° = \(\sqrt{3}\)]
∴ the required polar co-ordinates are (2, 60°).

iii. (x, y) = (-1, -1)
∴ r = \(\sqrt{x^{2}+y^{2}}=\sqrt{1+1}=\sqrt{2}\)
tan θ = \(\frac{y}{x}=\frac{-1}{-1}=1\)
∴ tan θ = tan \(\frac{\pi}{4}\)
Since the given point lies in the 3rd quadrant,
tan θ = tan \(\left(\pi+\frac{\pi}{4}\right)\) …[∵ tan (n + x) = tanx]
∴ tan θ = tan \(\left(\frac{5 \pi}{4}\right)\)
∴ θ = \(\frac{5 \pi}{4}\) = 225°
∴ the required polar co-ordinates are (\(\sqrt{2}\), 225°).

iv. (x, y) = (-\(\sqrt{3}\) , 1)
∴ r = \(\sqrt{x^{2}+y^{2}}=\sqrt{3+1}=\sqrt{4}=2\)
tan θ = \(\frac{y}{x}=\frac{1}{-\sqrt{3}}\) = -tan \(\frac{\pi}{6}\)
Since the given point lies in the 2nd quadrant,
tan θ = tan \(\left(\pi-\frac{\pi}{6}\right)\) …[∵ tan (π – x) = – tanx]
∴ tan θ = tan \(\left(\frac{5 \pi}{6}\right)\)
∴ θ = \(\frac{5 \pi}{6}\) = 150°
∴ the required polar co-ordinates are (2, 150°)

Question 14.
Find the values of:
i. sin\(\frac{19 \pi^{e}}{3}\)
ii. cos 1140°
iii. cot \(\frac{25 \pi^{e}}{3}\)
Solution:
i. We know that sine function is periodic with period 2π.
sin \(\frac{19 \pi}{3}\) = sin \(\left(6 \pi+\frac{\pi}{3}\right)\) = sin \(\frac{\pi}{3}=\frac{\sqrt{3}}{2}\)

ii. We know that cosine function is periodic with period 2π.
cos 1140° = cos (3 × 360° + 60°)
= cos 60° = \(\frac {1}{2}\)

iii. We know that cotangent function is periodic with period π.
cot \(\frac{25 \pi}{3}\) = cot \(\left(8 \pi+\frac{\pi}{3}\right)\) = cot \(\frac{\pi}{3}\) = \(\frac{1}{\sqrt{3}}\)
dhana work.txt
Displaying dhana work.txt.

Maharashtra State Board 11th Maths Book Solutions 

Trigonometric Functions Class 12 Maths 1 Exercise 3.1 Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 3 Trigonometric Functions Ex 3.1 Questions and Answers.

12th Maths Part 1 Trigonometric Functions Exercise 3.1 Questions And Answers Maharashtra Board

Question 1.
Find the principal solutions of the following equations :
(i) cos θ= \(\frac{1}{2}\)
Solution:
We know that, cos\(\frac{\pi}{3}\) = \(\frac{1}{2}\) and cos (2π – θ) = cos θ
∴ cos\(\frac{\pi}{3}\) = cos(2π – \(\frac{\pi}{3}\)) = cos\(\frac{5 \pi}{3}\)
∴ cos\(\frac{\pi}{3}\) = cos\(\frac{5 \pi}{3}\) = \(\frac{1}{2}\), where
0 < \(\frac{\pi}{3}\) < 2π and 0 < \(\frac{5 \pi}{3}\) < 2π
∴ cos θ = \(\frac{1}{2}\) gives cos θ = cos\(\frac{\pi}{3}\) = cos\(\frac{5 \pi}{3}\)
∴ θ = \(\frac{\pi}{3}\) and θ = \(\frac{5 \pi}{3}\)
Hence, the required principal solutions are
θ = \(\frac{\pi}{3}\) and θ = \(\frac{5 \pi}{3}\)

(ii) sec θ = \(\frac{2}{\sqrt{3}}\)
Solution:

(iii) cot θ = \(\sqrt {3}\)
Solution:
The given equation is cot θ = \(\sqrt {3}\) which is same as tan θ = \(\frac{1}{\sqrt{3}}\).
We know that,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 1
Hence, the required principal solution are
θ = \(\frac{\pi}{6}\) and θ = \(\frac{7 \pi}{6}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) cot θ = 0.
Solution:

Question 2.
Find the principal solutions of the following equations:
(i) sinθ = \(-\frac{1}{2}\)
Solution:
We know that,
sin\(\frac{\pi}{6}\) = \(\frac{1}{2}\) and sin (π + θ) = -sinθ,
sin(2π – θ) = -sinθ
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 2
Hence, the required principal solutions are
θ = \(\frac{7\pi}{6}\) and θ = \(\frac{11 \pi}{6}\).

(ii) tanθ = -1
Solution:
We know that,
tan\(\frac{\pi}{4}\) = 1 and tan(π – θ) = -tanθ,
tan(2π – θ) = -tanθ
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 3
Hence, the required principal solutions are
θ = \(\frac{3\pi}{4}\) and θ = \(\frac{7 \pi}{4}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) \(\sqrt {3}\) cosecθ + 2 = 0.
Solution:

Question 3.
Find the general solutions of the following equations :
(i) sinθ = \(\frac{1}{2}\)
Solution:
(i) The general solution of sin θ = sin ∝ is
θ = nπ + (-1 )n∝, n ∈ Z
Now, sinθ = \(\frac{1}{2}\) = sin\(\frac{\pi}{6}\) …[∵ sin\(\frac{\pi}{6}\) = \(\frac{1}{2}\)]
∴ the required general solution is
θ = nπ + (-1)n\(\frac{\pi}{6}\), n ∈ Z.

(ii) cosθ = \(\frac{\sqrt{3}}{2}\)
Solution:
The general solution of cos θ = cos ∝ is
θ = 2nπ ± ∝, n ∈ Z
Now, cosθ = \(\frac{\sqrt{3}}{2}\) = cos\(\frac{\pi}{6}\) …[∵ cos\(\frac{\pi}{6}\) = \(\frac{\sqrt{3}}{2}\)]
∴ the required general solution is
θ = 2nπ ± \(\frac{\pi}{6}\), n ∈ Z.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) tanθ = \(\frac{1}{\sqrt{3}}\)
Solution:
The general solution of tan θ = tan ∝ is
θ = nπ + ∝, n ∈ Z
Now, tan θ = \(\frac{1}{\sqrt{3}}\) = tan\(\frac{\pi}{6}\) …[tan\(\frac{\pi}{6}\) = \(\frac{1}{\sqrt{3}}\)]
∴ the required general solution is
θ = nπ + \(\frac{\pi}{6}\) , n ∈ Z.

(iv) cotθ = 0.
Solution:
The general solution of tan θ = tan ∝ is
θ = nπ + ∝, n ∈ Z
Now, cot θ = 0 ∴ tan θ does not exist
∴ tanθ = tan\(\frac{\pi}{2}\) [∵ tan\(\frac{\pi}{2}\) does not exist]
∴ the required general solution is
θ = nπ + \(\frac{\pi}{2}\), n ∈ Z.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
Find the general solutions of the following equations:
(i) secθ = \(\sqrt {2}\)
Solution:
The general solution of cos θ = cos ∝ is
θ = nπ ± ∝, n ∈ Z.
Now, secθ = \(\sqrt {2}\) ∴ cosθ = \(\frac{1}{\sqrt{2}}\)
∴ cosθ = cos\(\frac{\pi}{4}\) ….[cos\(\frac{\pi}{4}\) = \(\frac{1}{\sqrt{2}}\)]
∴ the required general solution is
θ = 2nπ ± \(\frac{\pi}{4}\), n ∈ Z.

