Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 2 Matrices Ex 2.3 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3

Question 1.
Solve the following equations by the inversion method.
(i) x + 2y = 2, 2x + 3y = 3
Solution:
The given equations can be written in the matrix form as :
\(\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\) = \(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\)
This is of the form AX = B, where
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 1
∴ A-1 = \(\left[\begin{array}{rr}
-3 & 2 \\
2 & -1
\end{array}\right]\)
Now, premultiply AX = B by A-1, we get,
A-1(AX) = A-1B
∴ (A-1A)X = A-1B
∴ IX = A-1B
∴ X = \(=\left[\begin{array}{rr}
-3 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]\)
∴ \(\left[\begin{array}{l}
x \\
y
\end{array}\right]\) = \(=\left[\begin{array}{r}
-6+6 \\
4-3
\end{array}\right]\) = \(=\left[\begin{array}{l}
0 \\
1
\end{array}\right]\)
By equality of matrices,
x = 0, y = 1 is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) x + y = 4, 2x – y = 5
Solution:
x + y = 4, 2x – y = 5
The given equations can be written in the matrix form as:
\(\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\) = \(\left[\begin{array}{l}
4 \\
5
\end{array}\right]\)
This is of the form AX = B ⇒ X ⇒ A-1B
A = \(\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]\)
|A| = -1 – 2 = -3 ≠ 0
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 5
By equality of matrices.
x = 3, y = 1

(iii) 2x + 6y = 8, x + 3y = 5
Solution:
The given equations can be written in the matrix form as :
\(\left[\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
8 \\
5
\end{array}\right]\)
This is of the form AX = B, where
A = \(\left[\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right]\), X = \(\left[\begin{array}{l}
x \\
y
\end{array}\right]\) and B = \(\left[\begin{array}{l}
8 \\
5
\end{array}\right]\)
Let us find A-1.
|A| = \(\left|\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right|\) = 6 – 6 = 0
∴ A-1 does not exist.
Hence, x and y do not exist.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 2.
Solve the following equations by reduction method.
(i) 2x + y = 5, 3x + 5y = -3
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 2
By equality of matrices,
2x + y = 5 …(1)
7y = -21 …(2)
From (2), y = -3
Substituting y = -3 in (1), we get,
2x – 3 = 5
∴ 2x = 8 ∴ x = 4
Hence, x = 4, y = -3 is the required solution.

(ii) x + 3y = 2, 3x + 5y = 4.
Solution:
The given equations can be written in the matrix form as :
\(\left[\begin{array}{ll}
1 & 3 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\) = \(\left[\begin{array}{l}
2 \\
4
\end{array}\right]\)
By R2 – 3R1, we get
\(\left[\begin{array}{rr}
1 & 3 \\
0 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\) = \(\left(\begin{array}{r}
2 \\
-2
\end{array}\right)\)
∴ \(\left[\begin{array}{l}
x+3 \\
0-4 y
\end{array}\right]\) = \(\left[\begin{array}{r}
2 \\
-2
\end{array}\right]\)
By equality of matrices,
x + 3y = 2 …(1)
-4y = -2
From (2), y = \(\frac{1}{2}\)
Substituting y = \(\frac{1}{2}\) in (1), we get,
x + \(\frac{3}{2}\) = 2
∴ x = 2 – \(\frac{3}{2}=\frac{1}{2}\)
Hence, x = \(\frac{1}{2}\), y = \(\frac{1}{2}\) is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) 3x – y = 1, 4x + y = 6
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 3
By equality of matrices,
12x – 4y = 4 … (1)
7y = 14 … (2)
From (2), y = 2
Substituting y = 2 in (1), we get,
12x – 8 = 4
∴ 12x = 12 ∴ x = 1
Hence, x = 1, y = 2 is the required solution.

(iv) 5x + 2y = 4, 7x + 3y = 5
Solution:
5x + 2y = 4 ………..(1)
7x + 3y = 5 …………(2)
Multiplying Eq. (1) with 7 and Eq. (2) with 5
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 6
Put y = -3 into Eq. (1)
5x + 2y = 4
5x + 2(-3) = 4
5x – 6 = 4
5x = 4 + 6
5x = 10
x = \(\frac{10}{5}\)
x = 2
Hence, x = 2, y = -3 is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
The cost of 4 pencils, 3 pens and 2 erasers is ₹ 60. The cost of 2 pencils, 4 pens and 6 erasers is ₹ 90, whereas the cost of 6 pencils, 2 pens and 3 erasers is ₹ 70. Find the cost of each item by using matrices.
Solution:
Let the cost of 1 pencil, 1 pen and 1 eraser be ₹ x, ₹ y and ₹ z respectively.
Then, from the given conditions,
4x + 3y + 2z = 60
2x + 4y + 6z = 90, i.e., x + 2y + 3z = 45
6x + 2y + 3z = 70
These equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 4
By equality of matrices,
x + 2y + 3z = 45 …….(1)
– 5y – 10z = – 120 …….(2)
5z = 40
From (3), z = 8
Substituting z = 8 in (2), we get,
– 5y – 80 = -120
∴ – 5y = -40 ∴ y = 8
Substituting y = 8, z = 8 in (1), we get,
x + 16 + 24 = 45
∴ x + 40 = 45 ∴ x = 5
∴ x = 5, y = 8, z = 8
Hence, the cost is ₹ 5 for a pencil, ₹ 8 for a pen and ₹ 8 for an eraser.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
If three numbers are added, their sum is 2. If 2 times the second number is subtracted from the sum of first and third numbers, we get 8 and if three times the first number is added to the sum of second and third numbers, we get 4. Find the numbers using matrices.
Solution:
Let the three numbers be x, y and z. According to the given conditions,
x + y + z = 2
x + z – 2y = 8, i.e., x – 2y + 2 = 8
and y + z + 3x = 4, i.e., 3x + y + z = 4
Hence, the system of linear equations is
x + y + z = 2
x – 2y + z = 8
3x + y + z = 4
These equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 7
By equality of matrices,
x + y + z = 2 ……(1)
-3y = 6 ……(2)
– 2y – 2z = -2 ……..(3)
From (2), y = -2
Substituting y = -2 in (3), we get,
-2(-2) – 2z = -2
∴ -2z = -6 ∴ z = 3
Substituting y = -2, z = 3 in (1), we get,
x – 2 + 3 = 2 ∴ x = 1
Hence, the required numbers are 1, -2 and 3.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
The total cost of 3 T.V. sets and 2 V.C.R.s is ₹ 35000. The shop-keeper wants profit of ₹ 1000 per television and ₹ 500 per V.C.R. He can sell 2 T. V. sets and 1 V.C.R. and get the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. sets and a V.C.R.
Solution:
Let the cost of each T.V. set be ₹ x and each V.C.R. be ₹ y. Then the total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ (3x + 2y) which is given to be ₹ 35,000.
∴ 3x + 2y = 35000
The shopkeeper wants profit of ₹ 1000 per T.V. set and of ₹ 500 per V.C.R.
∴ the selling price of each T.V. set is ₹ (x + 1000) and of each V.C.R. is ₹ (y + 500).
∴ selling price of 2 T.V. set and 1 V.C.R. is
₹ [2(x + 1000) + (y + 500)] which is given to be ₹ 21,500.
∴ 2(x + 1000) + (y + 500) = 21500
∴ 2x + 2000 + y + 500 = 21500
∴ 2x + y = 19000
Hence, the system of linear equations is
3x + 2y = 35000
2x + y = 19000
These equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 8
By equality of matrices,
2x + y = 19000 ……….(1)
-x = -3000 ……….(2)
From (2), x = 3000
Substituting x = 3000 in (1), we get,
2(3000) + y = 19000
∴ y = 13000
∴ the cost price of one T.V. set is ₹ 3000 and of one V.C.R. is ₹ 13000 and the selling price of one T.V. set is ₹ 4000 and of one V.C.R. is ₹ 13500.

Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.2

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 2 Matrices Ex 2.2 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 2 Matrices Ex 2.2

Question 1.
Find the co-factors of the elements of the following matrices
(i) \(\left[\begin{array}{cc}
-1 & 2 \\
-3 & 4
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{cc}
-1 & 2 \\
-3 & 4
\end{array}\right]\)
Here, a11 = -11, M11 = 4
∴ A11 = (-1)1+1(4) = 4
a12 = 2, M12 = -3
∴ A12 = (-1)1+2(- 3) = 3
a21 = – 3, M21 = -2
∴ A21 = (- 1)2+1(2) = -2
a22 = 4, M22 = -1
∴ A22 = (-1)2+2(-1) = -1.

(ii) \(\left[\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 3 & 5 \\
-2 & 0 & -1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 3 & 5 \\
-2 & 0 & -1
\end{array}\right]\)
The co-factor of aij is given by Aij = (-1)i+jMij
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 1
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 2

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 2.
Find the matrix of co-factors for the following matrices
(i) \(\left[\begin{array}{rr}
1 & 3 \\
4 & -1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{rr}
1 & 3 \\
4 & -1
\end{array}\right]\)
Here, a11 = 1, M11 = -1
∴ A11 = (-1)1+1(-1) = -1
a12 = 3, M12 = 4
∴ A12 = (-1)1+2(4) = -4
a21 = 4, M21 = 3
∴ A21 = (-1)2+1(3) = -3
a22 = -1, M22 = 1
∴ A22 = (-1)2+1(1) = 1
∴ the co-factor matrix = \(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\)
= \(\left(\begin{array}{rr}
-1 & -4 \\
-3 & 1
\end{array}\right)\)

(ii) \(\left[\begin{array}{rrr}
1 & 0 & 2 \\
-2 & 1 & 3 \\
0 & 3 & -5
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{rrr}
1 & 0 & 2 \\
-2 & 1 & 3 \\
0 & 3 & -5
\end{array}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 21
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 22
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 23
A11 = -14, A12 = -10, A13 = -6,
A21 = 6, A22 = -5, A23 = -3,
A31 = -2, A32 = -7, A33 = 1.
∴ the co-factor matrix
= \(\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]\) = \(\left[\begin{array}{rrr}
-14 & -10 & -6 \\
6 & -5 & -3 \\
-2 & -7 & 1
\end{array}\right]\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
Find the adjoint of the following matrices.
(i) \(\left[\begin{array}{cc}
2 & -3 \\
3 & 5
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{cc}
2 & -3 \\
3 & 5
\end{array}\right]\)
Here, a11 = 2, M11= 5
∴ A11 = (-1)1+1(5) = 5
a12 = -3, M12 = 3
∴ A12 = (-1)1+2(3) = -3
a21 = 3, M21 = -3
∴ A A21 = (-1)2+1(-3) = 3
a22 = 5, M22 = 2
∴ A22 = (-1)2+1 = 2
∴ the co-factor matrix = \(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\)
= \(\left[\begin{array}{rr}
5 & -3 \\
3 & 2
\end{array}\right]\)
∴ adj A = \(\left(\begin{array}{rr}
5 & 3 \\
-3 & 2
\end{array}\right)\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) \(\left[\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 3 & 5 \\
-2 & 0 & -1
\end{array}\right]\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 1
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 2
A11 = -3, A12 = -12, A13 = 6,
A21 = -1, A22 = 3, A23 = 2,
A31 = -11, A32 = -9, A33 = 1
∴ the co-factor matrix = \(\left[\begin{array}{lll}
\mathrm{A}_{11} & \mathrm{~A}_{12} & \mathrm{~A}_{15} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22} & \mathrm{~A}_{23} \\
\mathrm{~A}_{31} & \mathrm{~A}_{32} & \mathrm{~A}_{33}
\end{array}\right]\)
= \(\left[\begin{array}{rrr}
-3 & -12 & 6 \\
-1 & 3 & 2 \\
-11 & -9 & 1
\end{array}\right]\)
∴ adj A = \(\left[\begin{array}{rrr}
-3 & -1 & -11 \\
-12 & 3 & -9 \\
6 & 2 & 1
\end{array}\right]\)

Question 4.
If A = \(\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right]\), verify that A (adj A) = (adj A) A = | A | ∙ I
Solution:
A = \(\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 3
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 4
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 5
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 6
From (1), (2) and (3), we get,
A(adj A) = (adj A)A = |A|∙I.
Note: This relation is valid for any non-singular matrix A.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Find the inverse of the following matrices by the adjoint method
(i) \(\left[\begin{array}{ll}
-1 & 5 \\
-3 & 2
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
-1 & 5 \\
-3 & 2
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
-1 & 5 \\
-3 & 2
\end{array}\right|\) = -2 + 15 = 13 ≠ 0
∴ A-1 exists.
First we have to find the co-factor matrix
= [Aij]2×2, where Aij = (-1)i+jMij
Now, A11 = (-1)1+1M11 = 2
A12 = (-1)1+2M12 = -(-3) = 3
A21 = (-1)2+1M21 = -5
A22 = (-1)2+2M22 = -1
Hence, the co-factor matrix
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 7

(ii) \(\left[\begin{array}{cc}
2 & -2 \\
4 & 3
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{cc}
2 & -2 \\
4 & 3
\end{array}\right]\)
|A| = \(\) = 6 + 8 = 14 ≠ 0
∴ A-1 exist
First we have to find the co-factor matrix
= [Aij] 2×2 where Aij = (-1)i+jMij
Now, A11 = (-1)1+1M11 = 3
A12 = (-1)1+2M = -4
A21 = (-2)2+1M21 = (-2) = 2
A22 = (-1)2+2M22 = 2
Hence the co-factor matrix
= \(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\) = \(\left[\begin{array}{cc}
3 & -4 \\
2 & 2
\end{array}\right]\)
∴ adj A = \(\left[\begin{array}{cc}
3 & 2 \\
-4 & 2
\end{array}\right]\)
∴ A-1 = \(\frac{1}{|\mathrm{~A}|}\) (adj A) = \(\frac{1}{14}\left(\begin{array}{cc}
3 & 2 \\
-4 & 2
\end{array}\right)\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) \(\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1
\end{array}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 8
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 9
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 10
∴ A-1 = \(\frac{1}{3}\left[\begin{array}{rrr}
3 & 0 & 0 \\
-3 & 1 & 0 \\
9 & 2 & -3
\end{array}\right]\)

(iv) \(\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 4 \\
0 & 0 & 5
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 4 \\
0 & 0 & 5
\end{array}\right]\)
∴ |A| = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 4 \\
0 & 0 & 5
\end{array}\right]\)
= 1(10 – 0) – 0 + 0
= 1(10) – 0 + 0
= 10 ≠ 0
∴ A-1 exists.
First we have to find the co-factor matrix
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 24
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 25
∴ A-1 = \(\frac{1}{|\mathrm{~A}|}\) (adj A)
= \(\frac{1}{10}\left(\begin{array}{rrr}
10 & -10 & 2 \\
0 & 5 & -4 \\
0 & 0 & 2
\end{array}\right)\)
∴ A-1 = \(\frac{1}{10}\left(\begin{array}{rrr}
10 & -10 & 2 \\
0 & 5 & -4 \\
0 & 0 & 2
\end{array}\right)\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 6.
Find the inverse of the following matrices
(i) \(\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 11
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 12
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 13

(ii) \(\left[\begin{array}{cc}
2 & -3 \\
-1 & 2
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{cc}
2 & -3 \\
-1 & 2
\end{array}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 14
∴ A-1 = \(\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right)\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) \(\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 15
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 16
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 17

(iv) \(\left[\begin{array}{ccc}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ccc}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 18
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 19
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.2 20

Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 5 Vectors Ex 5.3 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3

Question 1.
Find two unit vectors each of which is perpendicular to both
\(\bar{u}\) and \(\bar{v}\), where \(\bar{u}\) = \(2 \hat{i}+\hat{j}-2 \hat{k}\), \(\bar{v}\) = \(\hat{i}+2 \hat{j}-2 \hat{k}\)
Solution:
Let \(\bar{u}\) = \(2 \hat{i}+\hat{j}-2 \hat{k}\)
\(\bar{v}\) = \(\hat{i}+2 \hat{j}-2 \hat{k}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 1
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 2

Question 2.
If \(\bar{a}\) and \(\bar{b}\) are two vectors perpendicular to each other, prove that (\(\bar{a}\) + \(\bar{b}\))2 = (\(\bar{a}\) – \(\bar{b}\))2
Solution:
\(\bar{a}\) and \(\bar{b}\) are perpendicular to each other.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 3
∴ LHS = RHS
Hence, (\(\bar{a}\) + \(\bar{b}\))2 = (\(\bar{a}\) – \(\bar{b}\))2.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
Find the values of c so that for all real x the vectors \(x c \hat{i}-6 \hat{j}+3 \hat{k}\) and \(x \hat{i}+2 \hat{j}+2 c x \hat{k}\) make an obtuse angle.
Solution:
Let \(\bar{a}\) = \(x c \hat{i}-6 \hat{j}+3 \hat{k}\) and \(\bar{b}\) = \(x \hat{i}+2 \hat{j}+2 c x \hat{k}\)
Consider \(\bar{a}\)∙\(\bar{b}\) = \((x c \hat{i}-6 \hat{j}+3 \hat{k}) \cdot(x \hat{i}+2 \hat{j}+2 c x \hat{k})\)
= (xc)(x) + (-6)(2) + (3)(2cx)
= cx2 – 12 + 6cx
= cx2 + 6cx – 12
If the angle between \(\bar{a}\) and \(\bar{b}\) is obtuse, \(\bar{a}\)∙\(\bar{b}\) < 0.
∴ cx2 + 6cx – 12 < 0
∴ cx2 + 6cx < 12
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 4
∴ c < 0.
Hence, the angle between a and b is obtuse if c < 0.

Question 4.
Show that the sum of the length of projections of \(\hat{p} \hat{i}+q \hat{j}+r \hat{k}\) on the coordinate axes, where p = 2, q = 3 and r = 4, is 9.
Solution:
Let \(\bar{a}\) = \(\hat{p} \hat{i}+q \hat{j}+r \hat{k}\)
Projection of \(\bar{a}\) on X-axis
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 5
Similarly, projections of \(\bar{a}\) on Y- and Z-axes are 3 and 4 respectively.
∴ sum of these projections = 2 + 3 + 4 = 9.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 6
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 7
∵ \(\overline{\mathrm{AC}}\), \(\overline{\mathrm{BD}}\) are non-zero vectors
∴ \(\overline{\mathrm{AC}}\) is perpendicular to \(\overline{\mathrm{BD}}\)
Hence, the diagonals are perpendicular.

Question 6.
Determine whether \(\bar{a}\) and \(\bar{b}\) are orthogonal, parallel or neither.
(i) \(\bar{a}\) = \(-9 \hat{i}+6 \hat{j}+15 \hat{k}\), \(\bar{b}\) = \(6 \hat{i}-4 \hat{j}-10 \hat{k}\)
Solution:
\(\bar{a}\) = \(-9 \hat{i}+6 \hat{j}+15 \hat{k}\) = -3\((3 \hat{i}-2 \hat{j}-5 \hat{k})\)
= \(-\frac{3}{2}(6 \hat{i}-4 \widehat{j}-19 \hat{k})\)
∴ \(\bar{a}\) = \(-\frac{3}{2} \bar{b}\)
i.e. \(\bar{a}\) is a non-zero scalar multiple of \(\bar{b}\)
Hence, \(\bar{a}\) is parallel to \(\bar{b}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) \(\bar{a}\) = \(2 \hat{i}+3 \hat{j}-\hat{k}\), \(\bar{b}\) = \(5 \hat{i}-2 \hat{j}+4 \hat{k}\)
Solution:
\(\bar{a} \cdot \bar{b}\) = \((2 \hat{i}+3 \hat{j}-\hat{k}) \cdot(5 \hat{i}-2 \hat{j}+4 \hat{k})\)
= (2)(5) + (3)(-2) + (-1)(4)
= 10 – 6 – 4 = 0
Since, \(\bar{a}\), \(\bar{b}\) are non-zero vectors and \(\bar{a} \cdot \bar{b}\) = 0, \(\bar{a}\) is orthogonal to \(\bar{b}\).

(iii) \(\bar{a}\) = \(-\frac{3}{5} \hat{i}+\frac{1}{2} \hat{j}+\frac{1}{3} \hat{k}\), \(\bar{b}\) = \(5 \hat{i}+4 \hat{j}+3 \hat{k}\).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 8
= -3 + 2 + 1
= 0
Since, \(\bar{a}\), \(\bar{b}\) are non-zero vectors and \(\bar{a} \cdot \bar{b}\) = 0
\(\bar{a}\) is orthogonal to \(\bar{b}\).

(iv) \(\bar{a}\) = \(4 \hat{i}-\hat{j}+6 \hat{k}\), \(\bar{a}\) = \(5 \hat{i}-2 \hat{j}+4 \hat{k}\)
Solution:
\(\bar{a} \cdot \bar{b}\) = \((4 \hat{i}-\hat{j}+6 \hat{k}) \cdot(5 \hat{i}-2 \hat{j}+4 \hat{k})\)
= (4)(5) + (-1)(-2) + (6)(4)
= 20 + 2 + 24
= 46 ≠ 0
∴ \(\bar{a}\) is not orthogonal to \(\bar{b}\).
It is clear that \(\bar{a}\) is not a scalar multiple of \(\bar{b}\).
∴ \(\bar{a}\) is not parallel to \(\bar{b}\).
Hence, \(\bar{a}\) is neither parallel nor orthogonal to \(\bar{b}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 7.
Find the angle P of the triangle whose vertices are P(0, -1, -2), Q(3, 1, 4) and R(5, 7, 1).
Solution:
The position vectors \(\bar{p}\), \(\bar{q}\) and \(\bar{r}\) of the points P(0, -1, -2), Q(3, 1, 4) and R(5, 7, 1) are
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 9
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 10
∴ P = 45°

Question 8.
If\(\hat{p}\), \(\hat{q}\), and \(\hat{r}\) are unit vectors, find
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 11
(i) \(\hat{p} \cdot \hat{q}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 12
Let the triangle be denoted by ABC,
where \(\overline{\mathrm{AB}}\) = \(\bar{p}\), \(\overline{\mathrm{AC}}\) = \(\bar{q}\) and \(\overline{\mathrm{BC}}\) = \(\bar{r}\)
∵ \(\bar{p}\), \(\bar{r}\), \(\bar{r}\) are unit vectors.
∴ l(AB) = l(BC) = l(CA) = 1
∴ the triangle is equilateral
∴ ∠A = ∠B = ∠C = 60°
(i) Using the formula for angle between two vectors,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 13

(ii) \(\hat{p} \cdot \hat{r}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 14

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 9.
Prove by vector method that the angle subtended on semicircle is a right angle.
Solution:
Let seg AB be a diameter of a circle with centre C and P be any point on the circle other than A and B. Then ∠APB is an angle subtended on a semicircle.
Let \(\overline{\mathrm{AC}}\) = \(\overline{\mathrm{CB}}\) = \(\bar{a}\) and \(\overline{\mathrm{CP}}\) = \(\bar{r}\).
Then|\(\bar{a}\)| = |\(\bar{r}\)| …(1)
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 15
Hence, the angle subtended on a semicircle is the right angle.

Question 10.
If a vector has direction angles 45ºand 60º find the third direction angle.
Solution:
Let α = 45°, β = 60°
We have to find γ.
∴ cos2α + cos2β + cos2γ = 1
∴ cos245° + cos260° + cos2γ = 1
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 16
Hence, the third direction angle is \(\frac{\pi}{3}\) or \(\frac{2 \pi}{3}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 11.
If a line makes angles 90º, 135º, 45º with the X, Y and Z axes respectively, then find its direction cosines.
Solution:
Let l, m, n be the direction cosines of the line.
Then l = cos α, m = cos β, n = cos γ
Here, α = 90°, β = 135° and γ = 45°
∴ l = cos 90° = 0
m = cos 135° = cos (180° – 45°) = -cos 45° = \(-\frac{1}{\sqrt{2}}\) and n = cos 45° = \(\frac{1}{\sqrt{2}}\)
∴ the direction cosines of the line are 0, \(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\).

Question 12.
If a line has the direction ratios, 4, -12, 18 then find its direction cosines.
Solution:
The direction ratios of the line are a = 4, b = -12, c = 18.
Let l, m, n be the direction cosines of the line.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 17
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 18

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 13.
The direction ratios of \(\overline{A B}\) are -2, 2, 1. If A = (4, 1, 5) and l(AB) = 6 units, find B.
Solution:
The direction ratio of \(\overline{A B}\) are -2, 2, 1.
∴ the direction cosines of \(\overline{A B}\) are
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 19
The coordinates of the points which are at a distance of d units from the point (x1, y1, z1) are given by (x1 ± ld, y1 ± md, z1 ± nd)
Here x1 = 4, y1 = 1, z1 = 5, d = 6, l = \(-\frac{2}{3}\), m = \(\frac{2}{3}\), n = \(\frac{1}{3}\)
∴ the coordinates of the requited points are
(4 ± \(\left(-\frac{2}{3}\right)\)6, 1 ± \(\frac{2}{3}\)(6), 5 ± \(\frac{1}{3}\)(6))
i.e. (4 – 4, 1 + 4, 5 + 2) and (4 + 4, 1 – 4, 5 – 2)
i.e. (0, 5, 7) and (8, -3, 3).

Question 14.
Find the angle between the lines whose direction cosines l, m, n satisfy the equations 5l + m + 3n = 0 and 5mn – 2nl + 6lm = 0.
Solution:
Given, 5l + m + 3n = 0 …(1)
and 5mn – 2nl + 6lm = 0 …(2)
From (1), m = -(51 + 3n)
Putting the value of m in equation (2), we get,
-5(5l + 3n)n – 2nl – 6l(5l + 3n) = 0
∴ -25ln – 15n2 – 2nl – 30l2 – 18ln = 0
∴ – 30l2 – 45ln – 15n2 = 0
∴ 2l2 + 3ln + n2 = 0
∴ 2l2 + 2ln + ln + n2 = 0
∴ 2l(l + n) + n(l + n) = 0
∴ (l + n)(2l + n) = 0
∴ l + n = 0 or 2l + n = 0
l = -n or n = -2l
Now, m = -(5l + 3n), therefore, if l = -n,
m = -(-5n + 3n) = 2n
∴ -l = \(\frac{m}{2}\) = n
∴ \(\frac{l}{-1}=\frac{m}{2}=\frac{n}{1}\)
∴ the direction ratios of the first line are
a1 = -1, b1 = 2, c1 = 1
If n = -2l, m = -(5l – 6l) – l
∴ l = m = \(\frac{n}{-2}\)
∴ \(\frac{l}{1}=\frac{m}{1}=\frac{n}{-2}\)
∴ the direction ratios of the second line are
a2 = -1, b2 = 1, c2 = -2
Let θ be the angle between the lines.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.3 20

Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 5 Vectors Ex 5.2 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2

Question 1.
Find the position vector of point R which divides the line joining the points P and Q whose position vectors are \(2 \hat{i}-\hat{j}+3 \hat{k}\) and \(-5 \hat{i}+2 \hat{j}-5 \hat{k}\) in the ratio 3 : 2
(i) internally
Solution:
It is given that the points P and Q have position vectors \(\bar{p}\) = \(2 \hat{i}-\hat{j}+3 \hat{k}\) and \(\bar{p}\) = \(-5 \hat{i}+2 \hat{j}-5 \hat{k}\) respectively.
(i) If R(\(\bar{r}\)) divides the line segment PQ internally in the ratio 3 : 2, by section formula for internal division,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 1

(ii) externally.
Solution:
If R(\(\bar{r}\)) divides the line segment joining P and Q externally in the ratio 3 : 2, by section formula for external division,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 2
∴ coordinates of R = (-19, 8, -21).
Hence, the position vector of R is \(-19 \hat{i}+8 \hat{j}-21 \hat{k}\) and coordinates of R are (-19, 8, -21).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 2.
Find the position vector of midpoint M joining the points L (7, -6, 12) and N (5, 4, -2).
Solution:
The position vectors \(\bar{l}\) and \(\bar{n}\) of the points L(7, -6, 12) and N (5, 4, -2) are given by
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 3
∴ coordinates of M = (6, -1, 5).
Hence, position vector of M is \(6 \hat{i}-\hat{j}+5 \hat{k}\) and the coordinates of M are (6, -1, 5).

Question 3.
If the points A(3, 0, p), B (-1, q, 3) and C(-3, 3, 0) are collinear, then find
(i) The ratio in which the point C divides the line segment AB.
Solution:
Let \(\bar{a}\), \(\bar{b}\) and \(\bar{c}\) be the position vectors of A, B and C respectively.
Then \(\bar{a}\) = \(3 \hat{i}+0 \cdot \hat{j}+p \hat{k}\), \(\bar{b}\) = \(-\hat{i}+q \hat{j}+3 \hat{k}\) and \(\bar{c}\) = \(-3 \hat{i}+3 \hat{j}+0 \hat{k}\).
As the points A, B, C are collinear, suppose the point C divides line segment AB in the ratio λ : 1.
∴ by the section formula,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 4
By equality of vectors, we have,
-3(λ + 1) = -λ + 3 … (1)
3(λ + 1 ) = λ q … (2)
0 = 3λ + p … (3)
From equation (1), -3λ – 3 = -λ + 3
∴ -2λ = 6 ∴ λ = -3
∴ C divides segment AB externally in the ratio 3 : 1.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) The values of p and q.
Solution:
Putting λ = -3 in equation (2), we get
3(-3 + 1) = -3q
∴ -6 = -3q ∴ q = 2
Also, putting λ = -3 in equation (3), we get
0 = -9 + p ∴ p = 9
Hence p = 9 and q = 2.

Question 4.
The position vector of points A and B are 6\(\bar{a}\) + 2\(\bar{b}\) and \(\bar{a}\) – 3\(\bar{b}\). If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is 3\(\bar{a}\) – \(\bar{b}\).
Solution:
Let \(\bar{c}\) be the position vector of C.
Since C divides AB in the ratio 3 : 2,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 5
Hence, the position vector of C is 3\(\bar{a}\) – \(\bar{b}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Prove that the line segments joining mid-point of adjacent sides of a quadrilateral form a parallelogram.
Solution:
Let ABCD be a quadrilateral and P, Q, R, S be the midpoints of the sides AB, BC, CD and DA respectively.
Let \(\bar{a}\), \(\bar{b}\), \(\bar{c}\), \(\bar{d}\), \(\bar{p}\), \(\bar{q}\), \(\bar{r}\) and s be the position vectors of the points A, B, C, D, P, Q, R and S respectively.
Since P, Q, R and S are the midpoints of the sides AB, BC, CD and DA respectively,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 6
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 7
∴ □PQRS is a parallelogram.