(ii) cosecθ = –\(\sqrt {2}\)
Solution:
The general solution of sinθ = sin∝ is
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 4

(iii) tanθ = -1
Solution:
The general solution of tanθ = tan∝ is
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 5

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Find the general solutions of the following equations :
(i) sin 2θ = \(\frac{1}{2}\)
Solution:
The general solution of sin θ = sin ∝ is
θ = nπ + (-1)n∝, n ∈ Z
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 6

(ii) tan \(\frac{2 \theta}{3}\) = \(\sqrt {3}\)
Solution:
The general solution of tan θ = tan ∝ is
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 7

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) cot 4θ = -1
Solution:
The general solution of tan θ = tan ∝ is
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 8

Question 6.
Find the general solutions of the following equations :
(i) 4 cos2θ = 3
Solution:
The general solution of cos2θ = cos2 ∝ is
θ = nπ ± ∝, n ∈ Z
Now, 4 cos2θ = 3
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 9

(ii) 4 sin2θ = 1
Solution:
The general solution of sin2θ = sin2 ∝ is
θ = nπ ± ∝, n ∈ Z
Now, 4 sin2θ = 3
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 10

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) cos 4θ = cos 2θ
Solution:
The general solution of cos θ = cos ∝ is
θ = 2nπ ± ∝, n ∈ Z
∴ the general solution of cos 4θ = cos 2θ is given by
4θ = 2nπ ± 2θ, n ∈ Z
Taking positive sign, we get
4θ = 2nπ + 2θ, n ∈ Z
∴ 2θ = 2nπ, n ∈ Z
∴ θ = nπ, n ∈ Z
Taking negative sign, we get
4θ = 2nπ – 2θ, n ∈ Z
∴ 6θ = 2nπ, n ∈ Z
∴ θ = \(\frac{n \pi}{3}\), n ∈ Z
Hence, the required general solution is
θ = \(\frac{n \pi}{3}\), n ∈ Z or ∴ θ = nπ, n ∈ Z.
Alternative Method:
cos 4θ = cos 2θ
∴ cos4θ – cos 20 = 0
∴ -2sin\(\left(\frac{4 \theta+2 \theta}{2}\right)\)∙sin\(\left(\frac{4 \theta-2 \theta}{2}\right)\) = 0
∴ sin3θ∙sinθ = 0
∴ either sin3θ = 0 or sin θ = 0
The general solution of sin θ = 0 is
θ = nπ, n ∈ Z.
∴ the required general solution is given by
3θ = nπ, n ∈ Z or θ = nπ, n ∈ Z
i.e. θ = \(\frac{n \pi}{3}\), n ∈ Z or θ = nπ, n ∈ Z.

Question 7.
Find the general solutions of the following equations :
(i) sinθ = tanθ
Solution:
sin θ = tan θ
∴ sin θ = \(\frac{\sin \theta}{\cos \theta}\)
∴ sin θ cos θ = sin θ
∴ sin θ cos θ – sinθ = 0
∴ sin θ (cos θ – 1) = θ
∴ either sinθ = 0 or cosθ – 1 = 0
∴ either sin θ = 0 or cos θ = 1
∴ either sinθ = 0 or cosθ = cosθ …[∵ cos0 = 1]
The general solution of sinθ = 0 is θ = nπ, n ∈ Z and cos θ = cos ∝ is θ = 2nπ ± ∝, where n ∈ Z.
∴ the required general solution is given by
θ = nπ, n ∈ Z or θ = 2nπ ± 0, n ∈ Z
∴ θ = nπ, n ∈ Z or θ = 2nπ, n ∈ Z.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) tan3θ = 3tanθ
Solution:
tan3θ = 3tanθ
∴ tan3θ – 3tanθ = 0
∴ tan θ (tan2θ – 3) = 0
∴ either tan θ = 0 or tan2θ – 3 = 0
∴ either tanθ = 0 or tan2θ = 3
∴ either tan θ = 0 or tan2θ = (\(\sqrt {3}\) )3
∴ either tan θ = 0 or tan2θ = (tan\(\frac{\pi}{3}\))3 …[tan\(\frac{\pi}{3}\) = \(\sqrt {3}\)]
∴ either tanθ = 0 or tan2θ = tan2\(\frac{\pi}{3}\)
The general solution of
tanθ = 0 is θ = nπ, n ∈ Z and
tan2θ = tan2∝ is θ = nπ ± ∝, n ∈ Z.
∴ the required general solution is given by
θ = nπ, n ∈ Z or θ = nπ ± \(\frac{\pi}{3}\), n ∈ Z.

(iii) cosθ + sinθ = 1.
Solution:
cosθ + sinθ = 1
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 11
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 12
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 13
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 14

Question 8.
Which of the following equations have solutions ?
(i) cos 2θ = -1
Solution:
cos 2θ = -1
Since -1 ≤ cos θ ≤ 1 for any θ,
cos 2θ = -1 has solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) cos2θ = -1
Solution:
cos2θ = -1
This is not possible because cos2θ ≥ 0 for any θ.
∴ cos2θ = -1 does not have any solution.

(iii) 2 sinθ = 3
Solution:
2 sin θ = 3 ∴ sin θ = \(\frac{3}{2}\)
This is not possible because -1 ≤ sin θ ≤ 1 for any θ.
∴ 2 sin θ = 3 does not have any solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) 3 tanθ = 5
Solution:
3tanθ = 5 ∴ tanθ = \(\frac{5}{3}\)
This is possible because tan θ is any real number.
∴ 3tanθ = 5 has solution.

12th Maharashtra State Board Maths Solutions Pdf Part 1

Trigonometry – I Class 11 Maths 1 Exercise 2.1 Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 11 Maths Solutions Pdf Chapter 2 Trigonometry – I Ex 2.1 Questions and Answers.

11th Maths Part 1 Trigonometry – I Exercise 2.1 Questions And Answers Maharashtra Board

Question 1.
Find the trigonometric functions of 0°, 30°, 45°, 60°, 150°, 180°, 210°, 300°, 330°, – 30°, – 45°, – 60°, – 90°, – 120°, – 225°, – 240°, – 270°, – 315°
Solution:
Angle of measure 0°:
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 1-1
Let m∠XOA = 0° = 0c
Its terminal arm (ray OA) intersects the standard
unit circle in P(1, 0).
Hence,x = 1 and y = 0
sin 0° = y = 0,
cos 0° = x = 1,
tan 0° = \(\frac{y}{x}=\frac{0}{1}\) = 0
cot 0° = \(\frac{x}{y}=\frac{1}{0}\) which is not defined
sec 0° = \(\frac{1}{x}=\frac{1}{1}\) = 1
cot 0° = \(\frac{1}{y}=\frac{1}{0}\) which is not defined,

Angle of measure 30°:
Let m∠XOA = 30°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y)
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30° – 60° – 90° triangle.
OP= 1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 1
Since point P lies in 1st quadrant, x > 0, y > 0
∴ x = OM = \(\frac{\sqrt{3}}{2}\) and y = PM = \(\frac{1}{2}\)
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 2

Angle of measure 45°:
Let m∠XOA = 45°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 45° – 45° – 90° triangle.
OP = 1,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 3
Since point P lies in the 1st quadrant, x > 0, y > 0
∴ x = OM = \(\frac{1}{\sqrt{2}}\) and
y = PM = \(\frac{1}{\sqrt{2}}\)
∴ P = (\(\frac{1}{\sqrt{2}}\), \(\frac{1}{\sqrt{2}}\))
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 4

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1

Angle of measure 60°:
Let m∠XOA = 60°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30° – 60° – 90° triangle.
OP= 1,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 5
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 6

Angle of measure 150°:
Let m∠XOA = 150°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30° – 60° – 90° triangle.
OP= 1,

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 7
Since point P lies in the 2nd quadrant, x < 0, y > 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 8
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 9

Angle of measure 180°:
Let m∠XOA = 180°
Its terminal arm (ray OA) intersects the standard unit circle at P(-1, 0).
∴ x = – 1 and y = 0
sin 180° =y = 0
cos 180° = x = -1
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 10
tan 180° = \(\frac{y}{x}\)
= \(\frac{0}{-1}\) = 0
Cosec 180° = \(\frac{1}{y}\)
= \(\frac{1}{0}\)
which is not defined.
sec 180°= \(\frac{1}{x}=\frac{1}{-1}\) = -1
cot 180° = \(\frac{x}{y}=\frac{-1}{0}\) , which is not defined.