Question 6.
D and E divide sides BC and CA of a triangle ABC in the ratio 2 : 3 respectively. Find the position vector of the point of intersection of AD and BE and the ratio in which this point divides AD and BE.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 19
Let AD and BE intersect at P.
Let A, B, C, D, E, P have position vectos \(\bar{a}\), \(\bar{b}\), \(\bar{c}\), \(\bar{d}\), \(\bar{e}\), \(\bar{p}\) respectively.
D and E divide segments BC and CA internally in the ratio 2 : 3.
By the section formula for internal division,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 9
LHS is the position vector of the point which divides segment AD internally in the ratio 15 : 4.
RHS is the position vector of the point which divides segment BE internally in the ratio 10 : 9.
But P is the point of intersection of AD and BE.
∴ P divides AD internally in the ratio 15 : 4 and P divides BE internally in the ratio 10 : 9.
Hence, the position vector of the point of interaction of
AD and BE is \(\bar{p}\) = \(\frac{15 \bar{d}+4 \bar{a}}{19}=\frac{10 \bar{e}+9 \bar{b}}{19}\) and it divides AD internally in the ratio 15 : 4 and BE internally in the ratio 10 : 9.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 7.
Prove that a quadrilateral is a parallelogram if and only if its diagonals bisect each other.
Solution:
Let \(\bar{a}\), \(\bar{b}\), \(\bar{c}\) and \(\bar{d}\) be respectively the position vectors of the vertices A, B, C and D of the parallelogram ABCD. Then AB = DC and side AB || side DC.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 10
The position vectors of the midpoints of the diagonals AC and BD are (\(\bar{a}\) + \(\bar{c}\))/2 and (\(\bar{b}\) + \(\bar{d}\))/2. By (1), they are equal.
∴ the midpoints of the diagonals AC and BD are the same.
This shows that the diagonals AC and BD bisect each other.

(ii) Conversely, suppose that the diagonals AC and BD
of □ ABCD bisect each other,
i. e. they have the same midpoint.
∴ the position vectors of these midpoints are equal.
∴ \(\frac{\bar{a}+\bar{c}}{2}=\frac{\bar{b}+\bar{d}}{2}\) ∴ \(\bar{a}+\bar{c}=\bar{b}+\bar{d}\)
∴ \(\bar{b}\) – \(\bar{a}\) = \(\bar{c}\) – \(\bar{d}\) ∴ \(\overline{\mathrm{AB}}\) = \(\overline{\mathrm{DC}}\)
∴ \(\overline{\mathrm{AB}}\) ||\(\overline{\mathrm{DC}}\) and \(|\overline{\mathrm{AB}}|\) = \(|\overline{\mathrm{DC}}|\)
∴ side AB || side DC and AB = DC.
∴ □ ABCD is a parallelogram.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
Prove that the median of a trapezium is parallel to the parallel sides of the trapezium and its length is half the sum of parallel sides.
Solution:
Let \(\bar{a}\), \(\bar{b}\), \(\bar{c}\) and \(\bar{d}\) be respectively the position vectors of the vertices A, B, C and D of the trapezium ABCD, with side AD || side BC.
Then the vectors \(\overline{\mathrm{AD}}\) and \(\overline{\mathrm{BC}}\) are parallel.
∴ there exists a scalar k,
such that \(\overline{\mathrm{AD}}\) = k∙\(\overline{\mathrm{BC}}\)
∴ \(\overline{\mathrm{AD}}\) + \(\overline{\mathrm{BC}}\) = k∙\(\overline{\mathrm{BC}}\) + \(\overline{\mathrm{BC}}\)
= (k + 1)BC …(1)
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 11
Let \(\bar{m}\) and \(\bar{n}\) be the position vectors of the midpoints M and N of the non-parallel sides AB and DC respectively.
Then seg MN is the median of the trapezium.
By the midpoint formula,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 12
Thus \(\overline{\mathrm{MN}}\) is a scalar multiple of \(\overline{\mathrm{BC}}\)
∴ \(\overline{\mathrm{MN}}\) and \(\overline{\mathrm{BC}}\) are parallel vectors
∴ \(\overline{\mathrm{MN}}\) || \(\overline{\mathrm{BC}}\) where \(\overline{\mathrm{BC}}\) || \(\overline{\mathrm{AD}}\)
∴ the median MN is parallel to the parallel sides AD and BC of the trapezium.
Now \(\overline{\mathrm{AD}}\) and \(\overline{\mathrm{BC}}\) are collinear
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 13

Question 9.
If two of the vertices of the triangle are A(3, 1, 4) and B(-4, 5, -3) and the centroid of a triangle is G(-1, 2, 1), then find the coordinates of the third vertex C of the triangle.
Solution:
Let \(\bar{a}\), \(\bar{b}\), \(\bar{c}\) and \(\bar{g}\) be the position vectors of A, B, C and G respectively.
Then \(\bar{a}\) = \(3 \hat{i}+\hat{j}+4 \hat{k}\), \(\bar{b}\) = \(-4 \hat{i}+5 \hat{j}-3 \hat{k}\) and \(\bar{g}\) = \(-\hat{i}+2 \hat{j}+\hat{k}\).
Since G is the centroid of the ∆ABC, by the centroid formula,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 14
∴ the coordinates of third vertex C are (-2, 0, 2).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 10.
In∆OAB, E is the mid-point of OB and D is the point on AB such that AD : DB = 2 : 1.
If OD and AE intersect at P, then determine the ratio OP : PD using vector methods.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 15
Let A, B, D, E, P have position vectors \(\bar{a}\), \(\bar{b}\), \(\bar{d}\), \(\bar{e}\), \(\bar{p}\) respectively w.r.t. O.
∵ AD : DB = 2 : 1.
∴ D divides AB internally in the ratio 2 : 1.
Using section formula for internal division, we get
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 16
LHS is the position vector of the point which divides OD internally in the ratio 3 : 2.
RHS is the position vector of the point which divides AE internally in the ratio 4 : 1.
But OD and AE intersect at P
∴ P divides OD internally in the ratio 3 : 2.
Hence, OP : PD = 3 : 2.

Question 11.
If the centroid of a tetrahedron OABC is (1, 2, -1) where A = (a, 2, 3), B = (1, b, 2), C = (2, 1, c) respectively, find the distance of P (a, b, c) from the origin.
Solution:
Let G = (1, 2, -1) be the centroid of the tetrahedron OABC.
Let \(\bar{a}\), \(\bar{b}\), \(\bar{c}\), \(\bar{g}\) be the position vectors of the points A, B, C, G respectively w.r.t. O.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 17
By equality of vectors
a + 3 = 4, b + 3 = 8, c + 5= -4
∴ a = 1, b = 5, c = -9
∴ P = (a, b, c) = (1, 5, -9)
Distance of P from origion = \(\sqrt{1^{2}+5^{2}+(-9)^{2}}\)
= \(\sqrt{1+25+81}\)
= \(\sqrt{107}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 12.
Find the centroid of tetrahedron with vertices K(5, -7, 0), L(1, 5, 3), M(4, -6, 3), N(6, -4, 2) ?
Solution:
Let \(\bar{p}\), \(\bar{l}\), \(\bar{m}\), \(\bar{n}\) be the position vectors of the points K, L, M, N respectively w.r.t. the origin O.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.2 18
Hence, the centroid of the tetrahedron is G = (4, -3, 2).

Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 5 Vectors Ex 5.1 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1

Question 1.
The vector \(\bar{a}\) is directed due north and \(|\bar{a}|\) = 24. The vector \(\bar{b}\) is directed due west and \(|\bar{b}|\) = 7. Find \(|\bar{a}+\bar{b}|\).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 1
Let \(\overline{\mathrm{AB}}\) = \(\bar{a}\), \(\overline{\mathrm{BC}}\) = \(\bar{b}\)
Then \(\overline{\mathrm{AC}}\) = \(\overline{\mathrm{AB}}\) + \(\overline{\mathrm{BC}}\) = a + b
Given : \(|\bar{a}|\) = \(|\overline{\mathrm{AB}}|\) = l(AB) = 24 and
\(|\bar{b}|\) = \(|\overline{\mathrm{BC}}|\) = l(BC) = 7
∴ ∠ABC = 90°
∴ [l(AC)]2 = [l(AB)]2 + [l(BC)]2
= (24)2 + (7)2 = 625
∴ l(AC) = 25 ∴ \(|\overline{\mathrm{AC}}|\) = 25
∴ \(|\bar{a}+\bar{b}|\) = \(|\overline{\mathrm{AC}}|\) = 25.

Question 2.
In the triangle PQR, \(\overline{\mathrm{PQ}}\) = 2\(\bar{a}\) and \(\overline{\mathrm{QR}}\) = 2\(\bar{b}\). The mid-point of PR is M. Find following vectors in terms of \(\bar{a}\) and \(\bar{b}\).
(i) \(\overline{\mathrm{PR}}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 2
Given : \(\overline{\mathrm{PQ}}\) = 2\(\bar{a}\), \(\overline{\mathrm{QR}}\) = 2\(\bar{b}\)
(i) \(\overline{\mathrm{PR}}\) = \(\overline{\mathrm{PQ}}\) + \(\overline{\mathrm{QR}}\)
= 2\(\bar{a}\) + 2\(\bar{a}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) \(\overline{\mathrm{PM}}\)
Solution:
∵ M is the midpoint of PR
∴ \(\overline{\mathrm{PM}}\) = \(\frac{1}{2} \overline{\mathrm{PR}}\) = \(\frac{1}{2}\)[2\(\bar{a}\) + 2\(\bar{b}\)]
= \(\bar{a}\) + \(\bar{b}\).

(iii) \(\overline{\mathrm{QM}}\)
Solution:
\(\overline{\mathrm{RM}}\) = \(\frac{1}{2}(\overline{\mathrm{RP}})\) = \(-\frac{1}{2} \overline{\mathrm{PR}}\) = \(-\frac{1}{2}\)(2\(\bar{a}\) + 2\(\bar{b}\))
= –\(\bar{a}\) – \(\bar{b}\)
∴ \(\overline{\mathrm{QM}}\) = \(\overline{\mathrm{QR}}\) + \(\overline{\mathrm{RM}}\)
= 2\(\bar{b}\) – \(\bar{a}\) – \(\bar{b}\)
= \(\bar{b}\) – \(\bar{a}\).

Question 3.
OABCDE is a regular hexagon. The points A and B have position vectors \(\bar{a}\) and \(\bar{b}\) respectively, referred to the origin O. Find, in terms of \(\bar{a}\) and \(\bar{b}\) the position vectors of C, D and E.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 3
Given : \(\overline{\mathrm{OA}}\) = \(\bar{a}\), \(\overline{\mathrm{OB}}\) = \(\bar{a}\) Let AD, BE, OC meet at M.
Then M bisects AD, BE, OC.
\(\overline{\mathrm{AB}}\) = \(\overline{\mathrm{AO}}\) + \(\overline{\mathrm{OB}}\) = –\(\overline{\mathrm{OA}}\) + \(\overline{\mathrm{OB}}\) = –\(\bar{a}\) + \(\bar{b}\) = \(\bar{b}\) – \(\bar{a}\)
∵ OABM is a parallelogram
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 4
Hence, the position vectors of C, D and E are 2\(\bar{b}\) – 2\(\bar{a}\), 2\(\bar{b}\) – 3\(\bar{a}\) and \(\bar{b}\) – 2\(\bar{a}\) respectively.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
If ABCDEF is a regular hexagon, show that \(\overline{\mathrm{AB}}\) + \(\overline{\mathrm{AC}}\) + \(\overline{\mathrm{AD}}\) + \(\overline{\mathrm{AE}}\) + \(\overline{\mathrm{AF}}\) = 6\(\overline{\mathrm{AO}}\), where O is the center of the hexagon.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 5
ABCDEF is a regular hexagon.
∴ \(\overline{\mathrm{AB}}\) = \(\overline{\mathrm{ED}}\) and \(\overline{\mathrm{AF}}\) = \(\overline{\mathrm{CD}}\)
∴ by the triangle law of addition of vectors,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 6

Question 5.
Check whether the vectors \(2 \hat{i}+2 \hat{j}+3 \hat{k}\), + \(-3 \hat{i}+3 \hat{j}+2 \hat{k}\), + \(3 \hat{i}+4 \hat{k}\) form a triangle or not.
Solution:
Let, if possible, the three vectors form a triangle ABC
with \(\overline{A B}\) = \(2 \hat{i}+2 \hat{j}+3 \hat{k}\), \(\overline{B C}\) = \(3 \hat{i}+3 \hat{j}+2 \hat{k}\), \(\overline{A C}\) = \(3 \hat{i}+4 \hat{k}\)
Now, \(\overline{A B}\) + \(\overline{B C}\)
= \((2 \hat{i}+2 \hat{j}+3 \hat{k})\) + \((-3 \hat{i}+3 \hat{j}+2 \hat{k})\)
= \(-\hat{i}+5 \hat{j}+5 \hat{k} \neq 3 \hat{i}+4 \hat{k}\) = \(\overline{\mathrm{AC}}\)
Hence, the three vectors do not form a triangle.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 6.
In the figure 5.34 express \(\bar{c}\) and \(\bar{d}\) in terms of \(\bar{a}\) and \(\bar{b}\). Find a vector in the direction of \(\bar{a}\) = \(\hat{i}-2 \hat{j}\) that has magnitude 7 units.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 7
Solution:
\(\overline{\mathrm{PQ}}\) = \(\overline{\mathrm{PS}}\) + \(\overline{\mathrm{SQ}}\)
∴ \(\bar{a}\) = \(\bar{c}\) – \(\bar{d}\) … (1)
\(\overline{\mathrm{PR}}\) = \(\overline{\mathrm{PS}}\) + \(\overline{\mathrm{SR}}\)
∴ \(\bar{b}\) = \(\bar{c}\) + \(\bar{d}\) … (2)
Adding equations (1) and (2), we get
\(\bar{a}\) + \(\bar{b}\) = (\(\bar{c}\) – \(\bar{d}\)) + (\(\bar{c}\) + \(\bar{d}\)) = 2\(\bar{c}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 8

Question 7.
Find the distance from (4, -2, 6) to each of the following :
(a) The XY-plane
Solution:
Let the point A be (4, -2, 6).
Then,
The distance of A from XY-plane = |z| = 6

(b) The YZ-plane
Solution:
The distance of A from YZ-plane = |x| = 4

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(c) The XZ-plane
Solution:
The distance of A from ZX-plane = |y| = 2

(d) The X-axis
Solution:
The distance of A from X-axis
= \(\sqrt{y^{2}+z^{2}}\) = \(\sqrt{(-2)^{2}+6^{2}}\) = \(\sqrt{40}\) = \(2 \sqrt{10}\)

(e) The Y-axis
Solution:
The distance of A from Y-axis
= \(\sqrt{z^{2}+x^{2}}\) = \(\sqrt{6^{2}+4^{2}}\) = \(\sqrt{52}\) = \(2 \sqrt{13}\)

(f) The Z-axis
Solution:
The distance of A from Z-axis
= \(\sqrt{x^{2}+y^{2}}\) = \(\sqrt{4^{2}+(-2)^{2}}\) = \(\sqrt{20}\) = \(2 \sqrt{5}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
Find the coordinates of the point which is located :
(a) Three units behind the YZ-plane, four units to the right of the XZ-plane and five units above the XY-plane.
Solution:
Let the coordinates of the point be (x, y, z).
Since the point is located 3 units behind the YZ- j plane, 4 units to the right of XZ-plane and 5 units , above the XY-plane,
x = -3, y = 4 and z = 5
Hence, coordinates of the required point are (-3, 4, 5)

(b) In the YZ-plane, one unit to the right of the XZ-plane and six units above the XY-plane.
Solution:
Let the coordinates of the point be (x, y, z).
Since the point is located in the YZ plane, x = 0. Also, the point is one unit to the right of XZ-plane and six units above the XY-plane.
∴ y = 1, z = 6.
Hence, coordinates of the required point are (0, 1, 6).