Angle of measure 210°:
Let m∠XOA = 210°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30° – 60° – 90° triangle.
OP= 1,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 11
Since point P lies in the 3rd quadrant, x < 0,y < 0
∴ x = -OM = \(\frac{-\sqrt{3}}{2}\) and y = -PM = \(\frac{-1}{2}\)
∴ P ≡( \(\frac{-\sqrt{3}}{2}, \frac{-1}{2}\) )
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 12
Angle of measure 300°:
Let m∠XOA = 300°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30° – 60° – 90° triangle.
OP = 1,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 13
Since point P lies in the 1st quadrant, x > 0,y > 0
x = OM = \(\frac{1}{2}\) = and y = -PM = \(\frac{-\sqrt{3}}{2}\)
sin 300° = y = \(\frac{-\sqrt{3}}{2}\)
cos 300° = x = \(\frac{1}{2}\)
tan 300° = \(\frac{y}{x}=\frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}}=-\sqrt{3}\)
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 14

Angle of measure 330°:
Let m∠XOA = 330°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30° – 60° – 90° triangle.
OP= 1,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 15
Since point P lies in the 4th quadrant, x > 0, y < 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 16
Angle of measure 30°
Let m∠XOA = -30°
Its terminal arm (ray OA) intersects the standard unit circle at P(x,y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30° – 60 — 90° triangle.
op = 1,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 18
Since point P lies in the 4th quadrant x > 0, y < 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 17
Angle of measure 45°:
Let m∠XOA = 45°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 45° – 45° – 90° triangle.
OP = 1,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 19
Since point P lies in the 4th quadrant x > 0, y < 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 20
[Note : Answer given in the textbook of sin (45°) = – 1/2. However, as per our calculation it is \(-\frac{1}{\sqrt{2}}\) ]

Angle of measure (-60°):
Let m∠XOA = -60°
Its terminal arm (ray OA) intersects the standard
unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
ΔOMP is a 30° – 60° – 90° triangle.
OP = 1,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 1-2
Since point P lies in the 4’ quadrant,
x > 0, y < 0
x = OM =\(\frac{1}{2}\) and y = -PM = \(-\frac{\sqrt{3}}{2}\)
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 1-3

Angle of measure (-90°):
Let m∠XOA = -90°
It terminal arm (ray OA) intersects the standard unit circle at P(0, -1)
∴ x = 0 and y = -1
sin (-90°) = y = -1
cos (-90°) = s = 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 21

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1

Angle of measure (-120°):
Let m∠XOA = – 120°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30° – 60° – 90° triangle.
OP = 1,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 22
Since point P lies in the 3rd quadrant, x < 0, y < 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 23
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 24

Angle of measure (- 225°):
Let m∠XOA = – 225°
Its terminal arm (ray OA) intersects the standard unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
ΔOMP is a 45° – 45° – 90° triangle.
OP = 1,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 25
Since point P lies in the 2nd quadrant, x < 0, y > 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 26

Angle of measure 2400):
Let m∠XOA = 240°
Its terminal arm (ray OA) intersects the standard
unit circle at P(x, y).
Draw seg PM perpendicular to the X-axis.
∴ ΔOMP is a 30°  – 60° –  900 triangle.
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 27
Since point P lies in the 2nd quadrant, x<0, y>0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 28

Angle of measure (- 270°):
Let m∠XOA = – 270°
Its terminal arm (ray OA)
intersects the standard unit,
circle at P(0, 1).
∴ x = 0 and y = 1
sin (- 270°) = y = 1
cos (- 270°) = x = 0
tan(-270°)= \(\frac{y}{x}=\frac{1}{0}\)
which is not defined.
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 29
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 30

Angle of measure ( 315°):
Let m∠XOA 315°
Its terminal arm (ray OA) intersects the standard unit circle at P(x,y).
Draw seg PM perpendicular to the X-axis.
ΔOMP is a 45° – 45° – 90° triangle.
OP = 1,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 31

Question 2.
State the signs of:
i. tan 380°
ii. cot 230°
iii 468°
Solution:
1. 380° = 360° + 20°
∴ 380° and 20° are co-terminal angles.
Since 0° < 20° <90°0,
20° lies in the l quadrant.
∴ 380° lies in the 1st quadrant,
∴ tan 380° is positive.

ii. Since, 180° <230° <270°
∴ 230° lies in the 3rd quadrant.
∴ cot 230° is positive.

iii. 468° = 360°+108°
∴ 468° and 108° are co-terminal angles.
Since 90° < 108° < 180°,
108° lies in the 2nd quadrant.
∴ 468° lies in the 2nd quadrant.
∴ sec 468° is negative.

Question 3.
State the signs of cos 4c and cos 4°. Which of these two functions is greater?
Solution:
Since 0° < 4° < 90°, 4° lies in the first quadrant. ∴ cos4° >0 …(i)
Since 1c = 57° nearly,
180° < 4c < 270°
∴ 4c lies in the third quadrant.
∴ cos 4c < 0 ………(ii)
From (i) and (ii),
cos 4° is greater.

Question 4.
State the quadrant in which 6 lies if
i. sin θ < 0 and tan θ > 0
ii. cos θ < 0 and tan θ > 0
Solution:
i. sin θ < 0 sin θ is negative in 3rd and 4th quadrants, tan 0 > 0
tan θ is positive in 1st and 3rd quadrants.
∴ θ lies in the 3rd quadrant.

ii. cos θ < 0 cos θ is negative in 2nd and 3rd quadrants, tan 0 > 0
tan θ is positive in 1st and 3rd quadrants.
∴ θ lies in the 3rd quadrant.

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1

Question 5.
Evaluate each of the following:
i. sin 30° + cos 45° + tan 180°
ii. cosec 45° + cot 45° + tan 0°
iii. sin 30° x cos 45° x lies tan 360°
Solution:
i. We know that,
sin30° = 1/2, cos 45° = \(\frac{1}{\sqrt{2}}\) =, tan 180° = 0
sin30° + cos 45° +tan 180°
= \(\frac{1}{2}+\frac{1}{\sqrt{2}}+0=\frac{\sqrt{2}+1}{2}\)

ii. We know that,
cosec 45° = \(\sqrt{2}\) , cot 45° = 1, tan 0° = 0
cosec 45° + cot 45° + tan 0°
= \(\sqrt{2}\) + 1 + 0 = \(\sqrt{2}\) + 1

iii. We know that,
sin 30° = \(\frac{1}{2}\), cos 45° = \(\frac{1}{\sqrt{2}}\) =, tan 360° = 0
sin 30° x cos 45° x tan 360°
= \(\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right)\) = 0

Question 6.
Find all trigonometric functions of angle in standard position whose terminal arm passes through point (3, – 4).
Solution:
Let θ be the measure of the angle in standard position whose terminal arm passes through P(3, -4).
∴ x = 3 and y = -4
r = OP
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 32

Question 7.
If cos θ = \(\frac{12}{13}, 0<\theta<\frac{\pi}{2}\) find the value of \(\frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cos \theta}, \frac{1}{\tan ^{2} \theta}\)
Solution:
cos θ = \(\frac{12}{13}\)
We know that,
sin2 θ = 1 – cos2θ
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 33
∴ sin θ = ± \(\frac{5}{13}\)
Since 0 < θ < \(\frac{\pi}{2}\) , θ lies in the 1st quadrant, ∴ sin θ > 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 34

Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1

Question 8.
Using tables evaluate the following:
i. 4 cot 45° – sec2 60° + sin 30°
ii.\(\cos ^{2} 0+\cos ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}+\cos ^{2} \frac{\pi}{2}\)
Solution:
i. We know that,
cot 45° = 1, sec 60° = 2, sin 30° = 1/2
4 cot 45° – sec2 60° + sin 30°
= 4(1) – (2)2 + \(\frac{1}{2}\)
= 4 – 4 + \(\frac{1}{2}=\frac{1}{2}\)

ii. We know that,
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 35
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 36

Question 9.
Find the other trigonometric functions if
i. cot θ = \(-\frac{3}{5}\), and 180 < θ < 270
ii. Sec A = \(-\frac{25}{7}\) and A lies in the second quadrant.
iii cot x = \(\frac{3}{4}\), x lies in the third quadrant.
iv. tan x = \(\frac{-5}{12}\) x lies in the fourth quadrant.
Solution:
i. cot θ = \(-\frac{3}{5}\)
we know that,
sin2θ = 1 – cos2θ
= 1 – \(\left(-\frac{3}{5}\right)^{2}\)
= 1 – \(\frac{9}{25}=\frac{16}{25}\)
∴ sin θ = ± \(\frac{4}{5}\)
Since 180° < 0 < 270°,
θ lies in the 3rd quadrant.
∴ sin θ < 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 37
Since A lies in the 2nd quadrant,
tan A < 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 38

iii. Given, cot x = \(\frac{3}{4}\)
We know that,
cosec2 x = 1 + cot2 x
= 1 + \(\left(\frac{3}{4}\right)^{2}=1+\frac{9}{16}=\frac{25}{16}\)
∴ cosec x = ± \(\frac{5}{4}\)
Since x lies in the 3rd quadrant, cosec x < 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 39

iv. Given, tan x = \(-\frac{5}{12}\)
sec2 x = 1 + tan2
= 1 + \(\left(-\frac{5}{12}\right)^{2}\)
= 1 + \(\frac{25}{144}=\frac{169}{144}\)
∴ sec x = ± \(\frac{13}{12}\)
Since x lies in the 4th quadrant,
sec x > 0
Maharashtra Board 11th Maths Solutions Chapter 2 Trigonometry - I Ex 2.1 40

Maharashtra State Board 11th Maths Book Solutions 

Matrices Class 12 Maths 1 Miscellaneous Exercise 2B Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 2 Matrices Miscellaneous Exercise 2B Questions and Answers.

12th Maths Part 1 Matrices Miscellaneous Exercise 2B Questions And Answers Maharashtra Board

I) Choose the correct answer from the given alternatives in each of the following questions :
Question 1.
If A = \(\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\), adj = \(\left(\begin{array}{ll}
4 & a \\
-3 & b
\end{array}\right)\) then the values of a and b are,
(a) a = – 2, b = 1
(b) a = 2, b = 4
(c) a = 2, b = –1
(d) a = 1, b = –2
Solution:
(a) a = – 2, b = 1

Question 2.
The inverse of \(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\) is
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 1
Solution:
\(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\)

Question 3.
If A = \(\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\) and A(adj A) = k 1, then the value of k is
(a) 1
(b) -1
(c) 0
(d) -3
Solution:
(d) -3 [Hint : A(adj A) = |A| ∙ I]

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
If A = \(\left(\begin{array}{ll}
2 & -4 \\
3 & 1
\end{array}\right)\), then the adjoint of matrix A is
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 2
Solution:\(\left(\begin{array}{ll}
1 & 4 \\
-3 & 2
\end{array}\right)\)

Question 5.
If A = \(\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\) and A(adj A) = kI, then the value of k is
(a) 2
(b) -2
(c) 10
(d) -10
Solution:
(b) -2

Question 6.
If A = \(\left(\begin{array}{rr}
\lambda & 1 \\
-1 & -\lambda
\end{array}\right)\), then A-1 does not exist if λ = ………..
(a) 0
(b) ± 1
(c) 2
(d) 3
Solution:
(b) ± 1

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 7.
If A = \(\left[\begin{array}{ll}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\) then A-1 = ….
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 3
Solution:
\(\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]\)

Question 8.
If F (∝) = \(\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\) where ∝ ∈ R then [F(∝)]-1 is =
(a) F(-∝)
(b) F(∝-1)
(c) F(2∝)
(d) None of these
Solution:
(a) F(-∝)

Question 9.
The inverse of A = \(\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\)
(a) I
(b) A
(c) A’
(d) -I
Solution:
(b) A

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 10.
The inverse of a symmetric matrix is
(a) Symmetric
(b) Non-symmetric
(c) Null matrix
(d) Diagonal matrix
Solution:
(a) Symmetric

Question 11.
For a 2 × 2 matrix A, if A(adjA) = \(\left(\begin{array}{ll}
10 & 0 \\
0 & 10
\end{array}\right)\) then determinant A equals
(a) 20
(b) 10
(c) 30
(d) 40
Solution:
(b) 10

Question 12.
If A2 = \(-\frac{1}{2}\left[\begin{array}{cc}
1 & -4 \\
-1 & 2
\end{array}\right]\) then A =
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 4
Solution:
\(-\frac{1}{2}\left[\begin{array}{cc}
2 & 4 \\
1 & 1
\end{array}\right]\)

II) Solve the following equations by the methods of inversion.
(i) 2x – y = -2 , 3x + 4y = 5
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 5
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 6
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 7
By equality of matrices,
x = \(-\frac{5}{11}\), y = \(\frac{12}{11}\) is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) x + y + z = 1, 2x + 3y + 2z = 2 and ax + ay + 2az = 4, a ≠ 0.
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 8
= 1(6a – 2a) – 1(4a – 2a) + 1(2a – 3a)
= 4a – 2a – a = a ≠ 0 ∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 9
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 10
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 11
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 12

(iii) 5x – y +4z = 5, 2x + 3y + 5z = 2 and 5x – 2y + 6z = -1
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 13
= 5(18 + 10) + 1 (12 – 25) + 4( -4 – 15)
= 140 – 13 – 76 = 51 #0
∴ A-1 exists.
Now, we have to find the cofactor matrix
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 14
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 15
Now, premultiply AX = B by A-1, we get,
A-1(AX) = A-1B
∴ (A-1A)X = A-1B
∴ IX = A-1B
∴ X = \(\frac{1}{51}\left[\begin{array}{rrr}
28 & -2 & -17 \\
13 & 10 & -17 \\
-19 & 5 & 17
\end{array}\right]\left[\begin{array}{r}
5 \\
2 \\
-1
\end{array}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 16
By equality of matrices,
x = 3, y = 2, z = -2 is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) 2x + 3y = -5, 3x + y = 3
Solution:

(v) x + y + z = -1, y + z = 2 and x + y – z = 3
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 17
= 1(-1 – 1) – 1 (0 – 1) + 1(0 – 1)
= -2 + 1 – 1 = -2 ≠ 0 ∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 18
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 19
Now, premultiply AX = B by A-1, we get,
A-1(AX) = A-1B
∴ (A-1A)X = A-1B
∴ IX = A-1B
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 20
∴ by equality of the matrices, x= -3, y = 4, z = -2 is the required solution.

Question 2.
Express the following equation in matrix from and solve them by the method of reduction.
(i) x – y + z = 1, 2x – y = 1, 3x + 3y – 4z = 2
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 21
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 22
By equality of matrices,
x – y + z = 1 ……(1)
y – 2z = -1 …..(2)
5z = 5 ….(3)
From (3), z = 1
Substituting z = 1 in (2), we get,
y – 2 = -1 ∴ y = 1
Substituting y = 1, z = 1 in (1), we get,
x – 1 + 1 = 1
∴ x = 1
Hence, x = 1, y = 1, z = 1 is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) x + y = 1, y + z = \(\frac{5}{3}\), z + x = \(\frac{4}{3}\).
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 23
By equality of matrices,
x + y = 1 ……(1)
y + z = \(\frac{5}{3}\) …(2)
2z = 2 ……..(3)
From (3), z = 1
Substituting z = 1 in (2), we get,
y + 1 = \(\frac{5}{3}\) ∴ y = \(\frac{2}{3}\)
Substituting y = \(\frac{2}{3}\) in (1), we get,
x + \(\frac{2}{3}\) = 1 ∴ x = \(\frac{1}{3}\)
Hence, x = \(\frac{1}{3}\), y = \(\frac{2}{3}\), z = 1 is the required solution.