Question 9.
Find the area of the triangle with vertices (1, 1, 0), (1, 0, 1) and (0, 1, 1).
Solution:
Let A = (1, 1, 0), B = (1, 0, 1), C = (0, 1, 1)
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 9

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 10.
If \(\overline{\mathrm{AB}}\) = \(2 \hat{i}-4 \hat{j}+7 \hat{k}\) and initial point A ≡ (1, 5, ,0). Find the terminal point B.
Solution:
Let \(\bar{a}\) and \(\bar{b}\) be the position vectors of A and B.
Given : A = (1, 5, 0) .’. \(\bar{a}\) = \(\hat{i}+5 \hat{j}\)
Now, \(\overline{\mathrm{AB}}\) = \(2 \hat{i}-4 \hat{j}+7 \hat{k}\)
∴ \(\bar{b}\) – \(\bar{a}\) = \(2 \hat{i}-4 \hat{j}+7 \hat{k}\)
∴ \(\bar{b}\) = \((2 \hat{i}-4 \hat{j}+7 \hat{k})\) + \(\bar{a}\)
= \((2 \hat{i}-4 \hat{j}+7 \hat{k})\) + \((\hat{i}+5 \hat{j})\)
= \(3 \hat{i}+\hat{j}+7 \hat{k}\)
Hence, the terminal point B = (3, 1, 7).

Question 11.
Show that the following points are collinear :
(i) A (3, 2, -4), B (9, 8, -10), C (-2, -3, 1).
Solution:
Let \(\bar{a}\), \(\bar{b}\), \(\bar{c}\) be the position vectors of the points.
A = (3, 2, -4), B = (9, 8, -10) and C = (-2, -3, 1) respectively.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 10
∴ \(\overline{\mathrm{BC}}\) is a non-zero scalar multiple of \(\overline{\mathrm{AB}}\)
∴ they are parallel to each other.
But they have the point B in common.
∴ \(\overline{\mathrm{BC}}\) and \(\overline{\mathrm{AB}}\) are collinear vectors.
Hence, the points A, B and C are collinear.

(ii) P (4, 5, 2), Q (3, 2, 4), R (5, 8, 0).
Solution:
Let \(\bar{a}\), \(\bar{b}\), \(\bar{c}\) be the position vectors of the points.
P = (4, 5, 2), Q = (3, 2, 4), R = (5, 8, 0) respectively.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 11
= 2.\(\overline{\mathrm{AB}}\) …[By (1)]
∴ \(\overline{\mathrm{BC}}\) is a non-zero scalar multiple of \(\overline{\mathrm{AB}}\)
∴ they are parallel to each other.
But they have the point B in common.
∴ \(\overline{\mathrm{BC}}\) and \(\overline{\mathrm{AB}}\) are collinear vectors.
Hence, the points A, B and C are collinear.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 12.
If the vectors \(2 \hat{i}-q \hat{j}+3 \hat{k}\) and \(4 \hat{i}-5 \hat{j}+6 \hat{k}\) are collinear, then find the value of q.
Solution:
The vectors \(2 \hat{i}-q \hat{j}+3 \hat{k}\) and \(4 \hat{i}-5 \hat{j}+6 \hat{k}\) are collinear
∴ the coefficients of \(\hat{i}, \hat{j}, \hat{k}\) are proportional
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 12

Question 13.
Are the four points A(1, -1, 1), B(-1, 1, 1), C(1, 1, 1) and D(2, -3, 4) coplanar? Justify your answer.
Solution:
The position vectors \(\bar{a}\), \(\bar{b}\), \(\bar{c}\), \(\bar{d}\) of the points A, B, C, D are
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 13
By equality of vectors,
y = -2 ….(1)
2x – 2y = 2 … (2)
3y = 0 … (3)
From (1), y = -2
From (3), y = 0 This is not possible.
Hence, the points A, B, C, D are not coplanar.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 14.
Express \(-\hat{i}-3 \hat{j}+4 \hat{k}\) as linear combination of the vectors \(2 \hat{i}+\hat{j}-4 \hat{k}\), \(2 \hat{i}-\hat{j}+3 \hat{k}\) and \(3 \hat{i}+\hat{j}-2 \hat{k}\).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 14
By equality of vectors,
2x + 2y + 3 = -1
x – y + z = -3
-4x + 3y – 2z = 4
We have to solve these equations by using Cramer’s Rule
D = \(\left|\begin{array}{rrr}
2 & 2 & 3 \\
1 & -1 & 1 \\
-4 & 3 & -2
\end{array}\right|\)
= 2(2 – 3) – 2(-2 + 4) + 3(3 – 4)
= -2 – 4 – 3 = -9 ≠ 0
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 15
= 2(-4 + 9) – 2(4 – 12) – 1(3 – 4)
= 10 + 16 + 1 = 27
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.1 16

Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.1

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 2 Matrices Ex 2.1 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 2 Matrices Ex 2.1

Question 1.
Apply the given elementary transformation on each of the following matrices.
A = \(\left[\begin{array}{cc}
1 & 0 \\
-1 & 3
\end{array}\right]\), R1 ↔ R2
Solution:
A = \(\left[\begin{array}{cc}
1 & 0 \\
-1 & 3
\end{array}\right]\)
By R1 ↔ R2, we get,
A ~ \(\left[\begin{array}{rr}
-1 & 3 \\
1 & 0
\end{array}\right]\)

Question 2.
B = \(\left[\begin{array}{ccc}
1 & -1 & 3 \\
2 & 5 & 4
\end{array}\right]\), R1 → R1 → R2
Solution:
B = \(\left[\begin{array}{ccc}
1 & -1 & 3 \\
2 & 5 & 4
\end{array}\right]\),
R1 → R1 → R2 gives,
B ~ \(\left[\begin{array}{rrr}
-1 & -6 & -1 \\
2 & 5 & 4
\end{array}\right]\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
A = \(\left[\begin{array}{ll}
5 & 4 \\
1 & 3
\end{array}\right]\), C1 ↔ C2; B = \(\left[\begin{array}{ll}
3 & 1 \\
4 & 5
\end{array}\right]\), R1 ↔ R2. What do you observe?
Solution:
A = \(\left[\begin{array}{ll}
5 & 4 \\
1 & 3
\end{array}\right]\)
By C1 ↔ C2, we get,
A ~ \(\left[\begin{array}{ll}
4 & 5 \\
3 & 1
\end{array}\right]\) …(1)
B = \(\left[\begin{array}{ll}
3 & 1 \\
4 & 5
\end{array}\right]\)
By R1 ↔ R2, we get,
B ~ \(\left[\begin{array}{ll}
4 & 5 \\
3 & 1
\end{array}\right]\) …(2)
From (1) and (2), we observe that the new matrices are equal.

Question 4.
A = \(\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 3
\end{array}\right]\), 2C2
B = \(\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 4 & 5
\end{array}\right]\), -3R1
Find the addition of the two new matrices.
Solution:
A = \(\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 3
\end{array}\right]\)
By 2C2, we get,
A ~ \(\left[\begin{array}{rrr}
1 & 4 & -1 \\
0 & 2 & 3
\end{array}\right]\)
B = \(\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 4 & 5
\end{array}\right]\)
By -3R1, we get,
B ~ \(\left[\begin{array}{rrr}
-3 & 0 & -6 \\
2 & 4 & 5
\end{array}\right]\)
Now, addition of the two new matrices
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.1 1

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
A = \(\left[\begin{array}{ccc}
1 & -1 & 3 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right]\), 3R3 and then C3 + 2C2.
Solution:
A = \(\left[\begin{array}{ccc}
1 & -1 & 3 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right]\)
By 3R3, we get
A ~ \(\left[\begin{array}{rrr}
1 & -1 & 3 \\
2 & 1 & 0 \\
9 & 9 & 3
\end{array}\right]\)
By C3 + 2C2, we get,
A ~ \(\left(\begin{array}{rrr}
1 & -1 & 3+2(-1) \\
2 & 1 & 0+2(1) \\
9 & 9 & 3+2(9)
\end{array}\right)\)
∴ A ~ \(\left(\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & 2 \\
9 & 9 & 21
\end{array}\right)\)

Question 6.
A = \(\left(\begin{array}{rrr}
1 & -1 & 3 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right)\), C3 + 2C2 and then 3R3. What do you conclude from Ex. 5 and Ex. 6 ?
Solution:
A = \(\left(\begin{array}{rrr}
1 & -1 & 3 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right)\)
By C3 + 2C2, we get,
A ~ \(\left(\begin{array}{rrr}
1 & -1 & 3+2(-1) \\
2 & 1 & 0+2(1) \\
3 & 3 & 1+2(3)
\end{array}\right)\)
∴ A ~ \(\left(\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & 2 \\
3 & 3 & 7
\end{array}\right)\)
By 3R3, we get
A ~ \(\left(\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & 2 \\
9 & 9 & 21
\end{array}\right)\)
We conclude from Ex. 5 and Ex. 6 that the matrix remains same by interchanging the order of the elementary transformations. Hence, the transformations are commutative.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 7.
Use suitable transformation on \(\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\) into an upper triangular matrix.
Solution:
Let A = \(\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\)
By R2 – 3R1, we get,
A ~ \(\left[\begin{array}{rr}
1 & 2 \\
0 & -2
\end{array}\right]\)
This is an upper triangular matrix.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
Convert \(\left[\begin{array}{rr}
1 & -1 \\
2 & 3
\end{array}\right]\) into an identity matrix by suitable row transformations.
Solution:
Let A = \(\left[\begin{array}{rr}
1 & -1 \\
2 & 3
\end{array}\right]\)
By R2 – 2R1, we get,
A ~ \(\left[\begin{array}{rr}
1 & -1 \\
0 & 5
\end{array}\right]\)
By \(\left(\frac{1}{5}\right)\)R2, we get,
A ~ \(\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]\)
By R1 + R2, we get,
A ~ \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\)
This is an identity matrix.

Question 9.
Transform \(\left[\begin{array}{rrr}
1 & -1 & 2 \\
2 & 1 & 3 \\
3 & 2 & 4
\end{array}\right]\) into an upper triangular matrix by suitable row transformations.
Solution:
Let A = \(\left[\begin{array}{rrr}
1 & -1 & 2 \\
2 & 1 & 3 \\
3 & 2 & 4
\end{array}\right]\)
By R2 – 2R1 and R3 – 3R1, we get
A ~ \(\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 3 & -1 \\
0 & 5 & -2
\end{array}\right]\)
By R3 – \(\left(\frac{5}{3}\right)\)R2, we get,
A ~ \(\left(\begin{array}{rrr}
1 & -1 & 2 \\
0 & 3 & -1 \\
0 & 0 & -\frac{1}{3}
\end{array}\right)\)
This is an upper triangular matrix.

Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.2

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 4 Pair of Straight Lines Ex 4.2 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.2

Question 1.
Show that lines represented by 3x2 – 4xy – 3y2 = 0 are perpendicular to each other.
Solution:
Comparing the equation 3x2 – 4 xy – 3y2 = 0 with ax2 + 2hxy + by2 = 0, we get, a = 3, 2h = -4, b = -3 Since a + b = 3 + (-3) = 0, the lines represented by 3x2 – 4xy – 3y2 = 0 are perpendicular to each other.

Question 2.
Show that lines represented by x2 + 6xy + gy2= 0 are coincident.
Question is modified.
Show that lines represented by x2 + 6xy + 9y2= 0 are coincident.
Solution:
Comparing the equation x2 + 6xy + 9y2 = 0 with ax2 + 2hxy + by2 = 0, we get,
a = 1, 2h = 6, i.e. h = 3 and b = 9
Since h2 – ab = (3)2 – 1(9)
= 9 – 9 = 0, .
the lines represented by x2 + 6xy + 9y2 = 0 are coincident.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
Find the value of k if lines represented by kx2 + 4xy – 4y2 = 0 are perpendicular to each other.
Solution:
Comparing the equation kx2 + 4xy – 4y2 = 0 with ax2 + 2hxy + by2 = 0, we get,
a = k, 2h = 4, b = -4
Since lines represented by kx2 + 4xy – 4y2 = 0 are perpendicular to each other,
a + b = 0
∴ k – 4 = 0 ∴ k = 4.

Question 4.
Find the measure of the acute angle between the lines represented by:
(i) 3x2 – 4\(\sqrt {3}\)xy + 3y2 = 0
Solution:
Comparing the equation 3x2 – 4\(\sqrt {3}\)xy + 3y2 = 0 with
ax2 + 2hxy + by2 = 0, we get,
a = 3, 2h = -4\(\sqrt {3}\), i.e. h = -24\(\sqrt {3}\) and b = 3
Let θ be the acute angle between the lines.
Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.2 1
∴ θ = 30°.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) 4x2 + 5xy + y2 = 0
Solution:
Comparing the equation 4x2 + 5xy + y2 = 0 with ax2 + 2hxy + by2 = 0, we get,
a = 4, 2h = 5, i.e. h = \(\frac{5}{2}\) and b = 1.
Let θ be the acute angle between the lines.
Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.2 2

(iii) 2x2 + 7xy + 3y2 = 0
Solution:
Comparing the equation
2x2 + 7xy + 3y2 = 0 with
ax2 + 2hxy + by2 = 0, we get,
a = 2, 2h = 7 i.e. h = \(\frac{7}{2}\) and b = 3
Let θ be the acute angle between the lines.
Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.2 3
Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.2 4
tanθ = 1
∴ θ = tan 1 = 45°
∴ θ = 45°

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) (a2 – 3b2)x2 + 8abxy + (b2 – 3a2)y2 = 0
Solution:
Comparing the equation
(a2 – 3b2)x2 + 8abxy + (b2 – 3a2)y2 = 0, with
Ax2 + 2Hxy + By2 = 0, we have,
A = a2 – 3b2, H = 4ab, B = b2 – 3a2.
∴ H2 – AB = 16a2b2 – (a2 – 3b2)(b2 – 3a2)
= 16a2b2 + (a2 – 3b2)(3a2 – b2)
= 16a2b2 + 3a4 – 10a2b2 + 3b4
= 3a4 + 6a2b2 + 3b4
= 3(a4 + 2a2b2 + b4)
= 3 (a2 + b2)2
∴ \(\sqrt{H^{2}-A B}\) = \(\sqrt {3}\) (a2 + b2)
Also, A + B = (a2 – 3b2) + (b2 – 3a2)
= -2 (a2 + b2)
If θ is the acute angle between the lines, then
tan θ = \(\left|\frac{2 \sqrt{H^{2}-A B}}{A+B}\right|=\left|\frac{2 \sqrt{3}\left(a^{2}+b^{2}\right)}{-2\left(a^{2}+b^{2}\right)}\right|\)
= \(\sqrt {3}\) = tan 60°
∴ θ = 60°

Question 5.
Find the combined equation of lines passing through the origin each of which making an angle of 30° with the line 3x + 2y – 11 = 0
Solution:
The slope of the line 3x + 2y – 11 = 0 is m1 = \(-\frac{3}{2}\) .
Let m be the slope of one of the lines making an angle of 30° with the line 3x + 2y – 11 = 0.
The angle between the lines having slopes m and m1 is 30°.
Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.2 5
On squaring both sides, we get,
\(\frac{1}{3}=\frac{(2 m+3)^{2}}{(2-3 m)^{2}}\)
∴ (2 – 3m)2 = 3 (2m + 3)2
∴ 4 – 12m + 9m2 = 3(4m2 + 12m + 9)
∴ 4 – 12m + 9m2 = 12m2 + 36m + 27
3m2 + 48m + 23 = 0
This is the auxiliary equation of the two lines and their joint equation is obtained by putting m = \(\frac{y}{x}\).
∴ the combined equation of the two lines is
3\(\left(\frac{y}{x}\right)^{2}\) + 48\(\left(\frac{y}{x}\right)\) + 23 = 0
∴ \(\frac{3 y^{2}}{x^{2}}+\frac{48 y}{x}\) + 23 = 0
∴ 3y2 + 48xy + 23x2 = 0
∴ 23x2 + 48xy + 3y2 = 0.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 6.
If the angle between lines represented by ax2 + 2hxy + by2 = 0 is equal to the angle between lines represented by 2x2 – 5xy + 3y2 = 0 then show that 100(h2 – ab) = (a + b)2.
Solution:
The acute angle θ between the lines ax2 + 2hxy + by2 = 0 is given by
tan θ = \(\left|\frac{2 \sqrt{h^{2}-a b}}{a+b}\right|\) ..(1)
Comparing the equation 2x2 – 5xy + 3y2 = 0 with ax2 + 2hxy + by2 = 0, we get,
a = 2, 2h= -5, i.e. h = \(-\frac{5}{2}\) and b = 3
Let ∝ be the acute angle between the lines 2x2 – 5xy + 3y2 = 0.
Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.2 6
This is the required condition.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 7.
Find the combined equation of lines passing through the origin and each of which making angle 60° with the Y- axis.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.2 7
Let OA and OB be the lines through the origin making an angle of 60° with the Y-axis.
Then OA and OB make an angle of 30° and 150° with the positive direction of X-axis.
∴ slope of OA = tan 30° = \(\frac{1}{\sqrt{3}}\)
∴ equation of the line OA is
y = \(\frac{1}{\sqrt{3}}\) = x, i.e. x – \(\sqrt {3}\)y = 0
Slope of OB = tan 150° = tan (180° – 30°)
= tan 30° = \(-\frac{1}{\sqrt{3}}\)
∴ equation of the line OB is
y = \(-\frac{1}{\sqrt{3}}\)x, i.e. x + \(\sqrt {3}\) y = 0
∴ required combined equation is
(x – \(\sqrt {3}\)y)(x + \(\sqrt {3}\)y) = 0
i.e. x2 – 3y2 = 0.

Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.1

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 4 Pair of Straight Lines Ex 4.1 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.1

Question 1.
Find the combined equation of the following pairs of lines:
(i) 2x + y = 0 and 3x – y = 0
Solution:
The combined equation of the lines 2x + y = 0 and 3x – y = 0 is
(2x + y)( 3x – y) = 0
∴ 6x2 – 2xy + 3xy – y2 = 0
∴ 6x2 – xy – y2 = 0.

(ii) x + 2y – 1 = 0 and x – 3y + 2 = 0
Solution:
The combined equation of the lines x + 2y – 1 = 0 and x – 3y + 2 = 0 is
(x + 2y – 1)(x – 3y + 2) = 0
∴ x2 – 3xy + 2x + 2xy – 6y2 + 4y – x + 3y – 2 = 0
∴ x2 – xy – 6y2 + x + 7y – 2 = 0.

(iii) Passing through (2, 3) and parallel to the co-ordinate axes.
Solution:
Equations of the coordinate axes are x = 0 and y = 0.
∴ the equations of the lines passing through (2, 3) and parallel to the coordinate axes are x = 2 and
i.e. x – 2 = 0 and y – 3 = 0.
∴ their combined equation is
(x – 2)(y – 3) = 0.
∴ xy – 3x – 2y + 6 = 0.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) Passing through (2, 3) and perpendicular to lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0
Solution:
Let L1 and L2 be the lines passing through the point (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0 respectively.
Slopes of the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0 are \(\frac{-3}{2}\) and \(\frac{-1}{-3}=\frac{1}{3}\) respectively.
∴ slopes of the lines L1 and L2 are \(\frac{2}{3}\) and -3 respectively.
Since the lines L1 and L2 pass through the point (2, 3), their equations are
y – 3 = \(\frac{2}{3}\)(x – 2) and y – 3 = -3 (x – 2)
∴ 3y – 9 = 2x – 4 and y – 3= -3x + 6
∴ 2x – 3y + 5 = 0 and 3x – y – 9 = 0
∴ their combined equation is
(2x – 3y + 5)(3x + y – 9) = 0
∴ 6x2 + 2xy – 18x – 9xy – 3y2 + 27y + 15x + 5y – 45 = 0
∴ 6x2 – 7xy – 3y2 – 3x + 32y – 45 = 0.

(v) Passsing through (-1, 2),one is parallel to x + 3y – 1 = 0 and the other is perpendicular to 2x – 3y – 1 = 0.
Solution:
Let L1 be the line passing through (-1, 2) and parallel to the line x + 3y – 1 = 0 whose slope is –\(\frac{1}{3}\).
∴ slope of the line L1 is –\(\frac{1}{3}\)
∴ equation of the line L1 is
y – 2 = –\(\frac{1}{3}\)(x + 1)
∴ 3y – 6 = -x – 1
∴ x + 3y – 5 = 0
Let L2 be the line passing through (-1, 2) and perpendicular to the line 2x – 3y – 1 = 0
whose slope is \(\frac{-2}{-3}=\frac{2}{3}\).
∴ slope of the line L2 is –\(\frac{3}{2}\)
∴ equation of the line L2 is
y – 2= –\(\frac{3}{2}\)(x + 1)
∴ 2y – 4 = -3x – 3
∴ 3x + 2y – 1 = 0
Hence, the equations of the required lines are
x + 3y – 5 = 0 and 3x + 2y – 1 = 0
∴ their combined equation is
(x + 3y – 5)(3x + 2y – 1) = 0
∴ 3x2 + 2xy – x + 9xy + 6y2 – 3y – 15x – 10y + 5 = 0
∴ 3x2 + 11xy + 6y2 – 16x – 13y + 5 = 0

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 2.
Find the separate equations of the lines represented by following equations:
(i) 3y2 + 7xy = 0
Solution:
3y2 + 7xy = 0
∴ y(3y + 7x) = 0
∴ the separate equations of the lines are y = 0 and 7x + 3y = 0.

(ii) 5x2 – 9y2 = 0
Solution:
5x2 – 9y2 = 0
∴ (\(\sqrt {5}\) x)2 – (3y)2 = 0
∴ (\(\sqrt {5}\)x + 3y)(\(\sqrt {5}\)x – 3y) = 0
∴ the separate equations of the lines are
\(\sqrt {5}\)x + 3y = 0 and \(\sqrt {5}\)x – 3y = 0.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) x2 – 4xy = 0
Solution:
x2 – 4xy = 0
∴ x(x – 4y) = 0
∴ the separate equations of the lines are x = 0 and x – 4y = 0

(iv) 3x2 – 10xy – 8y2 = 0
Solution:
3x2 – 10xy – 8y2 = 0
∴ 3x2 – 12xy + 2xy – 8y2 = 0
∴ 3x(x – 4y) + 2y(x – 4y) = 0
∴ (x – 4y)(3x +2y) = 0
∴ the separate equations of the lines are x – 4y = 0 and 3x + 2y = 0.

(v) 3x2 – \(2 \sqrt{3}\) xy – 3y2 = 0
Solution:
3x2 – 2\(\sqrt {3}\)xy – 3y2 = 0
∴ 3x2 – 3\(\sqrt {3}\)xy + \(\sqrt {3}\)xy – 3y2 = 0
∴ 3x(x – \(\sqrt {3}\)y) + \(\sqrt {3}\)y(x – \(\sqrt {3}\)y) = 0
∴ (x – \(\sqrt {3}\)y)(3x + \(\sqrt {3}\)y) = 0
∴ the separate equations of the lines are
∴ x – \(\sqrt {3}\)y = 0 and 3x + \(\sqrt {3}\)y = 0.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vi) x2 + 2(cosec ∝)xy + y2 = 0
Solution:
x2 + 2 (cosec ∝)xy – y2 = 0
i.e. y2 + 2(cosec∝)xy + x2 = 0
Dividing by x2, we get,
Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.1 1
∴ the separate equations of the lines are
(cosec ∝ – cot ∝)x + y = 0 and (cosec ∝ + cot ∝)x + y = 0.

(vii) x2 + 2xy tan ∝ – y2 = 0
Solution:
x2 + 2xy tan ∝ – y2 = 0
Dividind by y2
Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.1 2
The separate equations of the lines are
(sec∝ – tan ∝)x + y = 0 and (sec ∝ + tan ∝)x – y = 0

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
Find the combined equation of a pair of lines passing through the origin and perpendicular
to the lines represented by following equations :
(i) 5x2 – 8xy + 3y2 = 0
Solution:
Comparing the equation 5x2 – 8xy + 3y2 = 0 with ax2 + 2hxy + by2 = 0, we get,
a = 5, 2h = -8, b = 3
Let m1 and m2 be the slopes of the lines represented by 5x2 – 8xy + 3y2 = 0.
∴ m1 + m2 = \(\frac{-2 h}{b}=\frac{8}{3}\)
amd m1m2 = \(\frac{a}{b}=\frac{5}{3}\) …(1)
Now required lines are perpendicular to these lines
∴ their slopes are -1 /m1 and -1/m2 Since these lines are passing through the origin, their separate equations are
y = \(\frac{-1}{m_{1}}\)x and y = \(\frac{-1}{m_{2}}\)x
i.e. m1y = -x and m2y = -x
i.e. x + m1y = 0 and x + m2y = 0
∴ their combined equation is
(x + m1y) (x + m2y) = 0
∴ x2 + (m1 + m2)xy + m1m2y2 = 0
∴ x2 + \(\frac{8}{3}\)xy + \(\frac{5}{3}\)y2 = 0 … [By (1)]
∴ x2 + 8xy + 5y\(\frac{8}{3}\) = 0

(ii) 5x2 + 2xy – 3y2 = 0
Solution:
Comparing the equation 5x2 + 2xy – 3y2 = 0 with ax2 + 2hxy + by2 = 0, we get,
a = 5, 2h = 2, b = -3
Let m1 and m2 be the slopes of the lines represented by 5x2 + 2xy – 3y2 = 0
∴ m1 + m2 = \(\frac{-2 h}{b}=\frac{-2}{-3}=\frac{2}{3}\) and m1m2 = \(\frac{a}{b}=\frac{5}{-3}\) ..(1)
Now required lines are perpendicular to these lines
∴ their slopes are \(\frac{-1}{m_{1}}\) and \(\frac{-1}{m_{2}}\)
Since these lines are passing through the origin, their separate equations are
y = \(\frac{-1}{\mathrm{~m}_{1}}\)x and y = \(\frac{-1}{\mathrm{~m}_{2}}\)x
i.e. m1y = -x amd m2y = -x
i.e. x + m1y = 0 and x + m2y = 0
∴ their combined equation is
∴ (x + m1y)(x + m2y) = 0
x2 + (m1 + m2)xy + m1m2y2 = 0
∴ x2 + \(\frac{2}{3}\)xy – \(\frac{5}{3}\)y = 0 …[By (1)]
∴ 3x2 + 2xy – 5y2 = 0

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) xy + y2 = 0
Solution:
Comparing the equation xy + y2 = 0 with ax2 + 2hxy + by2 = 0, we get,
a = 0, 2h = 1, b = 1
Let m1 and m2 be the slopes of the lines represented by xy + y2 = 0
Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.1 3
Now required lines are perpendicular to these lines
∴ their slopes are \(\frac{-1}{m_{1}}\) and \(\frac{-1}{m_{2}}\).
Since these lines are passing through the origin, their separate equations are
y = \(\frac{-1}{m_{1}}\)x and y = \(\frac{-1}{m_{2}}\)x
i.e. m1y = -x and m2y = -x
i.e. x + m1y = 0 and x + m2y = 0
∴ their combined equation is
(x + m1y) (x + m2y) = 0
∴ x2 + (m1 + m2)xy + m1m2y2 = 0
∴ x2 – xy = 0.y2 = 0 … [By (1)]
∴ x2 – xy = 0.
Alternative Method :
Consider xy + y2 = 0
∴ y(x + y) = 0
∴ separate equations of the lines are y = 0 and
3x2 + 8xy + 5y2 = 0.
x + y = 0.
Let m1 and m2 be the slopes of these lines.
Then m1 = 0 and m2 = -1
Now, required lines are perpendicular to these lines.
∴ their slopes are \(-\frac{1}{m_{1}}\) and \(-\frac{1}{m_{2}}\)
Since, m1 = 0, \(-\frac{1}{m_{1}}\) does not exist.
Also, m2 = -1, \(-\frac{1}{m_{2}}\) = 1
Since these lines are passing through the origin, their separate equations are x = 0 and y = x,
i.e. x – y = 0
∴ their combined equation is
x(x – y) = 0
x2 – xy = 0.