(iii) 2x – y + z = 1, x + 2y + 3z = 8 and 3x + y – 4z = 1
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 24
∴ \(\left[\begin{array}{r}
x+2 y+3 z \\
0-5 y-5 z \\
0+0-8 z
\end{array}\right]\) = \(\left[\begin{array}{r}
8 \\
-15 \\
-8
\end{array}\right]\)
By equality of matrices,
x + 2y + 3z = 8 …..(1)
-5y – 5z = -15 ….(2)
-8z = -8 …..(3)
From (3), z = 1
Substituting z = 1 in (2), we get,
-5y – 5 = -15
-5y = -10
∴ y = 2
Substituting y = 2, z = 1 in (1), we get,
x + 4 + 3 = 8 ∴ x = 1
Hence, x = 1, y = 2, z = 1 is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) x + y + z = 6, 3x – y + 3z =10 and 5x + 5y – 4z = 3.
Solution:

(v) x + 2y + z = 8, 2x + 3y – z =11 and 3x – y – 2z = 5
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 25
By equality of matrices,
x + 2y + z = 8 … (1)
-y – 3z = -5 … (2)
16z = 16 … (3)
From (3), z = 1
Substituting z = 1 in (2), we get,
-y – 3 = -5, ∴ y = 2
Substituting y = 2, z = 1 in (1), we get,
x + 4 + 1 = 8 ∴ x = 3
Hence, x = 3, y = 2, z = 1 is the required solution.

(vi) x + 3y + 2z = 6, 3x – 2y + 5z =5 and 2x – 3y + 6z = 7.
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 26
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 27
By equality of matrices,
x + 3y + 2z = 6 …(1)
y + \(\frac{3}{2}\) z = 4 …(2)
\(\frac{31}{2}\)z = 31 …..(3)
From (3), z = 2
Substituting z = 2 in (2), we get,
y + \(\frac{3}{2}\)z = 4
y + \(\frac{3}{2}\)(2) = 4
y + 3 = 4
y = 1
Substituting y = 1, z = 2 in (2), we get,
x + 3y + 2z = 6
x + 3(1) + 2(2) = 6
x + 3 + 4 = 6
x = -1
Hence, x = -1, y = 1, z = 2 is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
The sum of three numbers is 6. If we multiply third number by 3 and add it to the second number we get 11. By adding first and the third numbers we get a number which is double the second number. Use this information and find a system of linear equations. Find the three numbers using matrices.
Solution:
Let the three numbers be x, y and z. According to the given conditions,
x + y + z = 6.
3z + y = 11, i.e., y + 3z = 11 and x + z = 2y,
i.e., x – 2y + z = 0
Hence, the system of the linear equations is
x + y + z = 6
y + 3z = 11
x – 2y + z = 0
These equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 28
By equality of matrices,
x + y + z = 6 …(1)
y + 3z = 11 …(2)
-3y = -6 …(3)
From (3), y = 2
Substituting y = 2 in (2), we get,
2 + 3z = 11
∴ 3z = 9 ∴ z = 3
Put y = 2, z — 3 in (1), we get,
x + 2 + 3 = 6 ∴ x = 1
∴ x = 1, y = 2, z = 3
Hence, the required numbers are 1, 2 and 3.

Question 4.
The cost of 4 pencils, 3 pens and 2 books is ₹ 150. The cost of 1 pencil, 2 pens and 3 books is ₹ 125. The cos of 6 pencils, 2 pens and 3 books is ₹ 175. Fild the cost of each item by using Matrices.
Solution:
Let the cost of 1 pencil, 1 pen and 1 book be ₹x, ₹ y, ₹ z respectively.
According to the given conditions,
4x + 3y + 2z = 150
x + 2y + 3z = 125
6x + 2y + 3z = 175
The equations can be written in matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 29
By equality of matrices,
x + 2y + 3z = 125 …(1)
-5y – 10z = -350 …(2)
5z = 125 …(3)
From (3), z = 25
Substituting z = 25 in (2), we get
-5y – 10(25) = -350
∴ -5y = -350 + 250 = -100
∴ y = 20
Substituting y = 20, z = 25 in (1), we get
x + 2(20) + 3(25) = 125
∴ x = 125 – 40 – 75 = 10
∴ x = 10, y = 20, z = 25
Hence, the cost of 1 pencil is ₹ 10, 1 pen is ₹ 20 and 1 book is ₹ 25.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
The sum of three numbers is 6. Thrice the third number when added to the first number, gives 7. On adding three times first number to the sum of second and third number, we get 12. Find the three numbers by using Matrices.
Solution:
Let the numbers be x, y and z.
According to the given conditions,
x + y + z = 6
3z + x = 7, i.e., x + 3z = 7
and 3x + y + z = 12
Hence, the system of linear equations is
x + y + z = 6
x + 3z = 7
3x + y + z = 12
These equations can be written in matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 30
By equality of matrices,
x + y + z = 6 …(1)
-y + 2z = 1 …(2)
-3y = -5 …(3)
From (3), y = \(\frac{5}{3}\)
Substituting y = \(\frac{5}{3}\) in (2), we get,
–\(\frac{5}{3}\) + 2z = 1
∴ 2z = 1 + \(\frac{5}{3}\) = \(\frac{8}{3}\)
∴ z = \(\frac{4}{3}\)
Substituting y =\(\frac{5}{3}\), z = \(\frac{5}{3}\) in (1), we get,
x + \(\frac{5}{3}+\frac{4}{3}\) = 6
∴ x = 3
∴ x = 3, y = \(\frac{5}{3}\), z = \(\frac{4}{3}\)
Hence, the required numbers are 3, \(\frac{5}{3}\) and \(\frac{4}{3}\).

Question 6.
The sum of three numbers is 2. If twice the second number is added to the sum of first and third number, we get 1 adding five times the first number to the sum of second and third we get 6. Find the three numbers by using matrices.
Solution:
Let the three numbers be x, y and z.
According to the question,
x + y + 2
x + 2y + z = 1
5x + y + z = 6
The given system of equations can be written in matrix form as follows:
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 33
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 34
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 35

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 7.
An amount of ₹ 5000 is invested in three types of investments, at interest rates 6%, 7%, 8% per annum respectively. The total annual income from these investimest is ₹ 350. If the total annual income from first two investment is ₹ 70 more than the income from the third, find the amount of each investment using matrix method.
Solution:
Let the amounts in three investments by ₹ x, ₹ y and ₹ z respectively.
Then x + y + z = 5000
Since the rate of interest in these investments are 6%, 7% and 8% respectively, the annual income of the three investments are \(\frac{6 x}{100}\), \(\frac{7 y}{100}\) and \(\frac{8 z}{100}\) respectively.
According to the given conditions,
\(\frac{6 x}{100}+\frac{7 y}{100}+\frac{8 z}{100}\) = 350
i.e. 6x + 7y + 8z = 35000
Also, \(\frac{6 x}{100}+\frac{7 y}{100}\) = \(\frac{8 z}{100}\) + 70
i.e. 6x + 7y – 8z = 7000
Hence, the system of linear equation is
x + y + z = 5000
6x + 7y + 8z = 35000
6x + 7y – 8z = 7000
These equations can be written in matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 31
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 32
By equality of matrices,
x + y + z = 5000 …(1)
y + 2z = 5000 …(2)
-16z = -28000 ….(3)
From (3), z = 1750
Substituting z = 1750 in (2), we get,
y + 2(1750) = 5000
∴ y = 5000 – 3500 = 1500
Substituting y = 1500, z = 1750 in (1), we get,
x + 1500 + 1750 = 5000
∴ x = 5000 – 3250 = 1750
∴ x = 1750, y = 1500, z = 1750
Hence, the amounts of the three investments are ₹ 1750, ₹ 1500 and ₹ 1750 respectively.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
The sum of the costs of one ook each of Mathematics, Physics and Chemistry is ₹ 210. Total cost of a mathematics book, 2 physics books, and a chemistry book is ₹ 240 Also the total cost of a Mathematics book, 3 physics book and chemistry books is Rs. 300/-. Find the cost of each book, using Matrices.
Solution:

12th Maharashtra State Board Maths Solutions Pdf Part 1

Angle and its Measurement Class 11 Maths 1 Miscellaneous Exercise 1 Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 11 Maths Solutions Pdf Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 Questions and Answers.

11th Maths Part 1 Angle and its Measurement Miscellaneous Exercise 1 Questions And Answers Maharashtra Board

I. Select the correct option from the given alternatives.

Question 1.
\(\left(\frac{22 \pi}{15}\right)^{c}x\) is equal to
(A) 246°
(B) 264°
(C) 224°
(D) 426°
Answer:
(B) 264°

Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1

Question 2.
156° is equal to
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 1
Answer:
(B)

Question 3.
A horse is tied to a post by a rope. If the horse moves along a circular path, always keeping the rope tight and describes 88 metres when it traces the angle of 12° at the centre, then the length of the rope is
(A) 70 m
(B) 55 m
(C) 40 m
(D) 35 m
Answer:
(A) 70 m
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 4

Question 4.
A pendulum 14 cm long oscillates through an angle of 12°, then the angle of the path described by its extremities is
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 2
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 3
Answer:
(D)

Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1

Question 5.
Angle between hands of a clock when it shows the time 9 :45 is
(A) (7.5)°
(B) (12.5)°
(C) (17.5)°
(D) (22.5)°
Answer:
(D) (22.5)°

Question 6.
20 metres of wire is available for fencing off a flower-bed in the form of a circular sector of radius 5 metres, then .the maximum area (in sq. m.) of the flower-bed is
(A) 15
(B) 20
(C) 25
(D) 30
Answer:
(C) 25
r + r + rθ = 20m
2r + rθ = 20
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 4
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 5

Question 7.
If the angles of a triangle are in the ratio 1:2:3, then the smallest angle in radian is
(A) \(\frac{\pi}{3}\)
(B) \(\frac{\pi}{6}\)
(C) \(\frac{\pi}{2}\)
(D) \(\frac{\pi}{9}\)
Answer:
(B) \(\frac{\pi}{6}\)

Question 8.
A semicircle is divided into two sectors whose angles are in the ratio 4:5. Find the ratio of their areas?
(A) 5:1
(B) 4:5
(C) 5:4
(D) 3:4
Answer:
(B) 4:5

Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1

Question 9.
Find the measure of the angle between hour- hand and the minute hand of a clock at twenty minutes past two.
(A) 50°
(B) 60°
(C) 54°
(D) 65°
Answer:
(A) 50°

Question 10.
The central angle of a sector of circle of area 9π sq.cm is 60°, the perimeter of the sector is
(A) π
(B) 3 + π
(C) 6 + π
(D) 6
Answer:
(C) 6 + π

II. Answer the following.

Question 1.
Find the number of sides of a regular polygon, if each of its interior angles is \(\frac{3 \pi^{c}}{4}\).
Solution:
Each interior angle of a regular polygon
= \(\frac{3 \pi}{4}=\left(\frac{3 \pi}{4} \times \frac{180}{\pi}\right)^{\circ}\) = 135°
Interior angle + Exterior angle = 180°
∴ Exterior angle = 180° – 135° = 45°
Let the number of sides of the regular polygon be n.
But in a regular polygon, exterior angle = \(\frac{360^{\circ}}{\text { no.of sides }}\)
∴ 45° = \(\frac{360^{\circ}}{\mathrm{n}}\)
∴ n = \(\frac{360^{\circ}}{45^{\circ}}\) = 8
∴ Number of sides of a regular polygon = 8.

Question 2.
Two circles each of radius 7 cm, intersect each other. The distance between their centres is 7√2 cm. Find the area common to both the circles.
Solution:
Let O and O1 be the centres of two circles intersecting each other at A and B.
Then OA = OB = O1A = O1B = 7 cm
and OO1 = 7√2 cm
OO12 = 98 ………………(i)
Since OA2 + O1A2 = 72
= 98
= OO12 …..[ from (i)]
m∠OAO1 = 90°
□ OAO1B is a square.
m∠AOB = m∠AO1B = 90°
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 6
A(□ OAO1B) = (side)2 = (7)2 = 49 sq.cm
∴ Required area = area of shaded portion = A(sector OAB) + A(sector O1AB)) – A(□ OAO1B)
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 7

Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1

Question 3.
∆PQR is an equilateral triangle with side 18 cm. A circle is drawn on segment QR as diameter. Find the length of the arc of this circle within the triangle.
Solution:
Let ‘O’ be the centre of the circle drawn on QR as a diameter.
Let the circle intersect seg PQ and seg PR at points M and N respectively.
Since l(OQ) = l(OM),
m∠OM Q = m∠OQM = 60°
m∠MOQ = 60°
Similarly, m∠NOR = 60°
Given, QR =18 cm.
r = 9 cm
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 8
θ = 60° = (60 x \(\frac{\pi}{180}\))c
= \(\left(\frac{\pi}{3}\right)^{c}\)
∴ l(arc MN) = S = rθ = 9 x \(\frac{\pi}{3}\) = 3π cm.

Question 4.
Find the radius of the circle in which a central angle of 60° intercepts an arc of length 37.4 cm.
Solution:
Let S be the length of the arc and r be the radius of the circle.
θ = 60° = \(\left(60 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{3}\right)^{c}\)
S = 37.4 cm
Since S = rθ,
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 9

Question 5.
A wire of length 10 cm is bent so as to form an arc of a circle of radius 4 cm. What is the angle subtended at the centre in degrees?
Solution:
S = 10 cm and r = 4 cm
Since S = rθ,
10 = 4 x θ
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 10

Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1

Question 6.
If two arcs of the same length in two circles subtend angles 65° and 110° at the centre. Find the ratio of their radii.
Solution:
Let r1 and r2 be the radii of the two circles and let their arcs of same length S subtend angles of 65° and 110° at their centres.
Angle subtended at the centre of the first circle,
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 11
Angle subtended at the centre of the second circle,
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 12

Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1

Question 7.
The area of a circle is 81TH sq.cm. Find the length of the arc subtending an angle of 300° at the centre and also the area of corresponding sector.
Solution:
Area of circle = πr2
But area is given to be 81 n sq.cm
∴ πr2 = 81π
∴ r2 = 81
∴ r = 9 cm
θ = 300° = \(=\left(300 \times \frac{\pi}{180}\right)^{\mathrm{c}}=\left(\frac{5 \pi}{3}\right)^{\mathrm{c}}\)
Since S = rθ
S = 9 x \(\frac{5 \pi}{3}\) = 15π cm
Area of sector = \(\frac{1}{2}\) x r x S
= \(\frac{1}{2}\) x 9 x 15π = \(\frac{135 \pi}{2}\) sq.cm

Question 8.
Show that minute-hand of a clock gains 5° 30′ on the hour-hand in one minute.
Solution:
Angle made by hour-hand in one minute
\(=\frac{360^{\circ}}{12 \times 60}=\left(\frac{1}{2}\right)^{\circ}\)
Angle made by minute-hand in one minute = \(\frac{360^{\circ}}{60}\) = 6°
∴ Gain by minute-hand on the hour-hand in one minute
= \(6^{\circ}-\left(\frac{1}{2}\right)^{\circ}=\left(5 \frac{1}{2}\right)^{\circ}\) = 5°30′
[Note: The question has been modified.]