(iv) 3x2 – 4xy = 0
Solution:
Consider 3x2 – 4xy = 0
∴ x(3x – 4y) = 0
∴ separate equations of the lines are x = 0 and 3x – 4y = 0.
Let m1 and m2 be the slopes of these lines.
Then m1 does not exist and and m1 = \(\frac{3}{4}\).
Now, required lines are perpendicular to these lines.
∴ their slopes are \(-\frac{1}{m_{1}}\) and \(-\frac{1}{m_{2}}\).
Since m1 does not exist, \(-\frac{1}{m_{1}}\) = 0
Also m2 = \(\frac{3}{4^{\prime}}-\frac{1}{m_{2}}=-\frac{4}{3}\)
Since these lines are passing through the origin, their separate equations are y = 0 and y = \(-\frac{4}{3}\)x,
i.e.   4x + 3y = 0
∴ their combined equation is
y(4x + 3y) = 0
∴ 4xy + 3y2 = 0.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
Find k if,
(i) the sum of the slopes of the lines represented by x2 + kxy – 3y2 = 0 is twice their product.
Solution:
Comparing the equation x2 + kxy – 3y2 = 0 with ax2 + 2hxy + by2 = 0, we get, a = 1, 2h = k, b = -3.
Let m1 and m2 be the slopes of the lines represented by x2 + kxy – 3y2 = 0.
∴ m1 + m2 = \(\frac{-2 h}{b}=-\frac{k}{(-3)}=\frac{k}{3}\)
and m1m2 = \(\frac{a}{b}=\frac{1}{(-3)}=-\frac{1}{3}\)
Now, m1 + m2 = 2(m1m2) ..(Given)
∴ \(\frac{k}{3}=2\left(-\frac{1}{3}\right)\) ∴ k = -2

(ii) slopes of lines represent by 3x2 + kxy – y2 = 0 differ by 4.
Solution:
(ii) Comparing the equation 3x2 + kxy – y2 = 0 with ax2 + 2hxy + by2 = 0, we get, a = 3, 2h = k, b = -1.
Let m1 and m2 be the slopes of the lines represented by 3x2 + kxy – y2 = 0.
∴ m1 + m2 = \(\frac{-2 h}{b}=-\frac{k}{-1}\) = k
and m12 = \(\frac{a}{b}=\frac{3}{-1}\) = -3
∴ (m1 – m2)2 = (m1 + m2)2 – 4m1m2
= k2 – 4 (-3)
= k2 + 12 … (1)
But |m1 – m2| =4
∴ (m1 – m2)2 = 16 … (2)
∴ from (1) and (2), k2 + 12 = 16
∴ k2 = 4 ∴ k= ±2.

(iii) slope of one of the lines given by kx2 + 4xy – y2 = 0 exceeds the slope of the other by 8.
Solution:
Comparing the equation kx2 + 4xy – y2 = 0 with 2 + 2hxy + by2 = 0, we get, a = k, 2h = 4, b = -1. Let m1 and m2 be the slopes of the lines represented by kx2 + 4xy – y2 = 0.
∴ m1 + m2 = \(\frac{-2 h}{b}=\frac{-4}{-1}\) = 4
and m1m2 = \(\frac{a}{b}=\frac{k}{-1}\) = -k
We are given that m2 = m1 + 8
m1 + m1 + 8 = 4
∴ 2m1 = -4 ∴ m1 = -2 … (1)
Also, m1(m1 + 8) = -k
(-2)(-2 + 8) = -k … [By(1)]
∴ (-2)(6) = -k
∴ -12= -k ∴ k = 12.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Find the condition that :
(i) the line 4x + 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0.
Solution:
The auxiliary equation of the lines represented by ax2 + 2hxy + by2 = 0 is bm2 + 2hm + a = 0.
Given that 4x + 5y = 0 is one of the lines represented by ax2 + 2hxy + by2 = 0.
The slope of the line 4x + 5y = 0 is \(-\frac{4}{5}\).
∴ m = \(-\frac{4}{5}\) is a root of the auxiliary equation bm2 + 2hm + a = 0.
∴ b\(\left(-\frac{4}{5}\right)^{2}\) + 2h\(\left(-\frac{4}{5}\right)\) + a = 0
∴ \(\frac{16 b}{25}-\frac{8 h}{5}\) + a = 0
∴ 16b – 40h + 25a = 0
∴ 25a + 16b = 40k.
This is the required condition.

(ii) the line 3x + y = 0 may be perpendicular to one of the lines given by ax2 + 2hxy + by2 = 0.
Solution:
The auxiliary equation of the lines represented by ax2 + 2hxy + by2 = 0 is bm2 + 2hm + a = 0.
Since one line is perpendicular to the line 3x + y = 0
whose slope is \(-\frac{3}{1}\) = -3
∴ slope of that line = m = \(\frac{1}{3}\)
∴ m = \(\frac{1}{3}\)is the root of the auxiliary equation bm2 + 2hm + a = 0.
∴ b\(\left(\frac{1}{3}\right)^{2}\) + 2h\(\left(\frac{1}{3}\right)\) + a = 0
∴ \(\frac{b}{9}+\frac{2 h}{3}\) + a = 0
∴ b + 6h + 9a = 0
∴ 9a + b + 6h = 0
This is the required condition.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 6.
If one of the lines given by ax2 + 2hxy + by2 = 0 is perpendicular to px + qy = 0 then show that ap2 + 2hpq + bq2 = 0.
Solution:
To prove ap2 + 2hpq + bq2 = 0.
Let the slope of the pair of straight lines ax2 + 2hxy + by2 = 0 be m1 and m2
Then, m1 + m2 = \(\frac{-2 h}{b}\) and m1m2 = \(\frac{a}{b}\)
Slope of the line px + qy = 0 is \(\frac{-p}{q}\)
But one of the lines of ax2 + 2hxy + by2 = 0 is perpendicular to px + qy = 0
Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.1 4
⇒ bq2 + ap2 = -2hpq
⇒ ap2 + 2hpq + bq2 = 0

Question 7.
Find the combined equation of the pair of lines passing through the origin and making an equilateral triangle with the line y = 3.
Solution:
Let OA and OB be the lines through the origin making.an angle of 60° with the line y = 3.
∴ OA and OB make an angle of 60° and 120° with the positive direction of X-axis.
∴ slope of OA = tan60° = \(\sqrt {3}\)
∴ equation of the line OA is
y = \(\sqrt {3}\) x, i.e. \(\sqrt {3}\) x – y = 0
Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.1 5
Slope of OB = tan 120° = tan (180° – 60°)
= -tan 60°= –\(\sqrt {3}\)
∴ equation of the line OB is
y = –\(\sqrt {3}\) x, i.e. \(\sqrt {3}\) x + y = 0
∴ required joint equation of the lines is
(\(\sqrt {3}\) x – y)(\(\sqrt {3}\) x + y) = 0
i.e. 3x2 – y2 = 0.

Question 8.
If slope of one of the lines given by ax2 + 2hxy + by2 = 0 is four times the other then show that 16h2 = 25ab.
Solution:
Let m1 and m2 be the slopes of the lines given by ax2 + 2hxy + by2 = 0.
∴ m1 + m2 = \(-\frac{2 h}{b}\)
and m1m2 = \(\frac{a}{b}\)
We are given that m2 = 4m1
Maharashtra Board 12th Maths Solutions Chapter 4 Pair of Straight Lines Ex 4.1 6
∴ 16h2 = 25ab
This is the required condition.

Question 9.
If one of the lines given by ax2 + 2hxy + by2 = 0 bisects an angle between co-ordinate axes then show that (a + b) 2 = 4h2.
Solution:
The auxiliary equation of the lines given by ax2 + 2hxy + by2 = 0 is bm2 + 2hm + a = 0.
Since one of the line bisects an angle between the coordinate axes, that line makes an angle of 45° or 135° with the positive direction of X-axis.
∴ slope of that line = tan45° or tan 135°
∴ m = tan45° = 1
or m = tan 135° = tan (180° – 45°)
= -tan 45°= -1
∴ m = ±1 are the roots of the auxiliary equation bm2 + 2hm + a = 0.
∴ b(±1)2 + 2h(±1) + a = 0
∴ b ± 2h + a = 0
∴ a + b = ±2h
∴ (a + b)2 = 4h2
This is the required condition.

Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3

I) Select the correct option from the given alternatives.
Question 1.
The principal of solutions equation sinθ = \(\frac{-1}{2}\) are ________.
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 1
Solution:
(b) \(\frac{7 \pi}{6}, \frac{11 \pi}{6}\)

Question 2.
The principal solution of equation cot θ = \(\sqrt {3}\) ___________.
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 2
Solution:
(a) \(\frac{\pi}{6}, \frac{7 \pi}{6}\)

Question 3.
The general solution of sec x = \(\sqrt {2}\) is __________.
(a) 2nπ ± \(\frac{\pi}{4}\), n ∈ Z
(b) 2nπ ± \(\frac{\pi}{2}\), n ∈ Z
(c) nπ ± \(\frac{\pi}{2}\), n ∈ Z
(d) 2nπ ± \(\frac{\pi}{3}\), n ∈ Z
Solution:
(a) 2nπ ± \(\frac{\pi}{4}\), n ∈ Z

Question 4.
If cos pθ = cosqθ, p ≠ q rhen ________.
(a) θ = \(\frac{2 n \pi}{p \pm q}\)
(b) θ = 2nπ
(c) θ = 2nπ ± p
(d) nπ ± q
Solution:
(a) θ = \(\frac{2 n \pi}{p \pm q}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
If polar co-ordinates of a point are \(\left(2, \frac{\pi}{4}\right)\) then its cartesian co-ordinates are ______.
(a) (2, \(\sqrt {2}\) )
(b) (\(\sqrt {2}\), 2)
(c) (2, 2)
(d) (\(\sqrt {2}\) , \(\sqrt {2}\))
Solution:
(d) (\(\sqrt {2}\) , \(\sqrt {2}\))

Question 6.
If \(\sqrt {3}\) cosx – sin x = 1, then general value of x is _________.
(a) 2nπ ± \(\frac{\pi}{3}\)
(b) 2nπ ± \(\frac{\pi}{6}\)
(c) 2nπ ± \(\frac{\pi}{3}-\frac{\pi}{6}\)
(d) nπ + (-1)n\(\frac{\pi}{3}\)
Solution:
(c) 2nπ ± \(\frac{\pi}{3}-\frac{\pi}{6}\)

Question 7.
In ∆ABC if ∠A = 45°, ∠B = 60° then the ratio of its sides are _________.
(a) 2 : \(\frac{\pi}{2}\) : \(\frac{\pi}{3}\) + 1
(b) \(\frac{\pi}{2}\) : 2 : \(\frac{\pi}{3}\) + 1
(c) 2 \(\frac{\pi}{2}\) : \(\frac{\pi}{2}\) : \(\frac{\pi}{3}\)
(d) 2 : 2 \(\frac{\pi}{2}\) : \(\frac{\pi}{3}\) + 1
Solution:
(a) 2 : \(\frac{\pi}{2}\) : \(\frac{\pi}{3}\) + 1

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
In ∆ABC, if c2 + a2 – b2 = ac, then ∠B = __________.
(a) \(\frac{\pi}{4}\)
(b) \(\frac{\pi}{3}\)
(c) \(\frac{\pi}{2}\)
(d) \(\frac{\pi}{6}\)
Solution:
(b) \(\frac{\pi}{3}\)

Question 9.
In ABC, ac cos B – bc cos A = ____________.
(a) a2 – b2
(b) b2 – c2
(c) c2 – a2
(d) a2 – b2 – c2
Solution:
(a) a2 – b2

Question 10.
If in a triangle, the are in A.P. and b : c = \(\sqrt {3}\) : \(\sqrt {2}\) then A is equal to __________.
(a) 30°
(b) 60°
(c) 75°
(d) 45°
Solution:
(c) 75°

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 11.
cos-1\(\left(\cos \frac{7 \pi}{6}\right)\) = ________.
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 3

Question 12.
The value of cot (tan-1 2x + cot-1 2x) is __________.
(a) 0
(b) 2x
(c) π + 2x
(d) π – 2x
Solution:
(a) 0

Question 13.
The principal value of sin-1\(\left(-\frac{\sqrt{3}}{2}\right)\) is ____________.
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 4
Solution:
(d) \(-\frac{\pi}{3}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 14.
If sin-1\(\frac{4}{5}\) + cos-1\(\frac{,12}{13}\) = sin-1 ∝, then ∝ = _____________.
(a) \(\frac{63}{65}\)
(b) \(\frac{62}{65}\)
(c) \(\frac{61}{65}\)
(d) \(\frac{60}{65}\)
Solution:
(a) \(\frac{63}{65}\)

Question 15.
If tan-1(2x) + tan-1(3x) = \(\frac{\pi}{4}\), then x = ________.
(a) -1
(b) \(\frac{1}{6}\)
(c) \(\frac{2}{6}\)
(d) \(\frac{3}{2}\)
Solution:
(b) \(\frac{1}{6}\)

Question 16.
2 tan-1\(\frac{1}{3}\) + tan-1\(\frac{1}{7}\) = ______.
(a) tan-1\(\frac{4}{5}\)
(b) \(\frac{\pi}{2}\)
(c) 1
(d) \(\frac{\pi}{4}\)
Solution:
(d) \(\frac{\pi}{4}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 17.
tan (2 tan-1\(\left(\frac{1}{5}\right)-\frac{\pi}{4}\)) = ______.
(a) \(\frac{17}{7}\)
(b) \(-\frac{17}{7}\)
(c) \(\frac{7}{17}\)
(d) \(-\frac{7}{17}\)
Solution:
(d) \(-\frac{7}{17}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 5

Question 18.
The principal value branch of sec-1 x is __________.
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 6
Solution:
(b) [0, π] – {\(\frac{\pi}{2}\)}

Question 19.
cos[tan-1\(\frac{1}{3}\) + tan-1\(\frac{1}{2}\)] = ________.
(a) \(\frac{1}{\sqrt{2}}\)
(b) \(\frac{\sqrt{3}}{2}\)
(c) \(\frac{1}{2}\)
(d) \(\frac{\pi}{4}\)
Solution:
(a) \(\frac{1}{\sqrt{2}}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 20.
If tan θ + tan 2θ + tan 3θ = tan θ∙tan 2θ∙tan 3θ, then the general value of the θ is _______.
(a) nπ
(b) \(\frac{n \pi}{6}\)
(c) nπ ± \(\frac{n \pi}{4}\)
(d) \(\frac{n \pi}{2}\)
Solution:
(b) \(\frac{n \pi}{6}\)
[Hint: tan(A + B + C) = \(\frac{\tan A+\tan B+\tan C-\tan A \cdot \tan B \cdot \tan C}{1-\tan A \cdot \tan B-\tan B \cdot \tan C-\tan C \cdot \tan A}\)
Since , tan θ + tan 2θ + tan 3θ = tan θ ∙ tan 2θ ∙ tan 3θ,
we get, tan (θ + 2θ + 3θ) = θ
∴ tan6θ = 0
∴ 6θ = nπ, θ = \(\frac{n \pi}{6}\).]