Question 9.
A train is running on a circular track of radius 1 km at the rate of 36 km per hour. Find the angle to the nearest minute, through which it will turn in 30 seconds.
Solution:
r = 1km = 1000m
l(Arc covered by train in 30 seconds)
= 30 x \(\frac{36000}{60 \times 60}\)m
∴ S = 300 m
Since S = rθ,
300 = 1000 x θ
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 13
= (17.18)°
= 17° +(0.18)°
= 17° + (0.18 x 60)’ = 17° + (10.8)’
∴ θ = 17°11′(approx.)

Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1

Question 10.
In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 14
Let ‘O’ be the centre of the circle and AB be the chord of the circle.
Here, d = 40 cm
∴ r = \(\frac{40}{2}\) = 20 cm
Since OA = OB = AB,
∆OAB is an equilateral triangle.
The angle subtended at the centre by the minor
arc AOB is θ = 60° = \(\left(60 \times \frac{\pi}{180}\right)^{c}=\left(\frac{\pi}{3}\right)^{c}\)
= l(minor arc of chord AB) = rθ = 20 x \(\frac{\pi}{3}\)
= \(\frac{20 \pi}{3}\) cm

Question 11.
The angles of a quadrilateral are in A.P. and the greatest angle is double the least. Find angles of the quadrilateral in radians.
Solution:
Let the measures of the angles of the quadrilateral in degrees be a – 3d, a – d, a + d, a + 3d, where a > d > 0
∴ (a – 3d) + (a – d) + (a + d) + (a + 3d) = 360°
… [Sum of the angles of a quadrilateral is 360°]
∴ 4a = 360°
∴ a = 90°
According to the given condition, the greatest angle is double the least,
∴ a + 3d = 2.(a – 3d)
∴ 90° + 3d = 2.(90° – 3d)
∴ 90° + 3d = 180° – 6d 9d = 90°
∴ d = 10°
∴ The measures of the angles in degrees are
a – 3d = 90° – 3(10°) = 90° – 30° = 60°,
a – d = 90° – 10° = 80°,
a + d = 90°+ 10°= 100°,
a + 3d = 90° + 3(10°) = 90° + 30° = 120°
Maharashtra Board 11th Maths Solutions Chapter 1 Angle and its Measurement Miscellaneous Exercise 1 15

Maharashtra State Board Class 11 Maths Solutions 

Matrices Class 12 Maths 1 Miscellaneous Exercise 2A Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 2 Matrices Miscellaneous Exercise 2A Questions and Answers.

12th Maths Part 1 Matrices Miscellaneous Exercise 2A Questions And Answers Maharashtra Board

Question 1.
If A = \(\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right]\) then reduce it to I3 by using column transformations.
Solution:
|A| = \(\left|\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right|\)
= 1(1 – 0) – 0 + 0 = 1 ≠ 0
∴ A is a non-singular matrix.
Hence, the required transformation is possible.
Now, A = \(\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right]\)
By C1 – 2C2, we get, A ~ \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 3 & 1
\end{array}\right]\)
By C1 + 3C3 and C2 – 3C3, we get,
A ~ \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\) = I3.

Question 2.
If A = \(\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\), then reduce it to I3 by using row transformations.
Solution:
|A| = \(\left|\begin{array}{lll}
2 & 1 & 3 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right|\)
= 2 (0 – 1) – 1(1 – 1) + 3 (1 – 0)
= -2 – 0 + 3 = 1 ≠ 0
∴ A is a non-singular matrix.
Hence, the required transformation is possible.
Now, A = \(\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\)
By R1 – R2, we get,
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 1
By R1 – R3 and By R2 – R3, we get
A ~ \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\) = I3.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
Check whether the following matrices are invertible or not:
(i) \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|\) = 1 – 0 = 1 ≠ 0.
∴ A is a non-singular matrix.
Hence, A-1 exists.

(ii) \(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right|\) = 1 – 1 = 0.
∴ A is a singular matrix.
Hence, A-1 does not exist.

(iii) \(\left[\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right|\) = 3 – 6 = -3 ≠ 0.
∴ A is a non-singular matrix.
Hence, A-1 exist.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) \(\left[\begin{array}{ll}
2 & 3 \\
10 & 15
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
2 & 3 \\
10 & 15
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{ll}
2 & 3 \\
10 & 15
\end{array}\right|\) = 30 – 30 = 0.
∴ A is a singular matrix.
Hence, A-1 does not exist.

(v) \(\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{cc}
\sec \theta & \tan \theta \\
\tan \theta & \sec \theta
\end{array}\right|\)
= sec2θ – tan2θ = 1 ≠ 0.
∴ A is a non-singular matrix.
Hence, A-1 exist.

(vii) \(\left[\begin{array}{lll}
3 & 4 & 3 \\
1 & 1 & 0 \\
1 & 4 & 5
\end{array}\right]\)
Solution:
let A = \(\left[\begin{array}{lll}
3 & 4 & 3 \\
1 & 1 & 0 \\
1 & 4 & 5
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{lll}
3 & 4 & 3 \\
1 & 1 & 0 \\
1 & 4 & 5
\end{array}\right|\)
= 3(5 – 0) – 4(5 – 0) + 3(4 – 1)
= 15 – 20 + 9 = 4 ≠ 0
∴ A is a non-singular matrix.
Hence, A-1 exist.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(viii) \(\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & -1 & 3 \\
1 & 2 & 3
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & -1 & 3 \\
1 & 2 & 3
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & -1 & 3 \\
1 & 2 & 3
\end{array}\right|\)
= 1 (-3 -6) – 2 (6 – 3) + 3 (4 + 1)
= -9 – 6 + 15 = 0
∴ A is a singular matrix.
Hence, A-1 does not exist.

(ix) \(\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
4 & 6 & 8
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
4 & 6 & 8
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
4 & 6 & 8
\end{array}\right|\)
= 1(32 – 30) – 2(24 – 20) + 3(18 – 16)
= 2 – 8 + 6 = 0
∴ A is a singular matrix.
Hence, A-1 does not exist.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
Find AB, if A = \(\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & -2 & -3
\end{array}\right]\) and B = \(\left[\begin{array}{cc}
1 & -1 \\
1 & 2 \\
1 & -2
\end{array}\right]\) Examine whether AB has inverse or not.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 2
∴ A is a non-singular matrix.
Hence, (AB)-1 exist.

Question 5.
If A = \(\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right]\) is a nonsingular matrix then find A-1 by elementary row transformations.
Hence, find the inverse of \(\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\)
Solution:
Since A is a non-singular matrix, then find A-1 by using elementary row transformations.
We write AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 3
Comparing \(\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\) with \(\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right]\),
we get, x = 2, y = 1, z = -1
∴ \(\frac{1}{x}\) = \(\frac{1}{2}\), \(\frac{1}{y}\) = \(\frac{1}{1}\) = 1, \(\frac{1}{z}\) = \(\frac{1}{-1}\) = -1
\(\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\) is \(\left(\begin{array}{rrr}
\frac{1}{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 6.
if A = \(\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\) and X is a 2 × 2 matrix such that AX = I , then find X.
Solution:
We will reduce the matrix A to the identity matrix by using row transformations. During this pro¬cess, I will be converted to the matrix X.
We have AX = I.
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 4

Question 7.
Find the inverse of each of the following matrices (if they exist).
(i) \(\left[\begin{array}{ll}
1 & -1 \\
2 & 3
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & -1 \\
2 & 3
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
1 & -1 \\
2 & 3
\end{array}\right|\) = 3 + 2 = 5 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 5
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 6

(ii) \(\left[\begin{array}{ll}
2 & 1 \\
1 & -1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
2 & 1 \\
1 & -1
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
2 & 1 \\
1 & -1
\end{array}\right|\) = -2 – 1 = -3 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 7

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) \(\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right|\) = 7 – 6 = 1 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 8

(iv) \(\left[\begin{array}{ll}
2 & -3 \\
5 & 7
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
2 & -3 \\
5 & 7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
2 & -3 \\
5 & 7
\end{array}\right|\) = 14 + 15 = 29 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 9
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 10

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(v) \(\left[\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right|\) = 8 – 7 = 1 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 11

(vi) \(\left[\begin{array}{ll}
3 & -10 \\
2 & -7
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
3 & -10 \\
2 & -7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
3 & -10 \\
2 & -7
\end{array}\right|\) = -21 + 20 = -1 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 12
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 13

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vii) \(\left[\begin{array}{lll}
2 & -3 & 3 \\
2 & 2 & 3 \\
3 & -2 & 2
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
2 & -3 & 3 \\
2 & 2 & 3 \\
3 & -2 & 2
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
2 & -3 & 3 \\
2 & 2 & 3 \\
3 & -2 & 2
\end{array}\right|\)
= 2(4 + 6) +3(4 – 9) + 3(-4 – 6)
= 20 – 15 – 30 = -25 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 14
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 15
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 16
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 17

(viii) \(\left[\begin{array}{lll}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right|\)
= 1(0 + 25) + 3(0 + 10) + 2(-15 – 0)
= 25 + 30 -30
= 25 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 18
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 19
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 20
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 21

(ix) \(\left[\begin{array}{lll}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]\)
Solution:
Let A =\(\left[\begin{array}{lll}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right|\)
= 2(3 – 0) – 0 – 1(5 – 0)
= 6 – 0 – 5 = 1 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 22
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 23
∴ A-1 = \(\left[\begin{array}{lll}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right]\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(x) \(\left[\begin{array}{lll}
1 & 2 & -2 \\
0 & -2 & 1 \\
-1 & 3 & 0
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & -2 \\
0 & -2 & 1 \\
-1 & 3 & 0
\end{array}\right]\)
∴ A-1 = \(\left[\begin{array}{lll}
1 & 2 & -2 \\
0 & -2 & 1 \\
-1 & 3 & 0
\end{array}\right]\)
= 1\(\left|\begin{array}{ll}
-2 & 1 \\
3 & 0
\end{array}\right|\) – 2\(\left|\begin{array}{ll}
0 & 1 \\
-1 & 1
\end{array}\right|\) – 2\(\left|\begin{array}{ll}
0 & -2 \\
-1 & 3
\end{array}\right|\)
|A| = 1(0 – 3) – 2(0 + 1) – 2(0 – 2)
= -3 – 2 + 4
= -1 ≠ 0
∴ A-1 exists.
We have
AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 24
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 25
∴ A-1 = \(\left[\begin{array}{lll}
3 & 6 & 2 \\
1 & 2 & 1 \\
2 & 5 & 2
\end{array}\right]\)

Question 8.
Find the inverse of A = \(\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\) by
(i) elementary row transformations
Solution:
|A| = \(\left|\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|\)
= cosθ (cosθ – 0) + sinθ (sinθ – 0) + 0
= cos2θ + sin2θ = 1 ≠ 0
∴ A-1 exists.
(i) Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 26
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 27

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) elementary column transformations
Solution:
Consider A-1A = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 28
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 29

Question 9.
If A = \(\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]\), B = \(\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]\) find AB and (AB)-1. Verify that (AB)-1 = B-1A-1
Solution:
AB = \(\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]\) \(\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 30
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 31
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 32
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 33
From (1) and (2), (AB)-1 = B-1 ∙ A-1.

Question 10.
If A = \(\left[\begin{array}{ll}
4 & 5 \\
2 & 1
\end{array}\right]\), then show that A-1 = \(\frac{1}{6}\)(A – 5I)
Solution:
|A| = \(\left|\begin{array}{ll}
4 & 5 \\
2 & 1
\end{array}\right|\) = 4 – 10 = -6 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 34
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 35
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 36

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 11.
Find matrix X such that AX = B, where A = \(\left[\begin{array}{ll}
1 & 2 \\
-1 & 3
\end{array}\right]\) and B = \(\left[\begin{array}{ll}
0 & 1 \\
2 & 4
\end{array}\right]\)
Solution:
AX = B
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 37

Question 12.
Find X, if AX = B where A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4
\end{array}\right]\) and B = \(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\).
Solution:
AX = B
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 38
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 39

Question 13.
If A = \(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\), B = \(\left[\begin{array}{ll}
4 & 1 \\
3 & 1
\end{array}\right]\) and C = \(\left[\begin{array}{ll}
24 & 7 \\
31 & 9
\end{array}\right]\) then find matrix X such that AXB = C.
Solution:
AXB = C
∴ \(\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)(\mathrm{XB})\) =\(\left[\begin{array}{ll}
24 & 7 \\
31 & 9
\end{array}\right]\)
First we perform the row transformations.
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 40
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 41

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 14.
Find the inverse of \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\) by adjoint method.
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right|\)
= 1(7 – 20) – 2(7 – 10) + 3(4 – 2)
= -13 + 6 + 6 = -1 ≠ 0
∴ A-1 exists.
First we have to find the cofactor matrix
= [Aij]3×3 where Aij = (-1)i+jMij
Now, A11 = (-1)1+1M11 = \(\left|\begin{array}{ll}
1 & 5 \\
4 & 7
\end{array}\right|\) = 7 – 20 = -13
A12 = (-1)1+2M12 = \(\left|\begin{array}{ll}
1 & 5 \\
2 & 7
\end{array}\right|\) = -(7 – 10) = 3
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 42
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 43

Question 15.
Find the inverse of \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) by adjoint method.
Solution:
where A = \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\)
|A| = 1(2 – 6) – 0(0 – 3) + 1(0 – 2)
|A| = -4 – 2
|A| = -6 ≠ 0
∴ A-1 exists.
First we have to find the cofactor matrix
= [Aij]3×3, where Aij = (-1)i+jMij
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 44
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 45

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 16.
Find A-1 by adjoint method and by elementary transformations if A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4
\end{array}\right]\)
Solution:
|A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4
\end{array}\right|\)
= 1(4 – 4) – 2(-4 – 2) + 3(-2 – 1)
= 0 + 12 – 9 = 3 ≠ 0
∴ A-1 exists.
A-1by adjoint method :
We have to find the cofactor matrix
= [Aij]3×3, where Aij = (-1)i+j Mij
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 46
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 47
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 48
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 49

Question 17.
Find the inverse of A = \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) by elementary column transformations.
Solution:
|A| = \(\left|\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right|\)
= 1 (2 – 6) – 0 + 1 (0 – 2)
= -4 – 2= -6 ≠ 0
∴ A-1 exists.
Consider A-1A = I
∴ A-1\(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) = \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\)
By C3 – C1, we get,
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 50
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 51

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 18.
Find the inverse of \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\) by elementary row transformations.
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right|\)
= 1(7 – 20) – 2(7 – 10) + 3(4 – 2)
= -13 + 6 + 6 = -1 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 52
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 53

Question 19.
Show with usual notations that for any matrix A = [aij]3×3
(i) a11A21 + a12A22 + a13A23 = 0
Solution:
A = [aij]3×3 = \(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\)
(i) A21 = (-1)2+1M21 = \(-\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|\)
= -(a12a33 – a13a32)
= -a12a33 + a13a32
A22 = (-1)2+2M22 = \(\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|\)
= a11a33 – a13a31
A23 = (-1)2+3M23 = \(-\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right|\)
= -(a11a32 – a12a31)
= -a11a32+ a12a31
∴ a11A21 + a12A22 + a13A23
= a11(-a1233 + a13a32) + a12(a11a33 – a13a31) + a13(-a11a32 + a12a31)
= -a11a12a33 + a11a13a32 + a11a12a33 – a12a13a31 – a11a13a32 + a12a13a31
= 0

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) a11A11 + a12A12 + a13A13 = |A|
Solution:
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 54

Question 20.
If A = \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) and B = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\), then find a matrix X such that XA= B.
Solution:
Consider XA = B
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 55
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 56

12th Maharashtra State Board Maths Solutions Pdf Part 1