Question 21.
If any ∆ABC, if a cos B = b cos A, then the triangle is ________.
(a) Equilateral triangle
(b) Isosceles triangle
(c) Scalene
(d) Right angled
Solution:
(b) Isosceles triangle

II: Solve the following
Question 1.
Find the principal solutions of the following equations :
(i) sin2θ = \(-\frac{1}{2}\)
Solution:
sin2θ = \(-\frac{1}{2}\)
Since, θ ∈ (0, 2π), 2∈ ∈ (0, 4π)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 7

(ii) tan3θ = -1
Solution:
Since, θ ∈ (0, 2π), 3∈ ∈ (0, 6π)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 8
… [∵ tan(π – θ) = tan(2π – θ) = tan(3π – θ)
= tan (4π – θ) = tan (5π – θ) = tan (6π – θ) = -tan θ]
∴ tan3θ = tan\(\frac{3 \pi}{4}\) = tan\(\frac{7 \pi}{4}\) = tan\(\frac{11 \pi}{4}\) = tan\(\frac{15 \pi}{4}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 9

(iii) cotθ = 0
Solution:
cotθ = 0
Since θ ∈ (0, 2π),
cotθ = 0 = cot \(\frac{\pi}{2}\) = cot (π + \(\frac{\pi}{2}\) …[∵ cos(π + θ) = cotθ]
∴ cotθ = cot\(\frac{\pi}{2}\) = cot\(\frac{3 \pi}{2}\)
∴ θ = \(\frac{\pi}{2}\) or θ = \(\frac{3 \pi}{2}\)
Hence, the required principal solutions are \(\left\{\frac{\pi}{2}, \frac{3 \pi}{2}\right\}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 2.
Find the principal solutions of the following equations :
(i) sin2θ = \(-\frac{1}{\sqrt{2}}\)
Solution:

(ii) tan5θ = -1
Solution:

(iii) cot2θ = 0
Solution:

Question 3.
Which of the following equations have no solutions ?
(i) cos 2θ = \(\frac{1}{3}\)
Solution:
cos 2θ = \(\frac{1}{3}\)
Since \(\frac{1}{3}\) ≤ cosθ ≤ 1 for any θ
cos2θ = \(\frac{1}{3}\) has solution

(ii) cos2 θ = -1
Solution:
cos2θ = -1
This is not possible because cos2θ ≥ 0 for any θ.
∴ cos2θ = -1 does not have any solution.

(iii) 2 sinθ = 3
Solution:
2 sin θ = 3 ∴ sin θ = \(\frac{3}{2}\)
This is not possible because -1 ≤ sin θ ≤ 1 for any θ.
∴ 2 sin θ = 3 does not have any solution.

(iv) 3 sin θ = 5
Solution:
3 sin θ = 5
∴ sin θ = \(\frac{5}{3}\)
This is not possible because -1 ≤ sin θ ≤ 1 for any θ.
∴ 3 sin θ = 5 does not have any solution.

Question 4.
Find the general solutions of the following equations :
(i) tanθ = \(-\sqrt {x}\)
Solution:
The general solution of tan θ = tan ∝ is
θ = nπ + ∝, n ∈ Z.
Now, tanθ = \(-\sqrt {x}\)
∴ tanθ = tan\(\frac{\pi}{3}\) …[∵ tan\(\frac{\pi}{3}\) = \(\sqrt {3}\)]
∴ tanθ = tan\(\left(\pi-\frac{\pi}{3}\right)\) …[∵ tan(π – θ) = -tanθ]
∴ tanθ = tan\(\frac{2 \pi}{3}\)
∴ the required general solution is
θ = nπ + \(\frac{2 \pi}{3}\), n ∈ Z.

(ii) tan2θ = 3
Solution:
The general solution of tan2θ = tan2∝ is
θ = nπ ± ∝, n ∈ Z.
Now, tan2θ = 3 = (\(\sqrt {x}\))2
∴ tan2θ = (tan\(\frac{\pi}{3}\))2 …[∵ tan\(\frac{\pi}{3}\) = \(\sqrt {3}\)]
∴ tan2θ = tan2\(\frac{\pi}{3}\)
∴ the required general solution is
θ = nπ ± \(\frac{\pi}{3}\), n ∈ Z.

(iii) sin θ – cosθ = 1
Solution:
∴ cosθ – sin θ = -1
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 72
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 73

(iv) sin2θ – cos2θ = 1
Solution:
sin2θ – cos2θ = 1
∴ cos2θ – sin2θ = -1
∴ cos2θ = cosπ …(1)
The general solution of cos θ = cos ∝ is
θ = 2nπ ± ∝, n ∈ Z
∴ the general solution of (1) is given by
2θ = 2nπ ± π, n ∈ Z
∴ θ = nπ ± \(\frac{\pi}{2}\), n ∈ Z

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
In ∆ABC prove that cos \(\left(\frac{A-B}{2}\right)=\left(\frac{a+b}{c}\right)\) sin \(\frac{C}{2}\)
Solution:
By the sine rule,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 12
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 17

Question 6.
With usual notations prove that \(\frac{\sin (A-B)}{\sin (A+B)}=\frac{a^{2}-b^{2}}{c^{2}}\).
Solution:
By the sine rule,
\(\frac{a}{\sin \mathrm{A}}\) = \(\frac{b}{\sin \mathrm{B}}\) = \(\frac{c}{\sin \mathrm{C}}\) = k
∴ a = ksinA, b = ksinB, c = ksinC
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 14

Question 7.
In ∆ABC prove that (a – b)2 2cos2\(\frac{\mathrm{C}}{2}\) + (a + b)2 sin2\(\frac{\mathrm{C}}{2}\) = c2.
Solution:
LHS (a – b)2 2cos2\(\frac{\mathrm{C}}{2}\) + (a + b)2 sin2\(\frac{\mathrm{C}}{2}\)
= (a2 + b2 – 2ab) cos2\(\frac{\mathrm{C}}{2}\) + (a2 + b2 + 2ab) sin\(\frac{\mathrm{C}}{2}\)2
= (a2 + b2) cos2\(\frac{\mathrm{C}}{2}\) – 2ab cos2\(\frac{\mathrm{C}}{2}\) + (a2 + b2) sin2\(\frac{\mathrm{C}}{2}\) + 2ab sin2\(\frac{\mathrm{C}}{2}\)
= (a2 + b2) (cos2\(\frac{\mathrm{C}}{2}\) + sin2\(\frac{\mathrm{C}}{2}\)) – 2ab(cos2\(\frac{\mathrm{C}}{2}\) – sin2\(\frac{\mathrm{C}}{2}\))
= a2 + b2 – 2ab cos C
= c2 = RHS.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
In ∆ABC if cosA = sin B – cos C then show that it is a right angled triangle.
Solution:
cos A= sin B – cos C
∴ cos A + cos C = sin B
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 15
∴ A – C = B
∴ A = B + C
∴ A + B + C = 180° gives
A + A = 180°
∴ 2A = 180 ∴ A = 90°
∴ ∆ ABC is a rightangled triangle.

Question 9.
If \(\frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}\) then show that a2, b2, c2, are in A.P.
Solution:
By sine rule,
\(\frac{\sin \mathrm{A}}{a}\) = \(\frac{\sin \mathrm{B}}{b}\) = \(\frac{\sin \mathrm{C}}{c}\) = k
∴ sin A = ka, sin B = kb,sin C = kc
Now, \(\frac{\sin A}{\sin C}=\frac{\sin (A-B)}{\sin (B-C)}\)
∴ sinA∙sin(B – C) = sinC∙sin(A -B)
∴ sin [π – (B + C)] ∙ sin (B – C)
= sin [π – (A + B)]∙sin (A – B) … [∵ A + B + C = π]
∴ sin(B + C) ∙ sin(B – C) = sin (A + B) ∙ sin (A – B)
∴ sin2B – sin2C = sin2A – sin2B
∴ 2 sin2B = sin2A + sin2C
∴ 2k2b2 = k2a2 + k2c2
∴ 2b2 = a2 + c2
Hence, a2, b2, c2 are in A.P.

Question 10.
Solve the triangle in which a = (\(\sqrt {3}\) + 1), b = (\(\sqrt {3}\) – 1) and ∠C = 60°.
Solution:
Given : a = \(\sqrt {3}\) + 1, b = \(\sqrt {3}\) – 1 and ∠C = 60°.
By cosine rule,
c2 = a2 + b2 – 2ab cos C
= (\(\sqrt {3}\) + 1)2 + (\(\sqrt {3}\) – 1)2 – 2(\(\sqrt {3}\) + 1)(\(\sqrt {3}\) – 1)cos60°
= 3 + 1 + 2\(\sqrt {3}\) + 3+ 1 – 2\(\sqrt {3}\) – 2(3 – 1)\(\left(\frac{1}{2}\right)\)
= 8 – 2 = 6
∴ c = \(\sqrt {6}\) …[∵ c > 0)
By sine rule,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 16
∴ sin A = sin 60° cos 45° + cos 60° sin 45°
and sin B = sin 60° cos 45° – cos 60° sin 45°
∴ sin A = sin (60° + 45°) – sin 105°
and sin B = sin (60° – 45°) = sin 15°
∴ A = 105° and B = 15°
Hence, A = 105°, B 15° and C = \(\sqrt {6}\) units.

Question 11.
In ∆ABC prove the following :
(i) a sin A – b sin B = c sin (A – B)
Solution:
By sine rule,
\(\frac{a}{\sin \mathrm{A}}\) = \(\frac{b}{\sin \mathrm{B}}\) = \(\frac{c}{\sin \mathrm{C}}\) = k
∴ a = ksinA, b = ksinB, c = ksinC,
LHS = a sin A – b sinB
= ksinA∙sinA – ksinB∙sinB
= k (sin2A – sin2B)
= k (sin A + sin B)(sin A – sin B)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 17
= k × sin (A + B) × sin (A – B)
= ksin(π – C)∙sin(A – B) … [∵ A + B + C = π]
= k sinC∙sin (A – B)
= c sin (A – B) = RHS.

(ii) \(\frac{c-b \cos A}{b-c \cos A}=\frac{\cos B}{\cos C}\).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 18

(iii) a2 sin (B – C) = (b2 – c2) sinA
Solution:
By sine rule,
\(\frac{a}{\sin \mathrm{A}}\) = \(\frac{b}{\sin \mathrm{B}}\) = \(\frac{c}{\sin \mathrm{C}}\) = k
∴ a = ksinA, b = ksinB, c = ksinC
RHS = (b2 – c2) sin A
= (k2sin2B – k2sin2C)sin A
= k2(sin2B – sin2C) sin A
= k2(sin B + sin C)(sin B – sin C) sin A
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 19
= k2 × sin (B + C) × sin (B – C) × sin A
= k2∙sin(π – A)∙sin(B – C)∙sinA … [∵ A + B + C = π]
= k2sin A∙sin (B – C)∙sin A
= (k sin A)2∙sin (B – C)
= a2sin (B – C) = LHS.

(iv) ac cos B – bc cos A = (a2 – b2).
Solution:
LHS = ac cos B – bc cos A
= ac\(\left(\frac{c^{2}+a^{2}-b^{2}}{2 c a}\right)\) – bc\(\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)\)
=\(\frac{1}{2}\)(c2 + a2 – b2) – \(\frac{1}{2}\)(b2 + c2 – a2)
= \(\frac{1}{2}\)(c2 + a2 – b2 – b2 – c2 + a2)
= \(\frac{1}{2}\)(2a2 – 2b2) = a2 – b2 = RHS.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(v) \(\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}\) .
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 20
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 21

(vi) \(\frac{\cos 2 \mathrm{~A}}{a^{2}}-\frac{\cos 2 \mathrm{~B}}{b^{2}}=\frac{1}{a^{2}}-\frac{1}{b^{2}}\).
Solution:
By sine rule,
\(\frac{\sin \mathrm{A}}{a}=\frac{\sin \mathrm{B}}{b}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 22

(vii) \(\frac{b-c}{a}=\frac{\tan \frac{B}{2}-\tan \frac{C}{2}}{\tan \frac{B}{2}+\tan \frac{C}{2}}\)
Solution:
By sine rule,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 23
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 24
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 25
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 26
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 27

Question 12.
In ∆ABC if a2, b2, c2, are in A.P. then cot\(\frac{A}{2}\), cot\(\frac{B}{2}\), cot\(\frac{C}{2}\) are also in A.P.
Question is modified
In ∆ABC if a, b, c, are in A.P. then cot\(\frac{A}{2}\), cot\(\frac{B}{2}\), cot\(\frac{C}{2}\) are also in A.P.
Solution:
a, b, c, are in A.P.
∴ 2b = a + c …(1)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 28
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 29
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 30
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 31

Question 13.
In ∆ABC if ∠C = 90º then prove that sin(A – B) = \(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\)
Solution:
In ∆ABC, if ∠C = 90º
∴ c2 = a2 + b2 …(1)
By sine rule,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 32
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 33

Question 14.
In ∆ABC if \(\frac{\cos A}{a}=\frac{\cos B}{b}\), then show that it is an isosceles triangle.
Solution:
Given : \(\frac{\cos A}{a}=\frac{\cos B}{b}\) ….(1)
By sine rule,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 34
∴ sin A cos B = cos A sinB
∴ sinA cosB – cosA sinB = 0
∴ sin (A – B) = 0 = sin0
∴ A – B = 0 ∴ A = B
∴ the triangle is an isosceles triangle.

Question 15.
In ∆ABC if sin2A + sin2B = sin2C then prove that the triangle is a right angled triangle.
Question is modified
In ∆ABC if sin2A + sin2B = sin2C then show that the triangle is a right angled triangle.
Solution:
By sine rule,
\(\frac{\sin \mathrm{A}}{a}\) = \(\frac{\sin \mathrm{B}}{b}\) = \(\frac{\sin \mathrm{C}}{c}\) = k
∴ sin A = ka, sinB = kb, sin C = kc
∴ sin2A + sin2B = sin2C
∴ k2a2 + k2b2 = k2c2
∴ a2 + b2 = c2
∴ ∆ABC is a rightangled triangle, rightangled at C.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 16.
In ∆ABC prove that a2(cos2B – cos2C) + b2(cos2C – cos2A) + c2(cos2A – cos2B) = 0.
Solution:
By sine rule,
\(\frac{a}{\sin \mathrm{A}}\) = \(\frac{b}{\sin \mathrm{B}}\) = \(\frac{c}{\sin \mathrm{C}}\) = k
LHS = a2(cos2B – cos2C) + b2( cos2C – cos2A) + c2(cos2A – cos2B)
= k2sin2A [(1 – sin2B) – (1 – sin2C)] + k2sin2B [(1 – sin2C) – (1 – sin2A)] + k2sin2C[(1 – sin2A) – (1 – sin2B)]
= k2sin2A (sin2C – sin2B) + k2sin2B(sin2A – sin2C) + k2sin2C (sin2B – sin2A)
= k2(sin2A sin2C – sin2Asin2B + sin2A sin2B – sin2B sin2C + sin2B sin2C – sin2A sin2C)
= k2(0) = 0 = RHS.

Question 17.
With usual notations show that (c2 – a2 + b2) tan A = (a2 – b2 + c2) tan B = (b2 – c2 + a2) tan C.
Solution:
By sine rule,
\(\frac{a}{\sin A}\) = \(\frac{b}{\sin B}\) = \(\frac{c}{\sin C}\) = k
∴ a = fksinA, b = ksinB, c = ksinC
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 35
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 36
From (1), (2) and (3), we get
(c2 – a2 + b2) tan A = (a2 – b2 + c2) tan B
= (b2 – c2 + a2) tan C.

Question 18.
In ∆ABC, if a cos2\(\frac{C}{2}\) + c cos2\(\frac{A}{2}\) = \(\frac{3 b}{2}\), then prove that a , b ,c are in A.P.
Solution:
a cos2\(\frac{C}{2}\) + c cos2\(\frac{A}{2}\) = \(\frac{3 b}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 37
∴ a + c + b = 3b …[∵ a cos C + c cos A = b]
∴ a + c = 2b
Hence, a, b, c are in A.P.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 19.
Show that 2 sin-1\(\left(\frac{3}{5}\right)\) = tan-1\(\left(\frac{24}{7}\right)\).
Solution:
Let sin2\(\left(\frac{3}{5}\right)\) = x.
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 38
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 39
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 40
∴ tan-1\(\left(\frac{24}{7}\right)\) = RHS

Question 20.
Show that tan-1\(\left(\frac{1}{5}\right)\) + tan-1\(\left(\frac{1}{7}\right)\) + tan-1\(\left(\frac{1}{3}\right)\) + tan-1\(\left(\frac{1}{8}\right)\) = \(\frac{\pi}{4}\).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 41
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 42

Question 21.
Prove that tan-1\(\sqrt {x}\) = \(\frac{1}{2}\) cos-1\(\left(\frac{1-x}{1+x}\right)\), if x ∈ [0, 1].
Solution:
Let tan-1\(\sqrt {x}\) = y
∴ tan y = \(\sqrt {x}\) ∴ x = tan2y
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 43

Question 22.
Show that \(\frac{9 \pi}{8}-\frac{9}{4}\) sin-1\(\frac{1}{3}\) = \(\frac{9}{4}\) sin-1\(\frac{2 \sqrt{2}}{3}\).
Question is modified
Show that \(\frac{9 \pi}{8}-\frac{9}{4}\) sin-1\(\left(\frac{1}{3}\right)\) = \(\frac{9}{4}\) sin-1\(\left(\frac{2 \sqrt{2}}{3}\right)\).
Solution:
We have to show that
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 44
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 45

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 23.
Show that
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 46
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 47
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 48
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 49

Question 24.
If sin(sin-1\(\frac{1}{5}\) + cos-1x) = 1, then find the value of x.
Solution:
sin(sin-1\(\frac{1}{5}\) = 1
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 50

Question 25.
If tan-1\(\left(\frac{x-1}{x-2}\right)\) + tan-1\(\left(\frac{x+1}{x+2}\right)\) = \(\frac{\pi}{4}\) then find the value of x.
Solution:
tan-1\(\left(\frac{x-1}{x-2}\right)\) + tan-1\(\left(\frac{x+1}{x+2}\right)\) = \(\frac{\pi}{4}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 51
∴ x = ±\(\frac{1}{\sqrt{2}}\).

Question 26.
If 2 tan-1(cos x ) = tan-1(cosec x) then find the value of x.
Solution:
2 tan-1(cos x ) = tan-1(cosec x)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 52

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 27.
Solve: tan-1\(\left(\frac{1-x}{1+x}\right)\) = \(\frac{1}{2}\)(tan-1x), for x > 0.
Solution:
tan-1\(\left(\frac{1-x}{1+x}\right)\) = \(\frac{1}{2}\)(tan-1x)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 53
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 54

Question 28.
If sin-1(1 – x) – 2sin-1x = \(\frac{\pi}{2}\), then find the value of x.
Solution:
sin-1(1 – x) – 2sin-1x = \(\frac{\pi}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 55
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 56

Question 29.
If tan-12x + tan-13x = \(\frac{\pi}{4}\), then find the value of x.
Question is modified
If tan-12x + tan-13x = \(\frac{\pi}{2}\), then find the value of x.
Solution:
tan-12x + tan-13x = \(\frac{\pi}{4}\)
∴ tan-1\(\left(\frac{2 x+3 x}{1-2 x \times 3 x}\right)\) = tan\(\frac{\pi}{4}\), where 2x > 0, 3x > 0
∴ \(\frac{5 x}{1-6 x^{2}}\) = tan\(\frac{\pi}{4}\) = 1
∴ 5x = 1 – 6x2
∴ 6x2 + 5x – 1 = 0
∴ 6x2 + 6x – x – 1 = 0
∴ 6x(x +1) – 1(x + 1) = 0
∴ (x + 1)(6x – 1) = 0
∴ x = -1 or x = \(\frac{1}{6}\)
But x > 0 ∴ x ≠ -1
Hence, x = \(\frac{1}{6}\)

Question 30.
Show that tan-1\(\frac{1}{2}\) – tan-1\(\frac{1}{4}\) = tan-1\(\frac{2}{9}\).
Solution:
LHS = tan-1\(\frac{1}{2}\) – tan-1\(\frac{1}{4}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 57

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 31.
Show that cot-1\(\frac{1}{3}\) – tan-1\(\frac{1}{3}\) = cot-1\(\frac{3}{4}\).
Solution:
LHS = cot-1\(\frac{1}{3}\) – tan-1\(\frac{1}{3}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 58

Question 32.
Show that tan-1\(\frac{1}{2}\) = \(\frac{1}{3}\) tan-1\(\frac{11}{2}\).
Solution:
We have to show that
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 59
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 60

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 33.
Show that cos-1\(\frac{\sqrt{3}}{2}\) + 2sin-1\(\frac{\sqrt{3}}{2}\) = \(\frac{5 \pi}{6}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 61

Question 34.
Show that 2cot-1\(\frac{3}{2}\) + sec-1\(\frac{13}{12}\) = \(\frac{\pi}{2}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 62
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 63
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 64

Question 35.
Prove the following :
(i) cos-1 x = tan-1\(\frac{\sqrt{1-x^{2}}}{x}\), if x < 0.
Question is modified
cos-1 x = tan-1\(\left(\frac{\sqrt{1-x^{2}}}{x}\right)\), if x > 0.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 65

(ii) cos-1 x = π + tan-1\(\frac{\sqrt{1-x^{2}}}{x}\), if x < 0.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 66
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 67

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 36.
If |x| < 1 , then prove that 2tan-1 x = tan-1\(\frac{2 x}{1-x^{2}}\) = sin-1\(\frac{2 x}{1+x^{2}}\) = cos-1\(\frac{1-x^{2}}{1+x^{2}}\)
Question is modified
If |x| < 1 , then prove that 2tan-1 x = tan-1\(\left(\frac{2 x}{1-x^{2}}\right)\) = sin-1\(\left(\frac{2 x}{1+x^{2}}\right)\) = cos-1\(\left(\frac{1-x^{2}}{1+x^{2}}\right)\)
Solution:
Let tan-1x = y
Then, x = tany
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 68
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 69

Question 37.
If x, y, z, are positive then prove that tan-1\(\frac{x-y}{1+x y}\) + tan-1\(\frac{y-z}{1+y z}\) + tan-1\(\frac{z-x}{1+z x}\) = 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 70

Question 38.
If tan-1 x + tan-1 y + tan-1 z = \(\frac{\pi}{2}\) then, show that xy + yz + zx = 1
Solution:
tan-1 x + tan-1 y + tan-1 z = \(\frac{\pi}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 71
∴ 1 – xy – yz – zx = 0
∴ xy + yz + zx = 1.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 39.
If cos-1 x + cos-1 y + cos-1 z = π then show that x2 + y2 + z2 + 2xyz = 1.
Solution:
0 ≤ cos-1x ≤ π and
cos-1x + cos-1y+ cos-1z = 3π
∴ cos-1x = π, cos-1y = π and cos-1z = π
∴ x = y = z = cosπ = -1
∴ x2 + y2 + z2 + 2xyz
= (-1)2 + (-1)2 + (-1)2 + 2(-1)(-1)(-1)
= 1 + 1 + 1 – 2
= 3 – 2 = 1.

Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 72

Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Miscellaneous Exercise 3 73

Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 3 Trigonometric Functions Ex 3.3 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3

Question 1.
Find the principal values of the following :
(i) sin-1\(\left(\frac{1}{2}\right)\)
Solution:
The principal value branch of sin-1x is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).
Let sin-1\(\left(\frac{1}{2}\right)\) = ∝, where \(\frac{-\pi}{2}\) ≤ ∝ ≤ \(\frac{\pi}{2}\)
∴ sin∝ = \(\frac{1}{2}\) = sin\(\frac{\pi}{6}\)
∴ ∝ = \(\frac{\pi}{6}\) …[∵ – \(\frac{\pi}{2}\) ≤ \(\frac{\pi}{6}\) ≤ \(\frac{\pi}{2}\)]
∴ the principal value of sin-1\(\left(\frac{1}{2}\right)\) is \(\frac{\pi}{6}\).

(ii) cosec-1(2)
Solution:
The principal value branch of cosec-1x is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) – {0}.
Let cosec-1(2) = ∝, where \(\frac{-\pi}{2}\) ≤ ∝ ≤ \(\frac{\pi}{2}\), ∝ ≠ 0
∴ cosec-1 ∝ = 2 = cosec\(\frac{\pi}{6}\)
∴ ∝ = \(\frac{\pi}{6}\) …[∵ –\(\frac{\pi}{2}\) ≤ \(\frac{\pi}{6}\) ≤ \(\frac{\pi}{2}\)]
∴ the principal value of cosec-1(2) is \(\frac{\pi}{6}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) tan-1(-1)
Solution:
The principal value branch of tan-1x is \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\)
Let tan-1(-1) = ∝, where \(\frac{-\pi}{2}\) < ∝ < \(\frac{\pi}{2}\)
∴ tan∝ = -1 = -tan\(\frac{\pi}{4}\)
∴ tan∝ = tan\(\left(-\frac{\pi}{4}\right)\) …[∵ tan(-θ) = -tanθ]
∴ ∝ = –\(\frac{\pi}{4}\) …[∵ –\(\frac{\pi}{2}\) < \(\frac{-\pi}{4}\) < \(\frac{\pi}{2}\)]
∴ the principal value of tan-1(-1) is –\(\frac{\pi}{4}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) tan-1(-\(\sqrt {3}\))
Solution:
The principal value branch of tan-1x is \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\).
Let tan-1(-\(\sqrt {3}\)) = ∝, where \(\frac{-\pi}{2}\) < ∝ < \(\frac{\pi}{2}\)
∴ tan∝ = –\(\sqrt {3}\) = -tan\(\frac{\pi}{3}\)
∴ tan∝ = tan\(\left(-\frac{\pi}{3}\right)\) …[∵ tan(-θ) = -tanθ]
∴ ∝ = –\(\frac{\pi}{3}\) …[∵ –\(\frac{\pi}{2}\) < \(\frac{-\pi}{3}\) < \(\frac{\pi}{2}\)]
∴ the principal value of tan-1(-\(\sqrt {3}\)) is –\(\frac{\pi}{3}\).

(v) sin-1 \(\left(\frac{1}{\sqrt{2}}\right)\)
Solution:
The principal value branch of sin-1x is \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).
Let sin-1 \(\left(\frac{1}{\sqrt{2}}\right)\) = ∝, where \(\frac{-\pi}{2}\) < ∝ < \(\frac{\pi}{2}\)
∴ sin∝ = \(\left(\frac{1}{\sqrt{2}}\right)\) = sin\(\frac{\pi}{4}\)
∴ ∝ = \(\frac{\pi}{4}\) …[∵ –\(\frac{\pi}{2}\) ≤ \(\frac{\pi}{4}\) ≤ \(\frac{\pi}{2}\)]
∴ the principal value of sin-1 \(\left(\frac{1}{\sqrt{2}}\right)\) is \(\frac{\pi}{4}\).

(vi) cos-1\(\left(-\frac{1}{2}\right)\)
Solution:
The principal value branch of cos-1x is (0, π).
Let cos-1\(\left(-\frac{1}{2}\right)\) = ∝, where 0 ≤ ∝ ≤ π
∴ cos∝ = \(-\frac{1}{2}\) = -cos\(\frac{\pi}{3}\)
∴ cos∝ = cos\(\left(\pi-\frac{\pi}{3}\right)\) …[∵ cos(π – θ) = -cosθ)
∴ cos∝ = cos\(\frac{2 \pi}{3}\)
∴ ∝ = \(\frac{2 \pi}{3}\) …[∵ 0 ≤ \(\frac{2 \pi}{3}\) ≤ π]
∴ the principal value of cos-1\(\left(-\frac{1}{2}\right)\) is \(\frac{2 \pi}{3}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 2.
Evaluate the following :
(i) tan-1(1) + cos-1\(\left(\frac{1}{2}\right)\) + sin-1\(\left(\frac{1}{2}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 1
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 2

(ii) cos-1\(\left(\frac{1}{2}\right)\) + 2 sin-1\(\left(\frac{1}{2}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 3
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 4

(iii) tan-1\(\sqrt {3}\) – sec-1(-2)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 5
∴ tan-1\(\sqrt {3}\) – sec-1(-2)
= \(\frac{\pi}{3}-\frac{2 \pi}{3}\) …[By (1) and (2)]
= –\(\frac{\pi}{3}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) cosec-1( \(-\sqrt{2}\)) + cot-1(\(\sqrt{3}\))
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 6
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 7

Question 3.
Prove the following :
(i) sin-1\(\left(\frac{1}{\sqrt{2}}\right)\) – 3sin-1\(\left(\frac{\sqrt{3}}{2}\right)\) = –\(-\frac{3 \pi}{4}\)
Question is modified.
sin-1\(\left(\frac{1}{\sqrt{2}}\right)\) – 3sin-1\(\left(\frac{\sqrt{3}}{2}\right)\) = –\(\frac{3 \pi}{4}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 8
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 9

(ii) sin-1\(\left(-\frac{1}{2}\right)\) + cos-1\(\left(-\frac{\sqrt{3}}{2}\right)\) = cos-1\(\left(-\frac{1}{2}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 10
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 11
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 12

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) sin-1\(\left(\frac{3}{5}\right)\) + cos-1\(\left(\frac{12}{13}\right)\) = sin-1\(\left(\frac{56}{65}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 13
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 14

(iv) cos-1\(\left(\frac{3}{5}\right)\) + cos-1\(\left(\frac{4}{5}\right)\) = \(\frac{\pi}{2}\)
Solution:
Let cos-1\(\left(\frac{3}{5}\right)\) = x
∴ cosx = \(\left(\frac{3}{5}\right)\), where 0 < x < \(\frac{\pi}{2}\) ∴ sinx > 0
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 15

(v) tan-1\(\left(\frac{1}{2}\right)\) + tan-1\(\left(\frac{1}{3}\right)\) = \(\frac{\pi}{4}\)
Solution:
LHS = tan-1\(\left(\frac{1}{2}\right)\) + tan-1\(\left(\frac{1}{3}\right)\)
= tan-1\(\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2} \times \frac{1}{3}}\right)\)
= tan-1\(\left(\frac{3+2}{6-1}\right)\) = tan-1(1)
= tan-1\(\left(\tan \frac{\pi}{4}\right)\) = \(\frac{\pi}{4}\)
= RHS.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vi) 2 tan-1\(\left(\frac{1}{3}\right)\) = tan-1\(\left(\frac{3}{4}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 16
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 17

(vii) tan-1\(\left[\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}\right]\) = \(\frac{\pi}{4}\) + θ if θ ∈ \(\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 18

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(viii) tan-1\(\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\frac{\theta}{2}\), if θ ∈ (0, π)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.3 19

= \(\frac{\theta}{2}\) …[∵ tan-1(tanθ) = θ]
= RHS.